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Abstract

Multi-modal entity alignment (MMEA) aims to identify
equivalent entities between two multi-modal knowledge
graphs for integration. Unfortunately, prior arts have at-
tempted to improve the interaction and fusion of multi-
modal information, which have overlooked the influence of
modal-specific noise and the usage of labeled and unlabeled
data in semi-supervised settings. In this work, we introduce
a Pseudo-label Calibration Multi-modal Entity Alignment
(PCMEA) in a semi-supervised way. Specifically, in order to
generate holistic entity representations, we first devise vari-
ous embedding modules and attention mechanisms to extract
visual, structural, relational, and attribute features. Different
from the prior direct fusion methods, we next propose to ex-
ploit mutual information maximization to filter the modal-
specific noise and to augment modal-invariant commonality.
Then, we combine pseudo-label calibration with momentum-
based contrastive learning to make full use of the labeled and
unlabeled data, which improves the quality of pseudo-label
and pulls aligned entities closer. Finally, extensive experi-
ments on two MMEA datasets demonstrate the effectiveness
of our PCMEA, which yields state-of-the-art performance.

Introduction
Multi-modal knowledge graphs (MMKGs) have drawn mas-
sive attention in various scenarios and motivated numerous
downstream applications (Sun et al. 2020a; Ding et al. 2022;
Shao et al. 2023). In MMKGs, knowledge is often sum-
marized in various forms, such as relation triples, attribute
triples, and images. Generally, MMKGs are constructed for
specific purposes, leading to separate MMKGs with dif-
ferent descriptions for identical concepts. To improve the
completeness of MMKGs, multi-modal entity alignment
(MMEA) is an emerging tasks that link entities referring to
the same real-world concept.

Figure 1 illustrates a toy example in MMEA. Com-
monly, aligned entities share similarities in attributes, rela-
tions, topology, or visual information. Thus, recent works
(Chen et al. 2020; Lin et al. 2022) design interaction
and fusion methods to integrate multi-modal embeddings.
Nevertheless, 1) direct interaction and fusion introduce
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richer information and modal-specific noise. For instance,
the entity /m/0r6c4 in FreeBase and the entity Moun-
tain View, California in Dbpedia have similar relation (e.g.
“Time zone” vs. “timeZone”) and attribute (e.g. “popula-
tion number” vs. “populationTotal”), all of which favor the
alignment of the two entities. But these entities may be in-
correctly aligned due to significant visual differences. 2)
The exploration of optimal embedding methods for each
modality is often neglected. For example, “longitude” and
“wgs84 pos#long” represent the full name and abbreviation,
and the bag-of-words method might maximize similarity.
Conversely, embedding by the pre-trained language model
might be better for the case where “birthplace” and “peo-
ple born here” are different phrases with the same meaning.
In addition, most existing methods exploit embedding-based
approaches relying heavily on human labeling. However, 3)
the design of the training strategy with limited labels has
been overlooked in MMEA. Many methods only use exist-
ing labels for supervised learning, neither fully utilizing un-
labeled data nor preventing model bias.

Contributions: To address the abovementioned prob-
lems, we introduce PCMEA, a Pseudo-label Calibration
based semi-supervised MMEA framework. It has three main
components: PCMEA first utilizes diverse encoders and at-
tention mechanisms to obtain modality-specific representa-
tions for each entity. To exploit complementarities across
modalities and filter out model-specific noise, PCMEA
then employs mutual information-enhanced cross-modality
alignment methods, which can enrich intra-modal interac-
tion and avoid the influence of noise. To leverage labeled and
unlabeled data, PCMEA finally develops momentum-based
contrastive learning with pseudo-label calibration, which
can reduce error propagation and help to align entities. Ex-
perimental results show that our approach achieves state-of-
the-art performance on two MMEA benchmark datasets.

Related Work
Entity alignment (EA) and multi-modal entity align-
ment. With developments in knowledge graph represen-
tation learning, embedding-based entity alignment has
emerged. Those embedding-based methods commonly have
two steps: 1)KG embedding module encodes the entities into
vectors according to the semantic or structural information;
2)entity alignment (Sun et al. 2020b) module captures the
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Figure 1: An example of multi-modal entity alignment. The
oval shape represents entities, and the diamond shape repre-
sents attribute values. The dotted line indicates the relation
or attribute of the alignment of two aligned entities.

correspondence of embedding vectors with seed alignment.
Recently, lots of multi-modal knowledge graphs have

been constructed. Information from different independent
modalities can complement each other. Nevertheless, their
corresponding representations, reflected in separate spaces,
can not directly merge in a shared space. A fusion mod-
ule in MMEA (Chen et al. 2020) is proposed to migrate
knowledge embeddings from multiple modalities for robust-
ness. A novel method in MSNEA (Chen et al. 2022a) uses
visual features to guide other modalities learning, promot-
ing inter-modal enhanced entity representation. In addition
to the modal embedding perspective, an intra-modal con-
trastive loss in MCLEA (Lin et al. 2022) is utilized to distin-
guish the embeddings of equivalent entities from other enti-
ties for each modality.

Different from previous methods, our proposed PCMEA
not only strengthens the complementarity between different
modal representations using mutual information and atten-
tion mechanism but also devises a more effective contrastive
learning strategy to pull aligned entities closer.

Semi-supervised and unsupervised entity alignment.
Recently, some EA methods based on representation learn-
ing have been prevalent due to their accuracy. However, their
success often relies on annotated data, which means higher
labor costs. For situations with few or no aligned seeds, sev-

eral semi-supervised or unsupervised EA approaches have
been proposed. Methods like CEAFF (Zeng et al. 2021b)
and RLEA (Guo et al. 2022) transform the alignment pro-
cess into sequence decision task. RAC (Zeng et al. 2021a)
conducts reinforced active learning by selecting entities to
manually label with minimal labeling efforts and exploit
vast unlabeled data. Meanwhile, self-supervised EA meth-
ods like EVA (Liu et al. 2021) and ICLEA (Zeng et al. 2022)
create pre-aligned entity pairs by leveraging visual similarity
or contrastive learning. However, those semi-supervised or
self-supervised methods usually suffer from error accumu-
lation, leading to performance bottlenecks. The main reason
is no guarantee of the accuracy of the pre-decision or pre-
alignments. Therefore, in PCMEA, we calibrate the pseudo-
labels before incorporating them into the supervised con-
trastive learning framework, decreasing error accumulation.

Methodology
Problem Definition and Notations
Definition 1:Multi-modal Knowledge Graph. A multi-
modal knowledge graph is formalized as G =
(E,R, I, A, V, TR, TA). Here, E,R, I, A, and V denote the
sets of entities, relations, images, attributes, and values, re-
spectively. TR = {(h, r, t)|h, t ∈ E, r ∈ R} refers to the set
of relation triples. TA = {(e, a, v)|e ∈ E, a ∈ A, v ∈ V }
denotes the set of attribute triples.

Definition 2:Multi-modal Entity alignment. Given
two multi-modal knowledge graphs G and G′,
G=(E,R, I, A, V, TR, TA) and G′=(E′, R′, I ′, A′, V ′,
T ′R, T

′
A), the set of alignment seeds across two multi-modal

knowledge graphs is defined as H = {(e, e′)|e ∈ E, e′ ∈
E′, e ≡ e′}, where ≡ represents the equivalence of two
entities. The task of multi-modal entity alignment targets to
match the counterpart entities e and e′, which describe the
same concepts in the real world from distinct multi-modal
knowledge graphs.

Framework Overview
In this paper, we introduce a semi-supervised multi-modal
entity alignment framework called PCMEA to solve the
challenges above. Our proposed PCMEA comprises three
components: Attention-guided Multi-modal Embedding to
extract visual, relation, attribute, and structure features with
diverse encoders and attention mechanisms; Mutual Infor-
mation Enhanced Cross-modality Alignment to encourage
cross-modality knowledge transfer and to filter modality-
invariant noise; Contrastive Learning with Pseudo-Label
Calibration method to help align entities with a few label
supervision.

Attention-guided Multi-modal Embedding
In multi-modal knowledge graphs, there are various modal-
ities of knowledge to depict an entity, i.e., neighborhood
structure, relations, attributes, and images. Each modality is
processed using different encoders depending on the nature
of the signal. Furthermore, uni-modal embeddings are fused
with weighted concatenation to form the joint embedding.
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Figure 2: The overall architecture of PCMEA, which combines heterogeneous multi-modal attention-guided embedding and
learns through MI maximization enhanced alignment loss (consists of alignment loss LAL and MI maximization loss LMI ),
and momentum-based contrastive loss LCL.

Self-attention Augmented Structure Embedding. We
utilize Graph Attention Networks (GAT) (Veličković et al.
2018) to model the neighborhood structure information of
entities as real-valued vectors, since GAT aggregates neigh-
borhood information with the attention mechanism and fo-
cuses on the most relevant neighbors. In practice, we apply a
two-layer GAT model to embed the neighborhood informa-
tion. We use the output of the last layer as the intermediate
representation of neighbor structure embedding hginter.

Because diverse modalities have different statistical prop-
erties, which are distributed cross feature spaces, we apply
an adaptor self-attention module (ASM) to narrow the se-
mantic gap. The main components of ASM are a multi-head
self-attention (MHSA) layer and a plug-and-play bottleneck
layer called AdaptorMLP (Chen et al. 2022b). The processes
of hginter and hg are formulated as:

hginter = Wg ·GAT 2(gi) + bg (1)

hg = ASM (hginter) (2)

where Wg and bg are learnable parameters.

Semantic Information Guided Relation and Attribute
Embedding. In KGs, the relation triples (attribute triples)

of the corresponding entities have similarities in characters
or semantics. Thus, we adopt two approaches to embed the
relations (attributes) triples. On one hand, we represent the
relations (attributions) of entities ei as bag-of-words features
and feed them into a feed-forward layer to obtain the re-
lation embedding hrBOW (attribute embedding haBOW ). On
the other hand, we expand the relation (attribute) triples tm
into word sequences sm and input sm into a pre-trained lan-
guage model, which can understand the meaning of sen-
tences. In our work, we apply T5 (Raffel et al. 2020) and
Roberta (Liu et al. 2019b) to encode relation and attribute
triples, respectively. After a feed-forward layer, the semantic
representation of relation (attribute) triples can be obtained.

hmBOW = Wm · BOW (tm) + bm,m ∈ {r, a} (3)
hmPLM = PLM (sm),m ∈ {r, a} (4)

hmPLM = W ′m · hmPLM + b′m,m ∈ {r, a} (5)

where Wm, W ′m, bm, and b′m are learnable parameters.
The character and semantic information of relation triples

and attribute triples can be mutually complemented. There-
fore, we adopt a cross-attention module and use semantic
information to guide further learning of character informa-
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tion. The cross-attention module (CAM) is very similar to
multi-head self-attention, with the difference that semantic
embeddings hmPLM are used as query inputs and character
embeddings hmBOW are used as the input of keys and values.
The structure of CAM is shown in Figure 2.

hmBOW = CAM (hmBOW , hmPLM ),m ∈ {r, a} (6)

Visual Information Embedding. For visual information
embedding, we follow (Lin et al. 2022) and adopt the pre-
trained visual model (PVM) to learn visual representation.
For consistency, we use the embeddings generated by (Lin
et al. 2022). The visual representation is sent through a feed-
forward layer to get final visual embedding hv .

hv = Wv · PVM (vi) + bv (7)

where Wv and bv are learnable parameters.

Joint Embedding Inspired by recent works (Lin et al.
2022; Chen et al. 2022a, 2023), we implement a simple
weighted concatenation by integrating the multi-modal fea-
tures into a joint representation hj :

hj = Concat
m

[
softmax(αm) · hm

]
(8)

where m denotes the modal type and m ∈
{g, rBOW , rPLM , aBOW , aPLM , v}, which means that
hm∈{hg, hrBOW , hrPLM , h

a
BOW , haPLM , h

v}. αm is the
trainable attention weight for the modality of m. Concat
means concatenation operation.

Mutual Information Enhanced Cross-modality
Alignment
Different modality information enriches the entity represen-
tation from different perspectives. The joint embedding gen-
erated from fusion mechanism is more comprehensive than
uni-modal embedding. Thus, aligning uni-modal embedding
with the joint embedding can transfer the knowledge from
the joint embedding back to uni-modal ones, resulting in
better uni-modal representation. Concretely, we minimize
the Align Loss (LAL) to reduce the difference between uni-
modality and joint modality and to realize the knowledge
transfer. For aligned pair (ei1, e

i
2):

Lm
AL = −

∑
m

Ei∈B
[
DKL(Qhj (ei1, e

i
2)||Qhm(ei1, e

i
2))

+DKL(Qhj (ei2, e
i
1)||Qhm(ei2, e

i
1))
]

(9)

where DKL(·) represents the Kullback-Leibler Divergence,
Qhj (ei1, e

i
2) = hj

ei1
⊗ hj

ei2
and hj

ei1
is the joint em-

bedding of ei1. Qhm(ei1, e
i
2) is calculated in an analo-

gous way using the uni-modal embedding hm, m ∈
{g, rBOW , rPLM , aBOW , aPLM , v}.

However, direct alignment of cross-modality only encour-
ages integrating information from different modalities while
mixing the noise from each modality irrelevant to our task.
Thus, we use the mutual information estimator MINE (Bel-
ghazi et al. 2018) to enhance mutual information, which
can be utilized to mine the modal-invariant information be-
tween different modalities and filter out modality-specific

random noise (Qi and Qin 2023; Bao et al. 2023). Specifi-
cally, we maximize the MI between joint embedding hj and
uni-modal embedding hm:

I(ĥj , hm) =max I(hj ;hm)

=max DKL(Phjhm || Phj ⊗ Phm)

=sup EPhjhm [Φ]− log( EPhj⊗Phm )[eΦ] (10)
where Phjhm represents joint distribution, Phj and Phm

are marginal distributions of joint embedding hj and uni-
modal embedding hm, respectively. sup represents supre-
mum function and Φ is a simple nonlinear layer. Specifi-
cally, in the multi-modal entity alignment task, the loss for
MI maximization is:

LMI = −
∑
m

I(ĥj , hm) (11)

where hm ∈ {hg, hrPLM , h
a
PLM , h

v} is uni-modal entity
representation, hj denotes the joint-modal embedding.

Contrastive Learning with Pseudo-Label
Calibration
In this section, contrastive learning with pseudo-label cal-
ibration strategy is designed for semi-supervised EA. It
mainly consists of two parts: (1) Pseudo-label calibration
provides more reliable pseudo-aligned entity pairs to ex-
pand the training data set and decrease error propagation.
(2) Momentum-based contrastive learning mechanism can
be more effective in pulling the aligned pairs closer and
pushing unaligned pairs away.

Pseudo-label Calibration. Ensemble learning always
plays a crucial role in improving prediction performance
and overcoming the model homogenization issues of sin-
gle model. Accordingly, we devise a pseudo-label calibra-
tion strategy that improves the confidence of pseudo-aligned
pairs via the modal ensemble. Specially, we introduce a
dynamic prediction dictionary, where the prediction of the
present epoch will be stored. After ω epochs, the new predic-
tion will first be compared with the previously stored results.
For simplicity, we set ω to 2. If the two results are identical,
the sample, as well as the predicted sample, will be classi-
fied as pseudo-label. Otherwise, the new prediction will be
used to update the dictionary.

In addition, we introduce a data reordering method to ac-
celerate model learning and optimize the quality of pseudo-
label generation. In the early stage of model training, we re-
arrange the order of the labeled data, which is used to speed
up the convergence of the model and capture crucial fea-
tures. We first calculate the cosine similarity based on the en-
tity joint representation hj and then put together data items
with higher cosine similarity. Therefore, we put the more
similar data in one mini-batch that the model can fit the gen-
eral features and make the model initially distinguishable.

Momentum-Based Contrastive Learning. Recent stud-
ies (Zeng et al. 2022; Liu et al. 2022) have shown the popu-
larity of contrastive learning in entity alignment. The aligned
seeds can be naturally regarded as positive samples, whereas
any non-aligned pairs can be considered as negative sam-
ples due to the convention of 1-to-1 alignment constraint.
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Seeds Model FB15K-DB15K FB15K-YAGO15K
Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR

20%

PoE 0.1260 - 0.2510 0.1700 0.2500 - 0.4950 0.3340
MMEA 0.2648 0.4513 0.5411 0.3570 0.2339 0.3976 0.4800 0.3170

EVA 0.1340 - 0.3380 0.2010 0.0980 - 0.2760 0.1580
ACK-MMEA 0.3040 - 0.5490 0.3870 0.2890 - 0.4960 0.3600

MSNEA 0.6527 0.7685 0.8121 0.7080 0.4429 0.6255 0.6983 0.5290
MCLEA 0.4450 - 0.7050 0.5340 0.3880 - 0.6410 0.4740
MultiJAF 0.4800 0.5760 0.6010 0.5230 0.4630 0.6580 0.7310 0.5540

MEAformer 0.4340 - 0.7280 0.5340 0.3250 - 0.5980 0.4160
MEAformer(+) 0.5780 - 0.8120 0.6610 0.4440 - 0.6920 0.5290
PCMEA(ours) 0.6763 0.8214 0.8872 0.7280 0.5896 0.7518 0.8347 0.6460

50%

PoE 0.4640 - 0.6580 0.5330 0.4110 - 0.6690 0.4980
MMEA 0.4165 0.6210 0.7035 0.5120 0.4026 0.5723 0.6451 0.4860

EVA 0.2230 - 0.4710 0.3070 0.2400 - 0.4770 0.3210
ACK-MMEA 0.5600 - 0.7360 0.6240 0.5350 - 0.6990 0.5930

MCLEA 0.5730 - 0.8000 0.6520 0.5430 - 0.7590 0.6160
MEAformer 0.6250 - 0.8470 0.7040 0.5600 - 0.7800 0.6400

MEAformer(+) 0.6900 - 0.8710 0.7550 0.6120 - 0.8080 0.6820
PCMEA(ours) 0.7375 0.8614 0.9154 0.7810 0.6702 0.8151 0.8857 0.7210

80%

PoE 0.6660 - 0.8200 0.7210 0.4920 - 0.7050 0.5720
MMEA 0.5903 0.8041 0.8687 0.6850 0.5976 0.7849 0.8389 0.6820

EVA 0.3700 - 0.5850 0.4440 0.3940 - 0.6130 0.4710
ACK-MMEA 0.6820 - 0.8740 0.7520 0.6760 - 0.8640 0.7440

MCLEA 0.7300 - 0.8830 0.7840 0.6530 - 0.8350 0.7150
MEAformer 0.7730 - 0.9180 0.8250 0.7050 - 0.8740 0.7680

MEAformer(+) 0.7840 - 0.9210 0.8340 0.7240 - 0.8800 0.7830
PCMEA(ours) 0.8204 0.9232 0.9644 0.8580 0.7556 0.8819 0.9424 0.8020

Table 1: Main experiments on FB15K-DB15K and FB15K-YAGO15K with different proportions of entity alignment seeds. The
best results are highlighted in bold and the second best results are underlined. The “-” denotes that the results are not available,
and the “+” means the iterative results.

Formally, for the i-th entity ei1 ∈ E1 of mini-batch B, the
positive set is defined as P i = {ei2|ei2 ∈ E2}, where (ei1, e

i
2)

is an aligned pair. The negative set includes two parts, inner-
graph unaligned pairs from the source KG G1 and cross-
graph unaligned pairs from the target KG G2, defined as
N i

1 = {ei1|∀e
j
1 ∈ E1, i 6= j} and N i

2 = {ej2|∀e
j
2 ∈ E2, i 6=

j}, respectively. Since contrastive learning and pseudo-label
calibration are performed simultaneously, the scale of the
alignment seeds is gradually expanded as training progres-
sively proceeds, and the corresponding positive and negative
sets are dynamically updated.

Motivated by MoCo (He et al. 2020) and Fast-MoCo (Ci
et al. 2022), momentum-based contrastive learning meth-
ods adopt an asymmetric forward path, and the two encoded
samples from two paths (online path and target path) form a
pair for contrastive learning, which has been proven to be ef-
fective in many scenarios. In this work, we propose to apply
momentum-based contrastive learning to the field of semi-
supervised entity alignment. On the online path, online en-
tity representation is generated by the online encoder. On the
target path, momentum entity representation is generated by
a slowly moving momentum encoder. Thus, for the i-th en-
tity ei1 ∈ E1 of mini-batch B, its representation is generated

by the online encoder, and the representations of its posi-
tive set P i and negative set N i are generated by momen-
tum encoder. While the online encoder’s parameter θonline
is instantly updated with the back-propagation, the target en-
coder’s parameter θtarget is asynchronously updated with
momentum by:
θtarget ← κ · θtarget + (1− κ) · θonline, κ ∈ [0, 1) (12)
To be specific, we define the alignment probability distri-

bution qm(ei1, e
i
2) of the modality m for each positive pair

(ei1, e
i
2) as:

qm(ei1, e
i
2) =

δm(ei1, e
i
2)

δm(ei1, e
i
2) +

∑
ej1∈Ni

1

δm(ei1, e
j
1) +

∑
ej2∈Ni

2

δm(ei1, e
j
2)

(13)

where δm(u, v) = exp(fm(u)T gm(v)/τ), fm(·) and gm(·)
are the online encoder and the momentum encoder of the
modalitym, respectively. T denotes transpose operation and
τ is a temperature parameter. Notably, the distribution is di-
rectional and asymmetric for each input; the distribution for
another direction is thus defined similarly as qm(ei2, e

i
1). The

loss function of contrastive learning can be calculated by:

Lm
CL = −Ei∈Blog

[1

2
(qm(ei1, e

i
2) + qm(ei2, e

i
1))
]

(14)
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We employ stage-wise momentum-based contrastive
learning loss on uni-modal and joint representation. Specifi-
cally, in the first stage, only the online network is trained and
updated. In the second stage, the momentum network is ini-
tialized and trained simultaneously with the online network.
The time of changing the training strategy is ts, and the time
span for updating the momentum network is ρ epochs.

Optimization Objective
The overall loss of the PCMEA is given below,

L =
∑

m∈M1

Lm
AL + LMI +

∑
m∈M2

Lm
CL (15)

where M1 = {g, rBOW , rPLM , aBOW , aPLM , v},M2 =
M1 ∪ {hj}, and hj denotes the joint embedding in Eq. (8).

Experiments
Experimental Settings
Two cross-KG EA datasets are adopted for evaluation, in-
cluding FB15K-DB15K and FB15K-YAGO15K, which are
the most representative datasets in MMEA task (Chen et al.
2020, 2022a; Lin et al. 2022). FB15K is one of the most
widely used data sets in the field of link prediction. Enti-
ties from DBpedia and YAGO aligned with FB15K are ex-
tracted through the SameAs links, which are utilized to build
DB15K and YAGO15K datasets.

Our baseline model is MCLEA (Lin et al. 2022) and we
also compare our method against other 7 state-of-the-art
multi-modal EA methods, which can be classified into three
categories: 1) traditional multi-modal EA methods, includ-
ing PoE (Liu et al. 2019a), MMEA (Chen et al. 2020), and
EVA (Liu et al. 2021); 2) multi-modal EA method based
on pre-trained language model, such as ACK-MMEA (Li
et al. 2023); 3) multi-modal EA method based on contrastive
learning, including MSNEA (Chen et al. 2022a), MultiJAF
(Cheng, Zhu, and Guo 2022) and MEAFormer (Chen et al.
2023). For all baselines, we report the original results from
their literature.

Our model is implemented based on Pytorch, an open-
source deep learning framework. The pre-trained language
models (Bert (Kenton and Toutanova 2019), T5 (Raffel et al.
2020), RoBerta (Liu et al. 2019b), Albert (Lan et al. 2019)
ChatGLM-6B (Du et al. 2022) and LLaMA-7B (Touvron
et al. 2023)) are downloaded from Hugging Face1 and all
of them are base version. All experiments were conducted
on a server with two GPUs (NVIDIA-SMI 3090).

Results
To verify the effectiveness of our method, we report overall
average results in Table 1. It shows performance compar-
isons on FB15K-DB15K and FB15K-YAGO15K datasets
with different splits on training/testing data of alignment
seeds, i.e., 2:8, 5:5, and 8:2.

From Table 1, we can observe that: 1) Our model out-
performs all the baseline of MMEA methods in terms of
all metrics on both datasets. Particularly, our model brings
about 9.04%-23.13% (16.21% on average) improvement on

1https://huggingface.co/

Figure 3: Study on (a) momentum coefficient, (b) momen-
tum network update span, (c) time of changing training strat-
egy.
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FB15K-DB15K and 10.26%-20.16% (14.38% on average)
on FB15K-YAGO15K in terms of Hits@1 for all propor-
tions of training data over baseline MCLEA. The superi-
ority of our method demonstrates that the proposed struc-
ture and training strategy substantially boosts performance
in the semi-supervised settings. 2) Our model shows a clear
improvement over the traditional multi-modal EA method,
which reveals that a more rational multi-modal information
fusion method, as well as an appropriate training strategy,
can make full use of the available data. 3) Our model is sig-
nificantly more effective than other EA methods based on
PLM, suggesting that PLM is useful for embedding relations
and attributes but needs to be coupled with the neighborhood
structure of the entity. 4) Moreover, our method clearly sur-
passes the state-of-the-art baseline by 2.36% in Hits@1 and
2% in MRR on FB15K-DB15K and significantly outper-
forms the best baseline by 12.66% in Hits@1 and 9.2% in
MRR on FB15K-YAGO15K based on 20% aligned seeds.
The above results also indicate that our modified contrastive
learning strategy and model structure are superior.

Variants FB15K-DB15K
Hits@1 Hits@10 MRR

Ours 0.6763 0.8872 0.7280

w/o Image 0.6510 0.8740 0.7070
w/o Bag-of-words 0.5303 0.7582 0.5860
w/o PLM 0.6502 0.8746 0.7050
w/o Cross-attention 0.6521 0.8719 0.7070
w/o MI Loss 0.6718 0.8841 0.7230
w/o Align Loss 0.6674 0.8818 0.7200
w/o CL Loss 0.3610 0.7204 0.4320
w/o LC1 0.6647 0.8809 0.7190
w/o LC2 0.6727 0.8753 0.7220
w/o LC1&LC2 0.6588 0.8706 0.7120

Attribute Embedding using different PLM

Bert 0.6682 0.8803 0.7190
Roberta 0.6763 0.8872 0.7280
Albert 0.6634 0.8811 0.7180
T5 0.6718 0.8811 0.7230
ChatGLM-6B 0.6650 0.8788 0.7170
LLaMA-7B 0.6746 0.8787 0.7230

Relation Embedding using different PLM

Bert 0.6706 0.8853 0.7230
Roberta 0.6693 0.8952 0.7260
Albert 0.6672 0.8828 0.7200
T5 0.6763 0.8872 0.7280
ChatGLM-6B 0.6726 0.8825 0.7230
LLaMA-7B 0.6768 0.8829 0.7270

Table 2: Variant experiments on FB15K-DB15K (20%). w/o
means removing the corresponding module from the com-
plete model. LC1 and LC2 mean dynamic prediction dictio-
nary and the reordering method in pseudo-label calibration
strategy, respectively. In represents the maximum sequence
length input to LLMs.

Ablation Study
To investigate the effectiveness of each module in PCMEA,
we perform variant experiments, whose results are shown in
Table 2. From Table 2, we notice that: 1) The impact of the
bag-of-words method (BOW) tends to be more significant
than PLM on encoding relations and attributes. When com-
bining PLM and BOW, the cross-attention mechanism must
be used to bring out the power of PLM. We believe this is be-
cause the semantic differences between the vectors produced
by the two encoders are obvious, and the attention mech-
anism can reduce the semantic gap. 2) The removal of the
contrastive learning loss (CL loss) has the greatest impact
with respect to the removal of the other two loss functions,
since CL loss directly clusters together similar entities, while
the others transfer information between different modali-
ties. 3) Removing pseudo-label calibration drops 0.36%-
1.75% in Hits@1, showing that improving pseudo-labeling
quality is necessary for semi-supervised contrastive learn-
ing and can contribute to model performance. 4) We analyze
the influence of embedding models by replacing different
pre-trained language models. Specially, we test four PLMs
(Bert et al.) and two large language models (ChatGLM-6B
and LLaMA-7B). The results show that different embed-
ding models affect entity alignment to a certain extent, and
stronger model can improve performance. 5) The variants
without image modality decline on all metrics, which hints
that the multi-modal information and rational utilization are
necessary for the EA task.

Impact of hyper-parameters. We conduct hyper-
parameter studies using FB15K-DB15K, showing results in
Figure 3. The main hyper-parameters in our method are
momentum coefficient κ, momentum network update span
ρ, and time of changing training strategy ts. For momen-
tum coefficient κ, a proper large κ (e.g. 0.999) bring bet-
ter stability and accuracy in Hits@1 and MRR, illustrating
momentum-based contrast learning is more effective than
just contrast learning. Varying time span ρ shows little dif-
ference. For time ts of changing training strategy, time ts
obvious effects the surge in Hits@1 after changing the strat-
egy, with ts = 500 allowing faster convergence. Besides, ts
barely affects post-convergence performance.

Conclusion
In this work, we propose a semi-supervised pseudo-label
calibration multi-modal entity alignment framework named
PCMEA. It utilizes various embedding methods and at-
tention mechanisms to obtain multi-modal entity represen-
tation. Instead of direct interaction and fusion of multi-
modal embedding, we apply mutual information maximiza-
tion to filter out task-independent noise and transfer cross-
modality information. To boost the quality of pseudo-label
and contrastive learning, we combine pseudo-label cali-
bration with momentum-based contrastive learning, which
helps pull aligned pairs closer and improve alignment per-
formance. Experimental results show that PCMEA can con-
sistently outperform prior state-of-the-art methods, produc-
ing high-quality alignment performance even under 20% la-
beled data settings.
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