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Abstract

Reasoning with knowledge graphs (KGs) has primarily fo-
cused on triple-shaped facts. Recent advancements have been
explored to enhance the semantics of these facts by incorpo-
rating more potent representations, such as hyper-relational
facts. However, these approaches are limited to atomic facts,
which describe a single piece of information. This paper
extends beyond atomic facts and delves into nested facts,
represented by quoted triples where subjects and objects
are triples themselves (e.g., ((BarackObama, holds position,
President), succeed by, (DonaldTrump, holds position, Pres-
ident))). These nested facts enable the expression of com-
plex semantics like situations over time and logical patterns

over entities and relations. In response, we introduce NestE, a
novel KG embedding approach that captures the semantics of
both atomic and nested factual knowledge. NestE represents
each atomic fact as a 1⇥3matrix, and each nested relation is
modeled as a 3⇥3matrix that rotates the 1⇥3 atomic fact ma-
trix through matrix multiplication. Each element of the ma-
trix is represented as a complex number in the generalized
4D hypercomplex space, including (spherical) quaternions,
hyperbolic quaternions, and split-quaternions. Through thor-
ough analysis, we demonstrate the embedding’s efficacy in
capturing diverse logical patterns over nested facts, surpass-
ing the confines of first-order logic-like expressions. Our ex-
perimental results showcase NestE’s significant performance
gains over current baselines in triple prediction and condi-
tional link prediction. The code and pre-trained models are
open available at https://github.com/xiongbo010/NestE.

Introduction

Knowledge graphs (KGs) depict relationships between en-
tities, commonly through triple-shaped facts such as (Joe-
Biden, holds position, VicePresident). KG embeddings map
entities and relations into a lower-dimensional vector space
while retaining their relational semantics. This empowers
the effective inference of missing relationships between en-
tities directly from their embeddings. Prior research (Bor-
des et al. 2013; Trouillon et al. 2016) has primarily cen-
tered on embedding triple-shaped facts and predicting the
missing elements of these triples. Yet, to augment the triple-
shaped representations, recent endeavors explore knowledge
that extends beyond these triples. For instance, n-ary facts
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Figure 1: An example of a nested factual KG consisting of 1)
a set of atomic facts describing the relationship between en-
tities and 2) a set of nested facts describing the relationship
between atomic facts. Nested factual relations are colored
and they either describe situations in/over time (e.g., suc-
ceed by and works for when) or logical patterns (e.g., im-
plies profession and implies language).

(Liu, Yao, and Li 2020; Fatemi et al. 2020) describe re-
lationships between multiple entities, and hyper-relational
facts (Galkin et al. 2020; Xiong et al. 2023a) augment primal
triples with key-value qualifiers that provide contextual in-
formation. These approaches allow for expressing complex
semantics and enable answering more sophisticated queries
with additional knowledge (Alivanistos et al. 2022).
However, these beyond-triple representations typically fo-

cus only on relationships between entities that jointly de-
fine an atomic fact, overlooking the significance of re-
lationships that describe multiple facts together. Indeed,
within a KG, each atomic fact may have a relation-
ship with another atomic fact. Consider the following two
atomic facts: T1=(JoeBiden, holds position, VicePresident)
and T2=(BarackObama, holds position, President). We can
depict the scenario where JoeBiden held the position of Vi-
cePresident under the President BarackObama using a triple
(T1,works for when, T2). Such a fact about facts is referred
to as a nested fact

1 and the relation connecting these two
facts is termed a nested relation. Fig. 1 provides an illustra-
tion of a KG containing both atomic and nested facts.

1This is also called a quoted triple in RDF star (Champin 2022).
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These nested relations play a crucial role in expressing
complex semantics and queries in two ways: 1) Expressing
situations involving facts in or over time. This facilitates
answering complex queries that involve multiple facts. For
example, KG embeddings face challenges when address-
ing queries like ”Who was the president of the USA after

DonaldTrump?” because the query about the primary fact
(?, holds position, President) depends on another fact (Don-
aldTrump, holds position, President). As depicted in Fig. 1,
succeed by conveys such temporal situation between these
two facts, allowing the direct response to the query through
conditional link prediction. 2) Expressing logical patterns

(implications) using a non-first-order logical form  
br
!

�. As illustrated in Fig. 1, (Location A, uses language, Lan-
guage B) implies language

! (Location in A, uses language, Lan-
guage B) represents a logical pattern, as it holds true for all
pairs of (Location A, Location in A). Modeling such logical
patterns is crucial as it facilitates generalization. Once these
patterns are learned, new facts adhering to these patterns
can be inferred. A recent study (Chung and Whang 2023)
explored link prediction over nested facts.2 However, their
method embeds facts using a multilayer perceptron (MLP),
which fails to capture essential logical patterns and thus has
limited generalization capabilities.
In this paper, we introduce NestE, an innovative approach

designed to embed the semantics of both atomic facts and
nested facts that enable representing temporal situations and
logical patterns over facts. NestE represents each atomic fact
as a 1 ⇥ 3 hypercomplex matrix, with each element signi-
fying a component of the atomic fact. Furthermore, each
nested relation is modeled through a 3 ⇥ 3 hypercomplex
matrix that rotates the 1⇥ 3 atomic fact matrix via a matrix-
multiplicative Hamilton product. Our matrix-like modeling
for facts and nested relations demonstrates the capacity to
encode diverse logical patterns over nested facts. The model-
ing of these logical patterns further enables efficient model-
ing of logical rules that extend beyond the first-order-logic-
like expressions (e.g., Horn rules). Moreover, we propose
a more general hypercomplex embedding framework that
extends the quaternion embedding (Zhang et al. 2019) to
include hyperbolic quaternions and split-quaternions. This
generalization of hypercomplex space allows for express-
ing rotations over hyperboloid, providing more powerful
and distinct inductive biases for embedding complex struc-
tural patterns (e.g., hierarchies). Our experimental findings
on triple prediction and conditional link prediction showcase
the remarkable performance gain of NestE.

Related Work

Beyond-Triple KGs To enrich the semantics of triple-
base KGs, several lines of work have explored more pow-
erful representations (Xiong et al. 2023b). Temporal KGs
(Dasgupta, Ray, and Talukdar 2018; Leblay and Chekol
2018; Wang et al. 2023) introduce an additional times-
tamp to each triple to specify the temporal validity of the

2In their work, the KG is referred to as a bi-level KG, and the
term ”high-level facts” is synonymous with nested facts.

fact. Hyper-relational facts (Guan et al. 2020; Rosso, Yang,
and Cudré-Mauroux 2020; Galkin et al. 2020; Xiong et al.
2023a) attach a set of key-value qualifiers to the primal
triple, where each qualifier specify certain semantics of the
primal fact. N -ary facts (Liu, Yao, and Li 2020, 2021;
Fatemi et al. 2020) represent a fact as an abstracted rela-
tionship between n entities. Bilinear models are generalized
to n-ary facts by replacing the bilinear product with multi-
linear products (Liu, Yao, and Li 2020, 2021). These repre-
sentations capture relationships between entities or between
entities and facts, but they do not capture the relationships
between multiple facts.

Describing relationships between facts Rule-based ap-
proaches (Niu et al. 2020; Meilicke et al. 2019; Demeester,
Rocktäschel, and Riedel 2016; Guo et al. 2016; Yang, Yang,
and Cohen 2017; Sadeghian et al. 2019) consider relation-
ships between facts, but they are confined to first-order-
logic-like expressions (i.e., Horn rules), i.e., 8e1, e2, e3 :
(e1, r1, e2) ^ (e2, r2, e3) ) (e1, r3, e3), where there must
exist a path connecting e1, e2, and e3 in the KG. Notably,
(Chung and Whang 2023) marked an advancement by ex-
amining KG embeddings with relationships between facts
as nested facts, denoted as (x, r1, y)

r̂
=) (p, r2, q). The pro-

posed embeddings (i.e., BiVE-Q and BiVE-B3) concatenate
the embeddings of the head, relation, and tail, subsequently
embedding them via an MLP. However, such modeling does
do not explicitly capture crucial logical patterns over nested
facts, which bear significant importance in KG embeddings.

Algebraic and geometric embeddings Algebraic embed-
dings like QuatE (Zhang et al. 2019) and BiQUE (Guo and
Kok 2021) represent relations as algebraic operations and
score triples using inner products. They can be viewed as
a unification of many earlier functional (Bordes et al. 2013)
and multiplication-based (Trouillon et al. 2016) models. Ge-
ometric embeddings like hyperbolic embeddings (Chami
et al. 2020; Balazevic, Allen, and Hospedales 2019) further
extend the functional models to non-Euclidean hyperbolic
space, enabling the representation of hierarchical relations.

Preliminaries

A KG is denoted as a graph G = (V,R, T ), where V rep-
resents the set of entities, R stands for the set of relation
names, and T = {(h, r, t) : h, t 2 V , r 2 R} represents
the set of triples. We refer to G as an atomic factual KG,
and each (h, r, t) 2 T is referred to as an atomic triple. The
nested triple and nested factual KG are defined as follows.
Definition 1 (Nested Triple). Given an atomic factual KG

G = (V,R, T ), a set of nested triples is defined by bT =
{hTi, br, Tji : Ti, Tj 2 T , br 2 bR}, where T is the set of

atomic triples and bR is the set of nested relation names.

Definition 2 (Nested Factual Knowledge Graph). Given a

KG G = (V,R, T ), a set of nested relation names bR, and a

3Note that BiVE-B, despite being described as based on the
biquaternian–BiQUE, employs quaternion space with an additional
translation component based on our analysis of the code.
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set of nested triples bT defined on G and bR, a nested factual

KG is defined as bG = (V,R, T , bR, bT ).

We can now define triple prediction and conditional link
prediction (Chung and Whang 2023) as follows.
Definition 3 (Triple Prediction). Given a nested factual KG
bG = (V,R, T , bR, bT ), the triple prediction problem involves

answering a query hTi, br, ?ti or hh?, br, Tji with Ti, Tj 2 T

and br 2 bR, where the variable ?h or ?t needs to be bounded
to an atomic triple within bG.

Definition 4 (Conditional Link Prediction). Given a nested

factual KG bG = (V,R, T , bR, bT ), let Ti = (hi, ri, ti) and
Tj = (hj , rj , tj). The conditional link prediction prob-

lem involves queries hTi, br, (hj , rj , ?)i, hTi, br, (?, rj , tj)i,
h(hi, ri, ?), br, Tji, or h(?, ri, ti), br, Tji, where the variables

need to be bound to entities within bG.

NestE: Embedding Atomic and Nested Facts

Unified Hypercomplex Embeddings

We first extend QuatE (Zhang et al. 2019), a KG embed-
ding in 4D hypercomplex quaternion space, into a more
general 4D hypercomplex number system including three
variations: (spherical) quaternions, hyperbolic quaternions,
and split quaternions. Each of these 4D hypercomplex num-
bers is composed of one real component and three imaginary
components denoted by s+ xi+ yj+ zk with s, x, y, z 2 R
and i, j, k being the three imaginary parts. The distinctive
feature among these hyper-complex number systems lies in
their multiplication rules of the imaginary components.
(Spherical) quaternions Q follow the multiplication rules:

i
2 = j

2 = k
2 = 1,

ij = k = �ji, jk = i = �kj, ki = j = �ik.
(1)

Hyperbolic quaternions H follow the multiplication rules:

i
2 = �1, j2 = k

2 = 1,
ij = k, jk = �i, ki = j, ji = �k, kj = i, ik = �j.

(2)

Split quaternions S follow the multiplication rules:

i
2 = �1, j2 = k

2 = 1,
ij = k, jk = �i, ki = j, ji = �k, kj = i, ik = �j.

(3)

Geometric intuitions The distinctions in the multiplica-
tion rules of various hypercomplex numbers give rise to
different geometric spaces that provide suitable inductive
biases for representing different types of relations. Specif-
ically, spherical quaternions, hyperbolic quaternions, and
split quaternions with the same norm c correspond to 4D
hypersphere, Lorentz model of hyperbolic space (i.e., the
upper part of the double-sheet hyperboloid), and pseudo-
hyperboloid (i.e., one-sheet hyperboloid, with curvature

p
c,

respectively. These are denoted as follows:

|Q| = s2 + x2 + y2 + z2 = c > 0 (hypersphere)
|H| = s2 � x2

� y2
� z2 = c > 0 (Lorentz hyperbolic space)

|S| = s2 + x2
� y2

� z2 = c > 0 (pseudo-hyperboloid).
(4)

These spaces have well-known characteristics: spherical
spaces are adept at modeling cyclic relations (Wang et al.
2021), hyperbolic spaces provide geometric inductive bi-
ases for hierarchical relations (Chami et al. 2020), and the
pseudo-hyperboloid (Xiong et al. 2022) offers a balance be-
tween spherical and hyperbolic spaces, making it suitable
for embedding both cyclic and hierarchical relations. More-
over, by representing relations as geometric rotations over
these spaces (i.e., Hamilton product), fundamental logical
patterns such as symmetry, inversion, and compositions can
be effectively inferred (Zhang et al. 2019; Chami et al. 2020;
Xiong et al. 2022). Our proposed embeddings can be viewed
as a unification of previous approaches that leverages these
geometric inductive biases in these geometric spaces within
a single geometric algebraic framework.
For convenience, we parameterize each entity and rela-

tion as a Cartesian product of d 4D hypercomplex numbers
s + xi + yj + zk, where s,x,y, z 2 Rd. This enables us
to define all algebraic operations involving these hypercom-
plex vectors in an element-wise manner.

Atomic Fact Embeddings

Each atomic relation is represented by a rotation hypercom-
plex vector r✓ and a translation hypercomplex vector rb. For
a given triple (h, r, t), we apply the following operation:

h0 = (h� rb)⌦ r✓, (5)

where � and ⌦ stand for addition and Hamilton product be-
tween hypercomplex numbers, respectively. The addition in-
volves an element-wise sum of each hypercomplex compo-
nent. The Hamilton product rotates the head entity. To en-
sure proper rotation on the unit sphere, we normalize the ro-
tation hypercomplex number r✓ = s✓r + x✓

ri+ y✓
r j+ z✓rk by

r✓ = s✓r+x✓
ri+y✓

rj+z✓
rkp

s✓r
2+x✓

r
2+y✓

r
2+z✓

r
2
. Hamilton product is defined by

combining the components of the hypercomplex numbers.

h0 = h⌦ r✓

=
⇣
sh � s✓r � 1 + xh � x✓

r � i
2 + yh � y✓

r � j2 + zh � z✓r � k
2
⌘

+
⇣
sh � x✓

r � i+ xh � s✓r � i+ yh � z✓r � jk + zh � y✓
r � kj

⌘

+
⇣
sh � y✓

r � j + xh � z✓r � ik + yh � s✓r � j + zh � x✓
r � ik

⌘

+
⇣
sh � z✓r � k + xh � y✓

r � ij + yh � x✓
r � ij + zh � s✓r � k

⌘

= sh0 + xh0 i+ yh0 j+ zh0k,
(6)

where the multiplication of imaginary components follows
the rules (Eq.1-3) of the chosen hypercomplex systems.
The scoring function �(h, r, t) is defined as:

�(h, r, t) = hh0, ti = hsh0 , sti+hxh0 ,xti+hyh0 ,yti+hzh0 , zti ,
(7)

where h·, ·i represents the inner product.

Nested Fact Embeddings

To represent an atomic fact (h, r, t) without losing informa-
tion, we embed each atomic triple as a 1 ⇥ 3 matrix, where
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each column corresponds to the embedding of the respective
element. Consequently, we have Ti = [hi, ri, ti].

To embed various shapes of nested relations between Ti

and Tj with relation br, we model each nested relation us-
ing a 1 ⇥ 3 translation matrix and a 3 ⇥ 3 rotation matrix,
where each element is a 4D hypercomplex number. Specifi-
cally, we first translate the head triple Ti with brb, followed
by applying a matrix-like rotation of br✓, as defined by

Ti0 = (Ti�1⇥3 brb)⌦3⇥3 br✓, (8)

where the matrix addition �1⇥3 is performed through an
element-wise summation of the hypercomplex components
within the matrices. The matrix-like Hamilton product⌦3⇥3

is defined as a product akin to matrix multiplication:

T0
i = Ti ⌦3⇥3 br✓ =

2

4
hi

ri
ti

3

5
>

⇥

2

4
br✓11 br✓12 br✓13
br✓21 br✓22 br✓23
br✓31 br✓32 br✓33

3

5 =

2

4
hi ⌦ br✓11 + ri ⌦ br✓21 + ti ⌦ br✓31
hi ⌦ br✓12 + ri ⌦ br✓22 + ti ⌦ br✓32
hi ⌦ br✓13 + ri ⌦ br✓23 + ti ⌦ br✓33

3

5
>

=

2

4
h0
i

r0i
t0i

3

5
>

,

(9)

where ⌦ is the Hamilton product.

Remarks This matrix-like modeling of nested facts pro-
vides flexibility to capture diverse shapes of logical patterns
inherent in nested relations. In essence, different shapes of
situations or patterns can be effectively modeled by manip-
ulating the 3⇥3 rotation matrix. For instance, relational im-
plications can be represented using a diagonal matrix, while
inversion can be captured using an anti-diagonal matrix. See
theoretical justification for further analysis.
To assess the plausibility of the nested fact (Ti, br, Tj), we

calculate the inner product between the transformed headT0
i

fact and the tail fact Tj as:

⇢(Ti, br, Tj) = hT0
i,Tji, (10)

where h·, ·i denotes the matrix inner product.

Learning objective We sum up the loss of atomic fact em-
bedding Latomic, the loss of nested fact embedding Lmeta, and
additionally the loss term Laug for augmented triples gen-
erated by random walking as used in (Chung and Whang
2023). The overall loss is defined as

L = Latomic + �1Lnested + �2Laug (11)

where �1 and �2 are the weight hyperparameters indicating
the importance of each loss. Negative sampling is applied
by randomly replacing one of the head or tail entity/triple.
These losses are defined as follows:

Latomic =
X

(h,r,t)2T
g (�� (h, r, t)) +

X

g((h0,r0,t0))/2T

g
�
�
�
h0, r0, t0

��

Laug =
X

(h,r,t)2T 0
g (�� (h, r, t)) +

X

(h0,r0,t0)/2T 0
g
�
�(h0, r0, t0)

�

Lnested =
X

(Ti,br,Tj)/2 bT

g (�⇢(Ti, br, Tj)) +
X

(T 0
i ,br,T

0
j)/2

bT

g
⇣
⇢(T 0

i , br, T
0
j)
⌘
,

(12)
where g = log(1 + exp(x)) and T

0 is the set of augmented
triples.

R-inverse R-implication

!!

!"

!̂

R-symmetry

!

!

!̂

!!

!"

!̂

R-Inv-implication

!!

!"

!̂

!

!
E-implication

!̂

E-R-implication

!̂

!!

!"
E-R-Inv-implication

!̂

!!

!"

!

!

!̂

Dual E-implication

Figure 2: A structural illustration of different shapes of log-
ical patterns, where the colored circles are free variables.

Theoretical Justification

Modeling logical patterns is of great importance for KG em-
beddings because it enables generalization, i.e., once the pat-
terns are learned, new facts that respect the patterns can be
inferred. A logical pattern is a logical form  ! � with  
and � being the body and head, implying that if the body is
satisfied then the head must also be satisfied.

First-order-logic-like logical patterns Existing
KG embeddings studied logical patterns expressed
in the first-order-logic-like form. Prominent exam-
ples include symmetry 8h, t : (h, r, t) ! (t, r, h),
anti-symmetry 8h, t : (h, r, t) ! ¬(h, r, t), inver-
sion 8h, t : (h, r1, t) ! (t, r2, h) and composition
8e1, e2, e3 : (e1, r1, e2) ^ (e2, r2, e3) ! (e1, r3, e3).
Proposition 1. NestE can infer symmetry, anti-symmetry,

inversion, and composition, regardless of the specific

choices of hypercomplex number systems.

This proposition holds because NestE subsumes Com-
plEx (Trouillon et al. 2016) (i.e., 4D complex numbers gen-
eralize 2D complex numbers).

Logical patterns over nested facts We extend the vanilla
logical patterns in KGs to include nested facts. This can be
expressed in a non-first-order-logic-like form  

br
! �.

• Relational symmetry (R-symmetry): an atomic rela-
tion r is symmetric w.r.t a nested relation br if 8x, y 2

E , hx, r, yi
br
$ hy, r, xi.

• Relational inverse (R-inverse): two atomic relations r1
and r2 are inverse w.r.t a nested relation br if 8x, y 2 E ,

(hx, r1, yi
br
$ hy, r2, xi).

• Relational implication (R-implication): an atomic rela-
tion r1 implies a atomic relation r2 w.r.t a nested relation
br if 8x, y 2 E , (hx, r1, yi

br
! hx, r2, yi).

• Relational inverse implication (R-Inv-implication): an
atomic relation r1 inversely implies an atomic relation
r2 w.r.t a nested relation br if 8x, y 2 E , (hx, r1, yi

br
!

hy, r2, xi).
• Entity implication (E-implication): an entity x1 (resp.
y1) implies entity x2 (resp. y2) w.r.t an atomic rela-
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tion r and a nested relation br if 8y 2 E , (hx1, r, yi
br
!

hx2, r, yi) (resp. 8x 2 E , (hx, r, y1i
br
! hx, r, y2i) ).

• Entity relational implication (E-R-implication): an
entity x1 and relation r1 (resp. y1 and relation r1) implies
entity x2 and relation r2 (resp. y2 and relation r2) w.r.t a
nested relation br if 8y 2 E , (hx1, r1, yi

br
! hx2, r2, yi)

(resp. 8x 2 E , (hx, r1, y1i
br
! hx, r2, y2i)).

• Entity relational inverse implication (E-R-Inv-

implication): an entity x1 and relation r1 (resp.
y1 and relation r1) inversely implies entity x2 and
relation r2 (resp. y2 and relation r2) w.r.t a nested
relation br if 8y 2 E , (hx1, r1, yi

br
! hy, r2, x2i) (resp.

8x 2 E , (hx, r1, y1i
br
! hy2, r2, xi)).

• Dual Entity implication (Dual E-implication): an en-
tity pair (x1, x2) implies another entity pair (y1, y2) iff
both (x1, y1) and (x2, y2) satisfy E-implication.

Fig. 2 illustrates the structure of the introduced patterns
and Table 8 in the Appendix presents exemplary patterns of
nested facts.
Proposition 2. NestE can infer R-symmetry, R-inverse,

R-implication, R-Inv-implication, E-implication, E-R-

implication, E-R-Inv-implication, and Dual E-implication.

Proof Sketch. To infer different logical patterns via differ-
ent free variables, we can set some elements of the relation
matrix to be zero-valued or one-valued complex numbers.
For example, the implication and inverse implication rela-
tions can be inferred by setting the matrix to be diagonal or
anti-diagonal. See Appendix for details.

Experimental Results

Experiment Setup

Datasets We utilize three benchmark KGs: FBH, FBHE,
and DBHE, that contain nested facts and are constructed
by (Chung and Whang 2023). FBH and FBHE are based
on FB15K237 from Freebase (Bollacker et al. 2008) while
DBHE is based on DB15K from DBpedia (Auer et al. 2007).
FBH contains only nested facts that can be inferred from the
triple facts, e.g., prerequisite for and implies position, while
FBHE and DBHE further contain externally-sourced knowl-
edge crawled from Wikipedia articles, e.g., next almaMater

and transfers to. The authors of (Chung and Whang 2023)
spent six weeks manually defining these nested facts and
adding them to the KGs. The dataset details are presented
in Table 1. We split T and bT into training, validation, and
test sets in an 8:1:1 ratio.

Baselines We consider BiVE-Q and BiVE-B (Chung and
Whang 2023) as our major baselines as they are specifi-
cally designed for KGs with nested facts and have demon-
strated significant improvements over triple-based methods.
We also compare some rule-based approaches as they indi-
rectly consider relations between facts in first-order-logic-
like expression, including Neural-LP (Yang, Yang, and Co-
hen 2017), DRUM (Sadeghian et al. 2019), and AnyBURL

|V | |R| |T | | bR| |bT | |T |
0

FBH 14,541 237 310,117 6 27,062 33,157
FBHE 14,541 237 310,117 10 34,941 33,719
DBHE 12,440 87 68,296 8 6,717 8,206

Table 1: Statistics of bG = (V,R, T , bR, bT ). |T |
0 denotes the

number of atomic triples involved in the nested triples.

(Meilicke et al. 2019). We further include QuatE (Zhang
et al. 2019) and BiQUE (Guo and Kok 2021) as they are the
SoTA triple-based methods and they are also based on 4D
hypercomplex numbers. However, these triple-based meth-
ods do not directly apply to the nested facts. Following
(Chung and Whang 2023), we create a new triple-based KG
GT where the atomic facts are converted into entities and
nested facts are converted into triples (see Appendix for
details). For our approach, we implement three variants of
NestE: NestE-Q (using quaternions), NestE-H (using hyper-
bolic quaternions), NestE-S (split quaternions), as well as
their counterparts with translations: NestE-QB, NestE-HB,
and NestE-SB. In the Appendix, we also extend BiVE-Q and
BiVE-B to other hypercomplex numbers: BiVE-H, BiVE-
HB BiVE-S, and BiVE-SB for further comparison. We em-
ploy three standard metrics: Filtered MR (Mean Rank),
MRR (Mean Reciprocal Rank), and Hit@10. We report the
mean performance over 10 random seeds for each method,
and the relatively small standard deviations are omitted.

Implementation details We implement the framework
based on OpenKE 4 and the code 5. We train our methods on
triple prediction and evaluate them on other tasks. The de-
tailed hyperparameter settings can be found in the Appendix.

Main Results

Triple prediction Table 2 presents the results of triple
prediction. First, it shows that all triple-based approaches
yield relatively modest results compared to BiVE-Q and
BiVE-B, designed specifically for KGs with nested facts.
Our approach, NestE-Q, the quaternionic version, already
outperforms the baselines across most metrics. Particularly
notable are the pronounced enhancements in FBHE and
DBHE, with MRR improvements of 14.1% and 17.7% re-
spectively, underscoring the efficacy of the proposed NestE
model. Furthermore, NestE-H and NestE-S demonstrate
heightened performance over NestE-Q across various eval-
uation metrics, particularly in terms of MR. This highlights
the advantages that hyperbolic quaternions and split quater-
nions offer over standard quaternions. Impressively, the split
quaternionic version attains the highest performance, fol-
lowed closely by the hyperbolic quaternionic variant. More-
over, through the incorporation of a hypercomplex transla-
tion component, NestE-QB, Fact-HB, and NestE-SB consis-
tently outperform their non-translation counterparts, show-
ing the advantages of combining multiple transformations
(rotation and translation) within the hypercomplex space.

4https://github.com/thunlp/OpenKE
5https://github.com/bdi-lab/BiVE/
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FBH FBHE DBHE

MR (#) MRR (") Hit@10 (") MR (#) MRR (") Hit@10 (") MR (#) MRR (") Hit@10 (")
QuatE* 145603.8 0.103 0.114 94684.4 0.101 0.209 26485.0 0.157 0.179
BiQUE* 81687.5 0.104 0.115 61015.2 0.135 0.205 19079.4 0.163 0.185

Neural-LP* 115016.6 0.070 0.073 90000.4 0.238 0.274 21130.5 0.170 0.209
DRUM* 115016.6 0.069 0.073 90000.3 0.261 0.274 21130.5 0.166 0.209

AnyBURL* 108079.6 0.096 0.108 83136.8 0.191 0.252 20530.8 0.177 0.214
BiVE-Q 6.20 0.855 0.941 8.35 0.711 0.866 3.63 0.687 0.958
BiVE-B 8.63 0.833 0.924 9.53 0.705 0.860 4.66 0.718 0.945

NestE-Q (Ours) 6.56 0.863 0.953 5.77 0.811 0.943 3.51 0.809 0.960
NestE-H (Ours) 4.69 0.858 0.964 3.99 0.781 0.943 2.65 0.806 0.969
NestE-S (Ours) 3.87 0.867 0.977 3.60 0.795 0.947 2.55 0.809 0.966
NestE-QB (Ours) 6.04 0.898 0.958 5.55 0.845 0.947 2.54 0.847 0.973
NestE-HB (Ours) 3.82 0.899 0.971 3.53 0.828 0.955 2.62 0.842 0.972
NestE-SB (Ours) 3.34 0.922 0.982 3.05 0.851 0.962 2.07 0.862 0.984

Table 2: Results of triple prediction. Shaded numbers are better results than the best baseline. The best scores are boldfaced and
the second best scores are underlined. * denotes results taking from (Chung and Whang 2023).

FBH FBHE DBHE

MR (#) MRR (") Hit@10 (") MR (#) MRR (") Hit@10 (") MR (#) MRR (") Hit@10 (")
QuatE* 163.7 0.346 0.494 1546.4 0.124 0.189 551.6 0.208 0.309
BiQUE* 111.0 0.423 0.641 90.1 0.387 0.617 29.5 0.378 0.677

Neural-LP* 185.9 0.433 0.648 146.2 0.466 0.716 32.2 0.517 0.756
DRUM* 262.7 0.394 0.555 207.6 0.413 0.620 49.0 0.470 0.732

AnyBURL* 228.5 0.380 0.563 166.0 0.418 0.607 81.7 0.403 0.594
BiVE-Q 4.33 0.826 0.948 6.56 0.761 0.886 2.69 0.852 0.971
BiVE-B 5.34 0.836 0.940 7.49 0.761 0.872 2.91 0.858 0.967

NestE-Q (Ours) 1.70 0.930 0.986 2.89 0.863 0.948 1.68 0.930 0.987
NestE-H (Ours) 1.68 0.909 0.987 2.87 0.843 0.945 1.82 0.912 0.986
NestE-S (Ours) 1.54 0.925 0.991 3.04 0.850 0.941 1.76 0.910 0.988
NestE-QB (Ours) 1.71 0.935 0.987 3.00 0.865 0.949 1.70 0.931 0.986
Fact-HB (Ours) 1.60 0.924 0.989 2.76 0.855 0.950 1.92 0.918 0.981
NestE-SB (Ours) 1.52 0.934 0.991 2.61 0.867 0.951 1.72 0.919 0.990

Table 3: Results of conditional link prediction. Shaded numbers are better results than the best baseline. The best scores are
boldfaced and the second best scores are underlined. * denotes results taking from (Chung and Whang 2023).

Conditional link prediction Table 3 shows the outcomes
of conditional link prediction. It is evident that all three
NestE variants substantially outperform the two SoTA base-
lines, BiVE-Q and BiVE-B, across all datasets. Notably,
the best NestE variant surpasses the baselines by 11.8%,
13.9%, and 8.5% in terms of MRR for FBH, FBHE, and
DBHE, respectively. This remarkable performance gain un-
derscores the effectiveness of the proposed method. Simi-
lar to the trends observed in triple prediction, the incorpora-
tion of translation components in NestE-QB, Fact-HB, and
Fact-SB leads to further improvements over their counter-
parts without translation components. This reaffirms the ad-
vantages gained from the integration of multiple hypercom-
plex transformations. Intriguingly, we noticed that varying
hypercomplex number systems yield the best performance
on different datasets, contrasting the observations from triple
prediction. We conjecture that this stems from the inherent
variance in inductive biases offered by different hypercom-
plex number systems, making them more suitable for certain
datasets over others. We believe the choices of spaces can be

linked to a hyperparameter that offers flexibility in adapting
to diverse dataset characteristics.

Base link prediction Table 4 illustrates the results of base
link prediction. Among our approaches, namely NestE-Q,
NestE-H, and NestE-S, we observe competitive or improved
results in comparison to SoTA embedding-based and rule-
based methods on the FBHE and DBHE datasets. The best
performance is achieved by NestE-QB, which outperforms
the baselines across a majority of metrics. This outcome sub-
stantiates the fact that the incorporation of nested facts into
triple-based KGs indeed enhances the inference capabilities
for base link prediction.

Ablation Analysis

Embedding analysis of logical patterns To verify
whether the learned embeddings capture the inference of
logical patterns over nested facts, we visualized the real part
of the embeddings of the 8 relations in DBHE. The analysis
of the embeddings yields insightful observations. As shown
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FBHE DBHE

MRR (") Hit@10 (") MRR (") Hit@10 (")
QuatE* 0.354 0.581 0.264 0.440
BiQUE* 0.356 0.583 0.274 0.446

Neural-LP* 0.315 0.486 0.233 0.357
DRUM* 0.317 0.490 0.237 0.359

AnyBURL* 0.310 0.526 0.220 0.364
BiVE-Q 0.369 0.603 0.271 0.428
BiVE-B 0.370 0.607 0.274 0.422

NestE-Q (Ours) 0.365 0.605 0.284 0.446

Fact-H (Ours) 0.349 0.593 0.266 0.423
NestE-S (Ours) 0.350 0.592 0.272 0.432
NestE-QB (Ours) 0.371 0.608 0.289 0.443
Fact-HB (Ours) 0.353 0.594 0.271 0.423
NestE-SB (Ours) 0.355 0.594 0.273 0.431

Table 4: Results of base link prediction. The best scores are
boldfaced and the second best scores are underlined. * de-
notes results taking from (Chung and Whang 2023).

Equivalent
To

ImpliesLang. ImpliesProf. NextAlmaM.

TransfersTo ImpliesLoc. ImpliesTimeZ. ImpliesGenre

Figure 3: The visualization of the average of the real com-
ponent embeddings of the 8 nested relations in DBHE.

in Fig. 3, the lower left element and upper right element of
the embedding EquivalentTo are 1, showcasing that Equiva-
lentTo predominantly adheres to R-symmetry or R-inverse.
On the other hand, the upper left element and lower right ele-
ment of the ImpliesLang. are 1, affirming its alignment with
the R-implication rule. Similarly, the embeddings of Nex-
tAlmaM., TransfersTo, and ImpliesGenre indicate high ad-
herence to E-implicationsas as only one of the corners is 1.
We find that the embedding of relation ImpliesProf. does not
have a significant pattern. We conjecture that this is because
ImpliesProf. follows many rule patterns and there exists no
global solution that satisfies all rules. See the Appendix for
the statistics of the logical patterns in the datasets.

Influence of nested fact embeddings To evaluate the in-
fluence of nested fact embeddings, we perform a compar-
ison by excluding the loss associated with nested fact em-
beddings (i.e., setting �1 = 0). The outcomes presented in
Table 5 underscore the significant enhancements achieved
by incorporating nested fact embeddings, particularly evi-
dent in the improvements in MR and H@10 for DBHE.

FBHE DBHE

MRR (") Hit@10 (") MRR (") Hit@10 (")
NestE-Q (�1 = 0) 0.368 0.604 0.281 0.431
NestE-Q (�1 = 0.5) 0.365 0.605 0.284 0.446

NestE-H (�1 = 0) 0.347 0.589 0.267 0.420
NestE-H (�1 = 0.5) 0.349 0.593 0.266 0.423

NestE-S (�1 = 0) 0.347 0.589 0.272 0.427
NestE-S (�1 = 0.5) 0.350 0.592 0.272 0.432

Table 5: Ablation study on the nested fact embeddings for
base link prediction. Best results are boldfaced.

br NestE-Q -QB -H -HB -S -SB
Equiv.To 0.994 0.997 0.992 0.997 0.997 0.995

ImpliesLang. 0.671 0.602 0.680 0.662 0.614 0.622
ImpliesProf. 0.807 0.916 0.830 0.935 0.832 0.936

ImpliesLocat. 0.929 0.869 0.893 0.810 0.929 0.958

ImpliesTime. 0.305 0.297 0.307 0.329 0.290 0.293
ImpliesGenre 0.726 0.762 0.719 0.741 0.742 0.796

NextAlmaM. 0.770 0.812 0.689 0.688 0.751 0.795
Transf.To 0.977 0.952 0.964 0.949 0.921 0.953

Table 6: Performance per relation on triple prediction.

Relation-specific performance In Table 6, we present
the performance results for each relation within the DBHE
dataset. Notably, the diverse hypercomplex number systems
lead to optimal performance for different relations. This re-
iterates our conjecture that distinct benefits are offered by
varying hypercomplex number systems, catering to the spe-
cific characteristics of different relation types. Remarkably,
our findings reveal that the incorporation of a hypercomplex
translation component (as seen in NestE-QB, NestE-HB,
and NestE-SB) notably enhances the embeddings of rela-
tions such as ImpliesProf. and ImpliesGenre across all vari-
ants of hypercomplex number systems. However, this does
not extend to relations like ImpliesLocat. and ImpliesLang.,
suggesting a more complex relationship between these spe-
cific relations and the hypercomplex translation.

Conclusion

This paper considers a novel perspective by extending tra-
ditional atomic factual knowledge representation to include
nested factual knowledge. This enables the representation
of both temporal situations and logical patterns that go be-
yond conventional first-order logic expressions (Horn rules).
Our proposed approach, NestE, presents a family of hyper-
complex embeddings capable of embedding both atomic and
nested factual knowledge. This framework effectively cap-
tures essential logical patterns that emerge from nested facts.
Empirical evaluation demonstrates the substantial perfor-
mance enhancements achieved by NestE compared to exist-
ing baseline methods. Additionally, our generalized hyper-
complex embedding framework unifies previous algebraic
and geometric embedding methods, offering versatility in
embedding diverse relation types.
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Bouchard, G. 2016. Complex Embeddings for Simple Link
Prediction. In ICML, volume 48 of JMLR Workshop and

Conference Proceedings, 2071–2080. JMLR.org.
Wang, J.; Wang, B.; Qiu, M.; Pan, S.; Xiong, B.; Liu, H.;
Luo, L.; Liu, T.; Hu, Y.; Yin, B.; and Gao, W. 2023. A Sur-
vey on Temporal Knowledge Graph Completion: Taxonomy,
Progress, and Prospects. CoRR, abs/2308.02457.
Wang, S.; Wei, X.; dos Santos, C. N.; Wang, Z.; Nallapati,
R.; Arnold, A. O.; Xiang, B.; Yu, P. S.; and Cruz, I. F. 2021.
Mixed-Curvature Multi-Relational Graph Neural Network

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9212



for Knowledge Graph Completion. In WWW, 1761–1771.
ACM / IW3C2.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge Graph Embedding by Translating on Hyperplanes. In
AAAI, 1112–1119. AAAI Press.
Xiong, B.; Nayyer, M.; Pan, S.; and Staab, S. 2023a. Shrink-
ing Embeddings for Hyper-Relational Knowledge Graphs.
In ACL. International Committee on Computational Linguis-
tics.
Xiong, B.; Nayyeri, M.; Daza, D.; and Cochez, M. 2023b.
Reasoning beyond Triples: Recent Advances in Knowledge
Graph Embeddings. In CIKM, 5228–5231. ACM.
Xiong, B.; Zhu, S.; Nayyeri, M.; Xu, C.; Pan, S.; Zhou, C.;
and Staab, S. 2022. Ultrahyperbolic Knowledge Graph Em-
beddings. In KDD, 2130–2139. ACM.
Yang, B.; Yih, W.; He, X.; Gao, J.; and Deng, L. 2015. Em-
bedding Entities and Relations for Learning and Inference
in Knowledge Bases. In ICLR (Poster).
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
Learning of Logical Rules for Knowledge Base Reasoning.
In NIPS, 2319–2328.
Zhang, S.; Tay, Y.; Yao, L.; and Liu, Q. 2019. Quaternion
Knowledge Graph Embeddings. In NeurIPS, 2731–2741.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9213


