
Hypergraph Joint Representation Learning for Hypervertices and Hyperedges
via Cross Expansion

Yuguang Yan1, Yuanlin Chen1, Shibo Wang1, Hanrui Wu2, Ruichu Cai1,3*

1School of Computer Science, Guangdong University of Technology, Guangzhou, China
2College of Information Science and Technology, Jinan University, Guangzhou, China

3Guangdong Provincial Key Laboratory of Public Finance and Taxation with Big Data Application, Guangzhou, China
ygyan@gdut.edu.cn, {chenyaunlin27,wangshibo795,cairuichu}@gmail.com, hrwu@outlook.com

Abstract

Hypergraph captures high-order information in structured
data and obtains much attention in machine learning and data
mining. Existing approaches mainly learn representations for
hypervertices by transforming a hypergraph to a standard
graph, or learn representations for hypervertices and hyper-
edges in separate spaces. In this paper, we propose a hy-
pergraph expansion method to transform a hypergraph to a
standard graph while preserving high-order information. Dif-
ferent from previous hypergraph expansion approaches like
clique expansion and star expansion, we transform both hy-
pervertices and hyperedges in the hypergraph to vertices in
the expanded graph, and construct connections between hy-
pervertices or hyperedges, so that richer relationships can be
used in graph learning. Based on the expanded graph, we
propose a learning model to embed hypervertices and hy-
peredges in a joint representation space. Compared with the
method of learning separate spaces for hypervertices and hy-
peredges, our method is able to capture common knowledge
involved in hypervertices and hyperedges, and also improve
the data efficiency and computational efficiency. To better
leverage structure information, we minimize the graph re-
construction loss to preserve the structure information in the
model. We perform experiments on both hypervertex classi-
fication and hyperedge classification tasks to demonstrate the
effectiveness of our proposed method.

Introduction
Graph structure models pairwise relations between objects
appearing in many real-world applications (Wu et al. 2020;
Yang, Ma, and Cheng 2021), in which the relation between
two vertices is indicated by if there exists an edge connecting
them. Nevertheless, higher-order relationships among ob-
jects are ubiquitous in practice and cannot be captured by
a standard graph structure. To tackle this, the hypergraph
is proposed to model complicated relationships among ver-
tices (Gao et al. 2020). In a hypergraph, a hyperedge can
connect more than two hypervertices, and two hypervertices
can have more than one kind of relation. For example, in a
co-author network, a hypervertex represents an author, and a
hyperedge represents a paper co-authored by multiple hyper-
vertices. One paper (hyperedge) usually has more than two

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

co-authors (hypervertices), and two authors (hypervertices)
may have more than one collaborative paper (hyperedge).

Compared with standard graphs, hypergraph learning has
not been extensively explored. In order to borrow well-
established graph approaches for hypergraphs, some expan-
sion methods are proposed to transform a hypergraph struc-
ture into a graph structure, so that effective graph learning
methods such as graph convolutional networks (GCN) (Kipf
and Welling 2017) can be applied directly. Clique expansion
and star expansion are two frequently used expansion ap-
proaches (Dong, Sawin, and Bengio 2020). However, clique
expansion lacks higher-order information in the hypergraph,
and star expansion ignores connections between two hyper-
vertices or two hyperedges, resulting in information decay-
ing in feature aggregation from a hypervertex to another hy-
pervertex since information passing through an intermediate
hyperedge is required. Neither of them can take advantage
of the high-order information involved in hypergraphs.

Another kind of approach applies hypergraph convolu-
tional operation based on hypergraph Laplacians to learn
representations for hypergraphs (Feng et al. 2019). To bet-
ter leverage hypergraph structure, (Dong, Sawin, and Bengio
2020) propose to learn representations for hypervertices and
hyperedges alternately. (Wu, Yan, and Ng 2022) further ex-
tends this idea to learn representations for hypervertices and
hyperedges from the information of both hypervertices and
hyperedges. However, these methods learn separate embed-
ding spaces for hypervertices and hyperedges without ex-
ploring a shared embedding space, which can capture com-
mon knowledge involved in hypervertices and hyperedges.

To address the above challenges, in this paper, we pro-
pose an expansion method for transforming a hypergraph to
a standard graph with preserved higher-order information as
well as direct connections between hypervertices or hyper-
edges. Figure 1 illustrates an example hypergraph and its
expansions. Based on the expanded graph, we propose to
learn a joint representation space for both hypervertices and
hyperedges named Hypergraph Joint Representation Learn-
ing (HJRL), which extracts common knowledge involved in
the representations of hypervertices and hyperedges, and at
the same time, improves the data efficiency and reduces the
computational cost.

In specific, we propose an expansion method called cross
expansion, which transforms both hypervertices and hyper-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9232

v 1

v 2

v 3

v 4
v 5

e 1

e 3

e 2

(a) Hypergraph

v1

v2

v3
v4

v5

(b) Clique Expansion

v1

v2 v3

v4

v5e1 e2e3

(c) Star Expansion

v1

v2

v3

v4

v5

e1

e2

e3

(d) Cross Expansion

Figure 1: Illustrations of expansion methods.

edges of a hypergraph to vertices in a standard graph, while
the relations between two hypervertices, two hyperedges, a
hypervertex and a hyperedge are preserved. Compared with
the clique and star expansions, richer relationships are in-
volved in our expansion to enhance information aggregation
and graph reconstruction. Based on this expansion, we pro-
pose a joint learning model to embed both hypervertices and
hyperedges (which are vertices in the expanded graph) into
a shared representation space, so that more training samples
are fed into the model to improve the data efficiency. In this
learning paradigm, information from hypervertices and hy-
peredges are passed to both hypervertices and hyperedges
without intermediate connectors, avoiding the information
decaying during aggregation, and common knowledge in-
volved in hypervertices and hyperedges are extracted in the
joint representation space. In addition, we further preserve
structural information in the model by minimizing the re-
construction loss for the hypergraph.

We summarize our major contributions as follows:
• We propose an expansion method for hypergraph by con-

sidering rich relationships between hypervertices and hy-
peredges.

• We propose to learn a joint representation space for hy-
pervertices and hyperedges for extracting common infor-
mation involved them, and train the model by minimizing
the classification and the hypergraph reconstruction loss.

• We conduct experiments on both hypervertex classifica-
tion and hyperedge classification tasks to show the effec-
tiveness of our method.

Related Works
In this section, we discuss the related works regarding hy-
pergraph learning. In a hypergraph, one hyperedge can con-

nect more than two hypervertices, and two hypervertices can
have more than one hyperedge connecting them (Gao et al.
2020, 2022; Lee and Shin 2023). Hypergraphs can model
complex high-order relationships, thus have drawn much at-
tention in recent years. In (Feng et al. 2019), HyperGraph
Neural Network (HGNN) extends the spectral convolutional
operation of standard graphs to propose a hypergraph con-
volutional model based on hypergraph Laplacian. In (Yadati
et al. 2019), HyperGraph Convolutional Network (Hyper-
GCN) further considers weighted pair-wise edges to propose
a convolutional network for hypergraphs. Hypergraph has
been applied in many applications, such as citation network
(Jiang et al. 2019), social network (Yang et al. 2019), med-
ical data analysis (Di et al. 2021), recommendation systems
(Wang et al. 2020; Xia et al. 2021), etc.

To employ well-established methods of standard graphs
(Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Veličković et al. 2018), some works of hypergraphs
consider how to expand a hypergraph to obtain a graph,
so that graph neural networks can be borrowed to address
the problem of hypergraphs. Clique expansion constructs
a graph whose vertices are the set of hypervertices, and
a hyperedge is represented by a clique of hypervertices
connected by it (Sun, Ji, and Ye 2008; Zhou, Huang, and
Schölkopf 2006; Tu et al. 2018; Zhang et al. 2018). Clique
expansion loses the high-order structural information. For
example, multiple hyperedges between two hypervertices
are reduced to only one edge. Star expansion (Zien, Schlag,
and Chan 1999) constructs a bipartite graph whose ver-
tices include hypervertices and hyperedges. Compared with
clique expansion, star expansion preserves multiple connec-
tions between hypervertices, since each hyperedge is trans-
formed to a vertex in the expanded graph. However, the
direct connections between two hypervertices and two hy-
peredges are ignored. As a result, information passing from
one hypervertex to another hypervertex goes through a hy-
peredge, which suffers from the issue of information decay
(Wu, Yan, and Ng 2022). The similar issue also exists for in-
formation passing between two hyperedges. Compared with
them, our cross expansion method involves richer relation-
ships. The direct connections between two hypervertices and
hyperedges are preserved, so that information passing be-
tween them does not rely on an intermediate.

To better leverage hyperedges, some methods consider
how to learn representations for hyperedges. In (Wu and
Ng 2022), Hypergraph Convolution on Nodes-Hyperedges
(HCNH) learns separate representation spaces for hyperver-
tices and hyperedges. In (Dong, Sawin, and Bengio 2020),
Hypergraph Network with Hyperedge Neurons (HNHN)
learns separate representations for hypervertices and hyper-
edges alternately. Based on this, in (Wu, Yan, and Ng 2022),
both hypervertices and hyperedges are leveraged to learn
representations for hypervertices and hyperedges. Different
from these methods considering separate spaces for hyper-
vertices and hyperedges, based on our constructed graph by
cross expansion, we propose to learn a joint representation
space for both hypervertices and hyperedges, so that shared
information between them can be captured in the embedding
space, which is beneficial for improving the performance.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9233

notation description
G a hypergraph
V the set of hypervertices
v a hypervertex in G
E the set of hyperedges
e a hyperedge in G
H the incidence matrix of G
G̃ the standard graph by cross expansion
Ṽ the set of vertices in G̃
ṽ a vertex in G̃
Ẽ the set of edges in G̃
ẽ an edge in G̃
A the adjacency matrix of G̃

Table 1: Notations and descriptions.

Hypergraph Expansion
In this section, we present the notation used in the paper, and
then present our cross expansion method for hypergraphs.

Preliminary of Hypergraph
Table 1 lists the notations used in this paper. A hypergraph
is denoted as G = (V , E), where V is the set of hyper-
vertices, and E is the set of hyperedges. The structure of
the hypergraph G is represented by an incidence matrix
H ∈ {0, 1}|V|×|E|. From the perspective of hypervertices,
the element H(v, e) indicates if the hypervertex v is in the
hyperedge e, i.e.,

H(v, e) =

{
1 if v ∈ e,
0 if v /∈ e.

(1)

We consider transductive classification problem on a hy-
pergraph following (Wu, Yan, and Ng 2022). For hyper-
vertex classificaiton, the label space is Yv = {1, . . . , Cv},
where Cv is the number of classes. V l is the set of labeled
hypervertices, and Vu is the set of unlabeled hypervertices.
The target of hypervertex classification is to train a classifier
on V to predict labels for Vu. Similarly, for hyperedge clas-
sificaiton, the label space is Ye = {1, . . . , Ce}, where Ce is
the number of classes. E l is the set of labeled hyperedges,
and Eu is the set of unlabeled hyperedges. The target of hy-
peredge classification is to train a classifier on E to predict
labels for Eu.

Cross Expansion
In this part, we propose a cross expansion method to trans-
form a hypergraph to a graph with higher-order information
preserved. Figure 1 illustrates various hypergraph expansion
methods, including clique expansion, star expansion, and
our proposed method cross expansion.

Given a hypergraph G = (V, E), the graph G̃ = (Ṽ, Ẽ) is
induced by the cross expansion. The vertex set Ṽ includes
the original hypervertices and hyperedges, i.e., Ṽ = V ∪ E .
The edge set Ẽ includes all the edges in the expanded graph
G̃. The edge ẽ(ṽ, ṽ′) connects two vertices ṽ and ṽ′, where
either ṽ or ṽ′ could be a hypervertex or a hyperedge in the

original hypergraph G. The corresponding adjacency matrix
A ∈ {0, 1}|Ṽ|×|Ṽ| is defined by the following rules:
1. for ṽ = v ∈ V , ṽ′ = v′ ∈ V , if ∃e ∈ E such that ṽ ∈

e & ṽ′ ∈ e, then the edge ẽ(ṽ, ṽ′) exists, and A(ṽ, ṽ′) =
1;

2. for ṽ = e ∈ E , ṽ′ = e′ ∈ E , if ∃v ∈ V such that ṽ ∈
v & ṽ′ ∈ v, then the edge ẽ(ṽ, ṽ′) exists, and A(ṽ, ṽ′) =
1;

3. for ṽ = v ∈ V , ṽ′ = e ∈ E , if v ∈ e, then the edge
ẽ(ṽ, ṽ′) exists, A(ṽ, ṽ′) = A(ṽ′, ṽ) = 1;

4. otherwise, the edge ẽ(ṽ, ṽ′) does not exist, and
A(ṽ, ṽ′) = 0;

The adjacency matrix A includes following four blocks

A =

[
Av−v Av−e

Ae−v Ae−e

]
, (2)

where adjacency matrix Aα−β denotes the relations from
α to β, where α and β are v (i.e., hypervertices) or e (i.e.,
hyperedges). Based on this adjacency matrix, connections
between two hypervertices (resp., two hyperedges) are con-
structed without an intermediate connector. Based on our ex-
panded graph, we propose to learn a joint embedding space
for both hypervertices and hyperedges for better representa-
tion ability, which is given in the next section.

Comparison with Clique Expansion and Star Expansion.
Now we discuss the relationship between our cross expan-
sion and traditional clique expansion and star expansion.
Rule 1 constructs the connections between two hyperver-
tices, Rule 2 constructs the connections between two hy-
peredges, and Rule 3 constructs the connections between
a hypervertex and a hyperedge. Clique expansion considers
only hypervertices and Rule 1, and the edges constructed by
Rules 2 and 3 do not exist in the clique expanded graph.
Star expansion involves both hypervertices and hyperedges,
while the edges are constructed by only Rule 3 without
considering direct connections between two hypervertices
or connections between two hyperedges. In star expansion,
information passing between two hypervertices is through
an intermediate hyperedge without direct connection from
these two hypervertices, resulting in information decaying
between them. The same issue exists for feature aggregation
among hyperedges if hyperedge representation learning is
required.

We take Figure 1 as an example to describe the higher-
order information captured by our method. (i) a hyperedge
(e3) connects more than two hypervertices (v1, v2, and v3),
which is preserved in cross expansion. (ii) Multiple hyper-
edges (e1 and e3) connect hypervertices (v1 and v2), which
are preserved in cross expansion while ignored in clique ex-
pansion, since only one edge exists between v1 and v2 in
Figure 1(b). (iii) Direct connections between hypervertices
(v1 and v2) or hyperedges (e1 and e3) are preserved in cross
expansion while ignored in star expansion.

Hypergraph Joint Representation Learning
After obtaining the transformed graph by cross expansion,
we train a graph convolutional network to learn a joint rep-
resentation space for all the vertices, including hypervertices

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9234

joint
representation

space

joint
representation

space

hypervertex
classifier𝒁𝑣

(1)
𝒁𝑣
(𝑙)

GCN
layer

hyperedge
classifier𝒁𝑒

(1)
𝒁𝑒
(𝑙)

GCN
layer

decoder

Figure 2: Illustrations of hypergraph joint representation learning for hypervertices and hyperedges.

and hyperedges. Figure 2 illustrates the architecture of our
method. A hypergraph is first expanded to a graph by our
cross expansion method. After that, hypervertices and hyper-
edges are transformed as vertices in the expanded graph and
embedded into a joint representation space, which is trained
by classification loss and hypergraph reconstruction loss.

In specific, given the embeddings of hypervertices and hy-
peredges in the τ -th layer Z(τ)

v and Z
(τ)
e , we apply GCN to

learn embeddings for hypervertices and hyperedges in a joint
representation space as follows

Z(τ+1)
v = σ(Av−vZ

(τ)
v Θ(τ)) + σ(Av−eZ

(τ)
e Θ(τ)), (3)

Z(τ+1)
e = σ(Ae−vZ

(τ)
v Θ(τ)) + σ(Ae−eZ

(τ)
e Θ(τ)), (4)

where σ(·) is the activation function, and Θ is the param-
eters of the network. By doing this, higher-order informa-
tion involved in the hypergraph is leveraged for joint repre-
sentation learning, and information of a hypervertex (resp.,
hyperedge) can be directly passed to another hypervertex
(resp., hyperedge) without information decay caused by an
intermediate. For the initial features of a featureless hyper-
edge, one can adopt a mean-pooling or max-pooling opera-
tion based on its connected hypervertices to obtain features.
Usually, a normalized adjacency matrix is applied in GCN
(Kipf and Welling 2017). Normalization operation for hy-
pergraphs is given in (Feng et al. 2019) and (Dong, Sawin,
and Bengio 2020).

Learning for Classification and Reconstruction
For the hypervertex classification task, we employ the cross-
entropy loss to define the following classification loss on la-
beled hypervertices

Lv
cls = − 1

|V l|
∑
ṽ∈Vl

yṽ log ŷṽ, (5)

where yṽ is the ground-truth label vector, and ŷṽ is the pre-
dicted label vector.

For the hyperedge classification task, we reuse the no-
tation ṽ to denote a hyperedge, since it is also a vertex in
the graph by cross expansion. Since one hyperedge can as-
sociate with multiple classes, we employ the binary cross-
entropy loss on labeled hyperedges considering each class

individually:

Le
cls = − 1

|E l|
∑
ṽ∈El

Ce∑
k=1

yṽ,k log ŷṽ,k

+ (1− yṽ,k) log(1− ŷṽ,k), (6)

where yṽ,k is the label of the k-th class, and ŷṽ,k is the pre-
dicted value of the k-th class calculated by sigmoid.

Besides the loss functions for classification, we also ap-
ply a decoder to reconstruct the hypergraph for preserving
structure information in the joint embedding space. Since
expanded graph structure A is constructed based on the hy-
pergraph structure H, we only need to reconstruct H. In spe-
cific, let zv and ze be the embeddings of a hypervertex v
and a hyperedge e of the last layer, respectively. To recon-
struct H ∈ {0, 1}|V|×|E|, we calculate the similarity z⊤v ze
and scale it to obtain p(v, e) ∈ (0, 1) by

p(v, e) = sigmoid(z⊤v ze), (7)

which models the possibility of H(v, e) being 1 (Kipf and
Welling 2016). The reconstruction loss is given as follows:

Lr =
∑
v

∑
e

ℓbce
(
H(v, e), p(v, e)

)
, (8)

where the binary cross-entropy loss is defined as

ℓbce
(
H(v, e), p(v, e)

)
= −H(v, e) log p(v, e)

− (1−H(v, e)) log(1− p(v, e)). (9)

In summary, for hypervertex classification, we train the
model by minimizing the following loss function

Lv = Lv
cls + λvLr, (10)

where λv is the trade-off parameter. For hyperedge classifi-
cation, we train the model by minimizing the following loss
function

Le = Le
cls + λeLr, (11)

where λe is the trade-off parameter.
We analyze the computational complexity of our pro-

posed model. Let |V|, |E|, d0, d1 and d be the numbers
of hypervertices, hyperedges, initial features, hidden-layer

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9235

Data #Vertices #Edges #Classes #Features Label rate

Citeseer 1498 1107 6 3703 0.150
Pubmed 3840 7963 3 500 0.020

Cora 16313 7389 10 1000 0.052
DBLP 41302 22363 6 1425 0.042

Table 2: Statistical information on the datasets.

features and final-layer features, respectively. The complex-
ities of the normalization operation, one-layer graph convo-
lution, and graph reconstruction are O(|V|2|E| + |V||E|2),
O(|V|2d0 + |V|d0d1 + |E|d0d1 + |E|2d0 + |V||E|d0) and
O(|V||E|d), respectively.

Experiments
Datasets
We follow (Dong, Sawin, and Bengio 2020) to consider
four benchmark datasets, including the co-citation datasets
Citeseer (Bhattacharya and Getoor 2007) and Pubmed (Na-
mata et al. 2012), the co-authorship datasets Cora (Sen et al.
2008), and DBLP (Rossi and Ahmed 2015). A co-citation
dataset consists of a collection of papers and their citation
links. To construct a hypergraph, a paper is represented by
a hypervertex, and a set of hypervertices are connected to
a hyperedge e if the papers corresponding to these hyper-
vertices are cited by e. A co-authorship dataset consists of
a collection of papers and their authors. To construct a hy-
pergraph, a paper is represented by a hypervertex, and an
author is represented by a hyperedge. A set of hypervertices
are connected to a hyperedge e if the papers corresponding
to these hypervertices are written by the author correspond-
ing to e.

The vertex features of Citeseer and DBLP are bag-of-
words vector representations, and the vertex features of Cora
and Pubmed are based on the term frequency-inverse docu-
ment frequency (TF-IDF). More detailed information can be
found in (Dong, Sawin, and Bengio 2020; Wu, Yan, and Ng
2022). For fair comparisons, we strictly follow the experi-
mental setting in (Wu, Yan, and Ng 2022), in which hyper-
vertex classification is a multi-class problem, and hyperedge
classification is a multi-label problem. Table 2 lists the sta-
tistical information of the used datasets.

Compared Methods
SVM (Cortes and Vapnik 1995): Support Vector Machine
predicts labels based on features without considering struc-
tural information. NN: Nearest Neighbor predicts labels for
a testing sample according to the label of its nearest neigh-
bor in the training set. GCN (Kipf and Welling 2017): Graph
Convolutional Network is a method for standard graphs.
We adopt clique expansion to transform a hypergraph into
a graph and then apply GCN on it. HyperGCN (Yadati
et al. 2019): HyperGraph Convolutional Network considers
weighted pair-wise edges to propose a convolutional net-
work for hypergraphs. HGNN (Feng et al. 2019): Hyper-
Graph Neural Network generalizes the spectral convolution

operation for graphs to hypergraphs and proposes a hyper-
graph convolution model. HNHN (Dong, Sawin, and Ben-
gio 2020): Hypergraph Network with Hyperedge Neurons
learns separate representations for hypervertices and hyper-
edges alternately. LEGCN (Yang et al. 2022): Line Expan-
sion Graph Convolutional Network proposes an expansion
method to construct (vertex, edge) pair in a standard graph,
and then apply GCN on it. TriCL (Lee and Shin 2023): Tri-
directional Contrastive Learning applies contrastive learn-
ing for hypergraphs to learn embeddings for hypervertices.
HCNH (Wu and Ng 2022): Hypergraph Convolution on
Nodes-Hyperedges learns separate representation spaces for
hypervertices and hyperedges, and a hypergraph reconstruc-
tion term is used to preserve structural information. HCoN
(Wu, Yan, and Ng 2022): Hyper Collaborative Network
learns separate representation spaces for hypervertices and
hyperedges from previous representations of both hyperver-
tices and hyperedges. In addition, a hypergraph reconstruc-
tion loss is also used to train the model.

Following (Wu, Yan, and Ng 2022), for each experiment,
we run 100 trials and report the results of mean and stan-
dard derivation. We tune the hyperparameters λv and λe

in the range {0.001, 0.01, 0.1, 1, 10} on one trial, and ap-
ply the selected values for the remaining trials. All the ex-
periments are conducted on the PyTorch platform. For our
proposed method, we employ a two-layer graph convolu-
tional network, and the hidden layer dimension is set to
512. We train the model for 200 epochs by the Adam op-
timizer and apply early stopping with a window of 100. The
learning rate and weight decay factor are selected in the
{0.0001, 0.001, 0.01, 0.1}. LeakyReLU with a negative in-
put slope 0.2 is adopted as the activation function.

Evaluation Metrics
For the multi-class hypervertex classification problem, we
adopt accuracy as the evaluation metric. For the multi-label
hyperedge classification problem, we adopt six commonly
used metrics, including precision, recall, F1, accuracy, ex-
act match ratio, and 0/1 loss. For the last metric, the lower
the better. While for the other metrics, the higher the better.
Please refer to (Zhang and Zhou 2013) for the details of the
evaluation metrics in multi-label problems.

Results on Hypervertex Classification
Table 3 presents the results of hypervertex classification in
terms of the mean and standard derivation of accuracy. We
strictly follow the setting in (Wu, Yan, and Ng 2022) and
conduct 100 trials for LEGCN, TriCL, and HJRL to obtain
the mean and standard derivation of accuracy, and quote the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9236

Method
co-citation co-authorship

Citeseer Pubmed Cora DBLP

SVM 21.0 ± 1.3 41.3 ± 4.1 52.1 ± 1.1 27.2 ± 0.1
NN 27.0 ± 9.0 41.2 ± 2.7 28.9 ± 8.1 20.6 ± 6.2
GCN 63.0 ± 1.9 69.6 ± 6.3 40.0 ± 3.3 83.2 ± 2.6
HyperGCN 54.7 ± 9.8 60.0 ± 10.7 55.0 ± 0.9 71.3 ± 1.2
HGNN 61.1 ± 2.2 63.3 ± 2.2 58.2 ± 0.3 77.6 ± 0.4
HNHN 64.8 ± 1.6 75.9 ± 1.5 63.9 ± 0.8 85.1 ± 0.2
LEGCN 69.0 ± 1.4 74.2 ± 3.8 57.9 ± 1.4 88.4 ± 0.4
TriCL 72.0 ± 0.9 77.7 ± 2.6 61.1 ± 0.8 88.9 ± 0.3
HCNH 71.4 ± 1.2 77.1 ± 3.6 65.9 ± 0.5 −
HCoN 71.2 ± 2.7 80.4 ± 1.1 66.5 ± 0.5 88.0 ± 0.1

HJRL(λv = 0) 70.3 ± 0.9 80.0 ± 2.2 65.7 ± 0.6 88.4 ± 0.2
HJRL(Clique) 71.4 ± 1.1 79.5 ± 2.1 62.9 ± 0.9 88.7 ± 0.1
HJRL(Star) 72.1 ± 1.0 78.5 ± 1.6 64.3 ± 0.9 86.8 ± 0.3
HJRL(Combined) 72.7 ± 0.8 80.5 ± 1.6 66.1 ± 0.8 88.6 ± 0.1
HJRL 73.1 ± 0.7 81.0 ± 1.5 67.1 ± 0.6 89.1 ± 0.1

Table 3: Accuracy of different methods on the semi-supervised hypervertex classification problem.

results of the other methods from (Wu, Yan, and Ng 2022).
We draw the following observations. First, in general, hyper-
graph methods outperform the other methods, which verifies
that high-order information involved in hypergraphs is ben-
eficial for hypervertex classification. Second, HCoN obtains
better performance compared with other hypergraph meth-
ods in general, which indicates that representation learning
for hyperedges also helps to learn better hypervertex rep-
resentations for classification. Third, our proposed method
achieves the best performance compared with others, which
demonstrates that our joint representation learning method
is able to extract shared information of hypervertices and
hyperedges for better hypergraph learning. We further per-
form significance test based on one-tailed and two-tailed t-
test with the level 0.05. HJRL significantly outperforms the
compared methods in all the comparisons.

Results on Hyperedge Classification
Table 4 presents the results of hyperedge classification in
terms of the mean and standard derivation. We follow the
setting in (Wu, Yan, and Ng 2022) and conduct 100 trials
for our proposed method HJRL to obtain the mean and stan-
dard derivation of the metrics, and quote the results of the
other methods from (Wu, Yan, and Ng 2022). We do not con-
duct experiments on DBLP here since it costs too much time
for all the methods. We observe that our proposed method
achieves the best performance or highly competitive perfor-
mance on hyperedge classification tasks. This also demon-
strates the effectiveness of our hypergraph joint representa-
tion learning method for both hypervertices and hyperedges.

Ablation Studies
In order to investigate the impact of the hypergraph recon-
struction regularization term and the effectiveness of cross
expansion, we conducted ablation studies for hypervertex
classification and hyperedge classification tasks.

For the hypergraph reconstruction, we report the results
with hypergraph reconstruction and without hypergraph re-
construction in Table 3 and Table 4, in which λv = 0 and
λe = 0 represent that hypergraph reconstruction is removed.
The inclusion of reconstruction achieves better results com-
pared to that without reconstruction, which suggests that hy-
pergraph reconstruction is able to preserve hypergraph struc-
ture information, leading to enhanced learning performance.

For the cross expansion, we applied clique expansion, star
expansion, combined expansion of clique and star expan-
sions to our learning model. The clique expansion cannot be
applied to hyperedge classification since hyperedges are re-
moved after expansion. The results in Table 3 and Table 4
demonstrate that our proposed cross expansion outperforms
other hypergraph expansion methods, demonstrating the ef-
fectiveness of our approach.

Running Time Results
We evaluate the time efficiency of various methods for
hypervertex classification tasks. This experiment was con-
ducted on a Linux server with an NVIDIA RTX 4090
(24GB) graphics card. We run each method for 200 epochs
without early stopping. The results measured in seconds are
presented in Table 5, which includes training time, forward
pass, calculation for objective, and backward pass. We ob-
serve that GCN requires the least time because of its sim-
plicity, while suffering from limited performance. TriCL
requires the longest runtime since the contrastive learning
needs to construct pairs for training. Our method shows su-
perior time efficiency compared to HCoN and TriCL.

Visualization
We apply the UMAP tool to visualize the original fea-
tures and embeddings learned by HCoN and HJRL on Cite-
seer and Pubmed. Figure 3 shows the results, and different

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9237

Data Method Precision Recall F1-score Accuracy Exact Match Ratio 0/1 Loss

Citeseer
co-citation

GCN 69.5 ± 1.7 68.6 ± 1.7 66.2 ± 1.2 59.9 ± 1.3 41.9 ± 1.8 58.1 ± 1.8
HGNN 52.9 ± 1.7 46.4 ± 1.9 47.9 ± 1.7 44.3 ± 1.6 33.9 ± 1.6 66.1 ± 1.6
HCoN 82.4 ± 1.3 73.4 ± 1.5 75.5 ± 1.1 70.7 ± 1.1 56.6 ± 1.3 43.4 ± 1.3

HJRL(λe = 0) 76.7 ± 1.5 84.8 ± 1.3 78.1 ± 1.3 72.7 ± 1.3 56.6 ± 1.7 43.4 ± 1.7
HJRL(Star) 75.5 ± 1.2 85.9 ± 1.3 78.2 ± 1.0 73.2 ± 1.1 58.5 ± 1.4 41.5 ± 1.4
HJRL(Combined) 76.0 ± 1.4 90.0 ± 1.0 80.0 ± 1.0 74.5 ± 1.2 58.7 ± 1.7 41.3 ± 1.7
HJRL 79.0 ± 1.2 88.7 ± 1.0 81.2 ± 0.9 75.6 ± 1.0 59.2 ± 1.4 40.8 ± 1.4

Pubmed
co-citation

GCN 87.1 ± 1.7 85.0 ± 1.7 82.7 ± 0.6 76.1 ± 0.8 56.6 ± 1.8 43.4 ± 1.8
HGNN 83.8 ± 2.1 81.9 ± 2.3 79.7 ± 1.2 73.1 ± 1.4 53.9 ± 2.7 46.1 ± 2.7
HCoN 90.4 ± 1.4 87.4 ± 1.4 85.9 ± 0.5 79.9 ± 0.7 61.9 ± 1.5 38.1 ± 1.5

HJRL(λe = 0) 88.3 ± 1.3 86.8 ± 1.7 84.3 ± 0.8 77.7 ± 1.1 57.8 ± 2.1 42.2 ± 2.1
HJRL(Star) 92.9 ± 3.0 78.4 ± 2.9 81.2 ± 1.6 73.2 ± 2.0 47.6 ± 3.8 52.4 ± 3.8
HJRL(Combined) 89.4 ± 2.3 85.1 ± 2.7 84.0 ± 1.1 76.9 ± 1.5 55.9 ± 3.3 44.1 ± 3.3
HJRL 87.6 ± 1.2 90.4 ± 1.3 86.1 ± 0.6 80.2 ± 0.7 62.7 ± 1.4 37.3 ± 1.4

Cora
co-authorship

GCN 35.4 ± 2.6 33.7 ± 4.9 32.0 ± 2.3 28.3 ± 2.0 18.9 ± 4.3 81.1 ± 4.3
HGNN 17.0 ± 4.4 14.1 ± 3.4 14.9 ± 3.7 14.1 ± 3.4 11.8 ± 2.8 88.2 ± 2.8
HCoN 52.8 ± 0.7 45.2 ± 0.9 46.6 ± 0.7 43.5 ± 0.6 35.3 ± 0.9 64.7 ± 0.9

HJRL(λe = 0) 61.0 ± 4.1 62.3 ± 1.4 58.2 ± 1.5 53.4 ± 1.1 40.0 ± 1.9 59.0 ± 1.9
HJRL(Star) 56.3 ± 5.5 57.3 ± 3.8 53.6 ± 3.9 48.8 ± 3.2 36.1 ± 1.8 63.9 ± 1.8
HJRL(Combined) 62.1 ± 3.5 60.0 ± 2.1 56.9 ± 1.9 51.5 ± 1.7 37.6 ± 2.2 62.4 ± 2.1
HJRL 61.8 ± 4.1 62.9 ± 1.5 58.7 ± 1.3 54.0 ± 1.1 41.1 ± 2.0 59.0 ± 2.0

Table 4: Results in terms of Precision (↑), Recall (↑), F1-score (↑), Accuracy (↑), Match Ratio (↑), and 0/1 Loss (↓) of different
methods on the semi-supervised hyperedge classification problem.

(a) Citeseer: features (d) Pubmed: features

(b) Citeseer: HCoN (e) Pubmed: HCoN

(c) Citeseer: HJRL (f) Pubmed: HJRL

Figure 3: Visualization of original features and embed-
dings learned by HJRL of hypervertices on the Citeseer and
Pubmed datasets. The color represents the class label.

GCN LEGCN TriCL HCoN HJRL

Citeseer 0.75 2.20 16.85 3.42 2.13
Pubmed 0.93 2.63 104.65 7.73 5.25

Cora 3.29 3.00 - 19.14 16.17

Table 5: Wall-clock time (s) of different methods.

classes are indicated by colors. We observe that the orig-
inal features of different classes distribute together, while
HCoN and HJRL obtain more separatable embeddings.
Compared with HCoN, the embeddings learned by HJRL
have larger inter-class distances and smaller intra-class dis-
tances. This further demonstrates the effectiveness of our
proposed method for hypergraph representation learning.

Conclusion

In this paper, we propose an expansion method to transform
a hypergraph to a standard graph, and then design a joint
learning model to embed both hypervertices and hyperedges
into a shared representation space. Our expansion method
preserves rich relationships in the hypergraph, and com-
mon knowledge involved in hypervertices and hyperedges
are captured in the joint representation space. We also em-
ploy a hypergraph reconstruction objective to preserve struc-
ture information in the model. We conduct experiments on
hypervertex and hyperedge tasks. The experimental results
demonstrate the effectiveness of our proposed method.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9238

Acknowledgments
This research was supported in part by National Natu-
ral Science Foundation of China (62206061, 62206111,
61876043, 61976052, 62206064), National Key R&D Pro-
gram of China (2021ZD0111501), National Science Fund
for Excellent Young Scholars (62122022), Guangzhou Basic
and Applied Basic Research Foundation (2023A04J1700,
2023A04J1058), and Guangdong Provincial Science and
Technology Innovation Strategy Fund (2019B121203012).

References
Bhattacharya, I.; and Getoor, L. 2007. Collective entity res-
olution in relational data. ACM Transactions on Knowledge
Discovery from Data, 1(1): 5–es.
Cortes, C.; and Vapnik, V. 1995. Support-vector networks.
Machine learning, 20: 273–297.
Di, D.; Shi, F.; Yan, F.; Xia, L.; Mo, Z.; Ding, Z.; Shan, F.;
Song, B.; Li, S.; Wei, Y.; et al. 2021. Hypergraph learning
for identification of COVID-19 with CT imaging. Medical
Image Analysis, 68: 101910.
Dong, Y.; Sawin, W.; and Bengio, Y. 2020. Hnhn: Hyper-
graph networks with hyperedge neurons. arXiv preprint
arXiv:2006.12278.
Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, 3558–3565.
Gao, Y.; Feng, Y.; Ji, S.; and Ji, R. 2022. HGNN+: General
hypergraph neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3): 3181–3199.
Gao, Y.; Zhang, Z.; Lin, H.; Zhao, X.; Du, S.; and Zou, C.
2020. Hypergraph learning: Methods and practices. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(5): 2548–2566.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Jiang, J.; Wei, Y.; Feng, Y.; Cao, J.; and Gao, Y. 2019. Dy-
namic Hypergraph Neural Networks. In International Joint
Conference on Artificial Intelligence, 2635–2641.
Kipf, T. N.; and Welling, M. 2016. Variational Graph Auto-
Encoders. In Neural Information Processing Systems.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations.
Lee, D.; and Shin, K. 2023. I’m me, we’re us, and i’m us:
Tri-directional contrastive learning on hypergraphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, 8456–8464.
Namata, G.; London, B.; Getoor, L.; Huang, B.; and EDU,
U. 2012. Query-driven active surveying for collective classi-
fication. In International Workshop on Mining and Learning
with Graphs, volume 8.
Rossi, R.; and Ahmed, N. 2015. The network data repository
with interactive graph analytics and visualization. In AAAI
Conference on Artificial Intelligence, volume 29.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Sun, L.; Ji, S.; and Ye, J. 2008. Hypergraph spectral learn-
ing for multi-label classification. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 668–676.
Tu, K.; Cui, P.; Wang, X.; Wang, F.; and Zhu, W. 2018.
Structural deep embedding for hyper-networks. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 32.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
International Conference on Learning Representations.
Wang, J.; Ding, K.; Hong, L.; Liu, H.; and Caverlee, J. 2020.
Next-item recommendation with sequential hypergraphs. In
ACM SIGIR Conference on Research and Development in
Information Retrieval, 1101–1110.
Wu, H.; and Ng, M. K. 2022. Hypergraph convolution on
nodes-hyperedges network for semi-supervised node classi-
fication. ACM Transactions on Knowledge Discovery from
Data (TKDD), 16(4): 1–19.
Wu, H.; Yan, Y.; and Ng, M. K.-P. 2022. Hypergraph collab-
orative network on vertices and hyperedges. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45(3):
3245–3258.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems, 32(1): 4–24.
Xia, X.; Yin, H.; Yu, J.; Wang, Q.; Cui, L.; and Zhang, X.
2021. Self-Supervised Hypergraph Convolutional Networks
for Session-based Recommendation. In AAAI Conference
on Artificial Intelligence.
Yadati, N.; Nimishakavi, M.; Yadav, P.; Nitin, V.; Louis, A.;
and Talukdar, P. 2019. Hypergcn: A new method for training
graph convolutional networks on hypergraphs. Advances in
neural information processing systems, 32.
Yang, C.; Wang, R.; Yao, S.; and Abdelzaher, T. 2022. Semi-
supervised hypergraph node classification on hypergraph
line expansion. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Manage-
ment, 2352–2361.
Yang, D.; Qu, B.; Yang, J.; and Cudre-Mauroux, P. 2019.
Revisiting user mobility and social relationships in lbsns: a
hypergraph embedding approach. In The world wide web
conference, 2147–2157.
Yang, H.; Ma, K.; and Cheng, J. 2021. Rethinking graph
regularization for graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
4573–4581.
Zhang, M.; Cui, Z.; Jiang, S.; and Chen, Y. 2018. Beyond
link prediction: Predicting hyperlinks in adjacency space.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 32.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9239

Zhang, M.-L.; and Zhou, Z.-H. 2013. A review on multi-
label learning algorithms. IEEE transactions on knowledge
and data engineering, 26(8): 1819–1837.
Zhou, D.; Huang, J.; and Schölkopf, B. 2006. Learning with
hypergraphs: Clustering, classification, and embedding. Ad-
vances in neural information processing systems, 19.
Zien, J. Y.; Schlag, M. D.; and Chan, P. K. 1999. Multilevel
spectral hypergraph partitioning with arbitrary vertex sizes.
IEEE Transactions on computer-aided design of integrated
circuits and systems, 18(9): 1389–1399.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9240

