
Fine-Tuning Large Language Model Based Explainable Recommendation with
Explainable Quality Reward

Mengyuan Yang1, Mengying Zhu1*, Yan Wang2, Linxun Chen3, Yilei Zhao1, Xiuyuan Wang1,
Bing Han3, Xiaolin Zheng1, Jianwei Yin1

1 Zhejiang University, China
2 School of Computing, Macqaurie University, Australia

3 MYbank, Ant Group, China
{yangmy412, mengyingzhu, yilei zhao, xiuyuanwang, xlzheng}@zju.edu.cn, yan.wang@mq.edu.au

{linxun.clx, hanbing.hanbing}@antgroup.com, zjuyjw@cs.zju.edu.cn

Abstract

Large language model-based explainable recommendation
(LLM-based ER) systems can provide remarkable human-
like explanations and have widely received attention from
researchers. However, the original LLM-based ER systems
face three low-quality problems in their generated explana-
tions, i.e., lack of personalization, inconsistency, and ques-
tionable explanation data. To address these problems, we pro-
pose a novel LLM-based ER model denoted as LLM2ER to
serve as a backbone and devise two innovative explainable
quality reward models for fine-tuning such a backbone in a
reinforcement learning paradigm, ultimately yielding a fine-
tuned model denoted as LLM2ER-EQR, which can provide
high-quality explanations. LLM2ER-EQR can generate per-
sonalized, informative, and consistent high-quality explana-
tions learned from questionable-quality explanation datasets.
Extensive experiments conducted on three real-world datasets
demonstrate that our model can generate fluent, diverse, in-
formative, and highly personalized explanations.

Introduction
Explainable recommendation (ER) systems aim to provide
high-quality explanations to help users understand the rec-
ommendations and make decisions. According to the phe-
nomenon reported in an exhaustive survey of explanation
quality (Lu et al. 2023), generating human-like explanations
can significantly improve the adoption rate of recommended
items. Among various explanation forms, such as tags (Yan
et al. 2020), reasoning paths (Wang et al. 2019) and images
(Chen et al. 2019a), the textual explanation generated by
large language models (LLMs) has attracted increasing at-
tention due to their remarkable human-like natural language
generation capabilities.

Intuitively, a straightforward solution for an LLM-based
ER system is to feed an ER-related instructional prompt to
an LLM. In Figure 1, we show an ER process for a movie
named “X-Men” using a simple instruction with ChatGPT.
We can observe that the explanation given by ChatGPT as-
sumes that the user is already a fan of the X-Men series

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The explanation generated by ChatGPT (GPT-3.5)
with an ER-related instructional prompt on July 10, 2023.

and contains a lot of terms that appear in the movie, which
may be difficult to understand for the user who, in fact, is
not familiar with the movie. Based on this example, we can
conclude that such an explanation suffers from low-quality
problem, making this explanation unable to improve user
satisfaction. Moreover, the widely recognized issue of hal-
lucination (Ji et al. 2023) in LLM can lead to factual inac-
curacies within explanations, thereby compounding the low-
quality problem. Therefore, directly using an LLM to fulfill
the ER task cannot be one-size-fits-all.

With the above insightful study of LLM-based ER, we
analyze that the causes of the low-quality problem are three-
fold.

Cause 1: Prompts without integrating personalized in-
formation trigger a lack of personalization in explanations.
LLM is usually pre-trained on generic data and lacks per-
sonalized information from users, and thus it may gener-
ate explanations that do not match user preferences when
personalized user–item information is not integrated into
the prompt, i.e., the model input. Existing studies (Geng
et al. 2022; Li, Zhang, and Chen 2023) construct person-
alized prompts with personalized information to guide LLM
in generating explanations. However, the personalization de-
gree in such generated explanations is limited, because they
incorporate user and item information separately rather than
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incorporating collaborative user-item information.
Cause 2: Generating information-overloaded explana-

tions reduces consistency. LLMs generate informative but
lengthy explanations, which contain a considerable amount
of irrelevant information about the item features that a user
does not care about, resulting in a worse user experience. Ex-
isting studies (Chen et al. 2019b; Hada and Shevade 2021)
leverage both user’s and item’s historical reviews to learn
the user preferences and item features to guide LLM in gen-
erating precise explanations. However, the user preferences
implied in the user’s historical reviews partially match the
item features implied in the corresponding item’s historical
reviews. Jointly leveraging the historical reviews from the
dual sides will mix in some words that do not match user
preferences and item features simultaneously, resulting in a
reduction in the precision of the generated explanations.

Cause 3: Lack of sufficient high-quality explanation data
for fine-tuning limits the adaptability of LLM to the ER task.
To better adapt to the ER task, LLM requires fine-tuning
with explanation data. Existing studies (Hada and Shevade
2021; Li, Zhang, and Chen 2023) fine-tune LLM by aligning
paired generated explanation and review from the same user-
item pair, i.e., denoting the review as the ground truth expla-
nation. However, the review dataset is questionable, and the
ground truth corresponding to a generated explanation is not
necessarily of high quality. For example, we often encounter
hollow reviews that lack substantial information, and more
importantly, based on such reviews, it is difficult to fine-tune
the model to generate convincing explanations.

In order to improve the quality of explanations for LLM-
based ER, we tend to apply reinforcement learning from hu-
man feedback (RLHF) as a training paradigm to obtain an
ER-oriented LLM, which is a popular technique to alleviate
the hallucinations and low-quality problems of LLMs. How-
ever, RLHF requires handcrafted evaluation with expensive
manual efforts, which is impractical in recommender sys-
tems. Fortunately, the recommendation system contains a
wealth of implicit information that can evaluate the quality
of explanations from multiple perspectives, allowing us to
fine-tune the LLM in an unsupervised manner.

Based on the above analysis, in this paper, we propose a
novel LLM-based ER backbone named LLM2ER and fine-
tune such a backbone in a reinforcement learning paradigm
with two novel explainable quality reward models, where the
fine-tuned model is named LLM2ER-EQR. LLM2ER model
a concept graph extracted from reviews to achieve the fol-
lowing two purposes: (1) predict the rating based on the het-
erogeneous graph model and map the rating to the user’s
sentiment for the target item; (2) infer the reasoning paths
between target user-item pair from the concept graph to col-
lect personalized and consistent candidate concepts to im-
prove the precision of explanations (for addressing Causes
1 and 2). The LLM2ER-EQR additionally includes two re-
ward models to further enhance the explanation quality: (1)
concept consistent reward model leverages sentiment-wise
candidate concepts to preserve paired user preferences and
item features in the generated explanations based on con-
trastive learning (for addressing Cause 2); (2) high-quality
alignment reward model aligns the generated explanations to

unpaired high-quality explanations based on the generative
adversarial network (for addressing Cause 3).

To the best of our knowledge, this is the first work to
fine-tune an LLM in a reinforcement learning paradigm for
explainable recommendations. Our main contributions are
summarized as follows: (1) Effective model design: we pro-
pose a novel fine-tuned LLM-based ER model LL2ER-EQR
to address three low-quality problems in ER systems; (2)
Novel fine-tuning strategy: we devise an efficient and fea-
sible RL-based fine-tuning strategy for unsupervised fine-
tuning of LLMs that can generate high-quality explana-
tions without a handcrafted evaluation; (3) Extensive ex-
periments: we conduct extensive experiments on three real-
world datasets, which demonstrate our model significantly
outperforms the state-of-the-art methods and can generate
fluent, diverse, informative, and highly personalized expla-
nations.

Related Work

With natural language processing technology having
achieved remarkable performance in text generation, ER
based on text generation has received increasing attention
because of its good human-like language generation capabil-
ities. The early studies propose methods to generate expla-
nations based on pre-defined templates (Wang et al. 2018)
or association rules (Gao et al. 2019), which require exten-
sive manual labor and cannot assemble diverse, personal-
ized, convincing explanations. Subsequently, there are meth-
ods (Chen et al. 2019b; Li, Zhang, and Chen 2020; Hu et al.
2022; Zhang et al. 2023) to generate synthetic text explana-
tions by recurrent neural network-based (RNN-based) lan-
guage models. However, their models’ training processes
are confronted with a shortage of sufficient training sam-
ples, i.e., explanation texts, resulting in a lack of robustness
in generated explanations. In addition, the RNN-based lan-
guage models are not trained on a vast corpus, which makes
the fluency of generated explanations questionable.

Recently, a burgeoning body of research started to study
LLM-based ER models. (Li, Zhang, and Chen 2021; Geng
et al. 2022; Li, Zhang, and Chen 2023) mainly focus on
designing prompts to guide LLMs to directly generate ex-
planations. However, LLMs face the hallucination problem
resulting in generating low-quality explanations. Some stud-
ies address part of low-quality problems, such as question-
able review data and personalization, by controlled text gen-
eration (Hada and Shevade 2021), personalized variational
autoencoder (Cai and Cai 2022; Wang et al. 2023), and re-
trieval model (Xie et al. 2023). So far, there is no research
that comprehensively addresses the low-quality problems of
explanations generated by LLM-based ER models.

In addition, there are a series of studies orthogonal to our
work, i.e., review-based recommendation models (Zheng,
Noroozi, and Yu 2017; Shuai et al. 2022), which integrates
the explanation process into the recommendation model to
improve recommendation performance rather than generat-
ing explainable text and is not our main focus.
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Figure 2: The architecture of LLM2ER-EQR. The left part is the backbone for the ER task named LLM2ER, and the right part
is the explainable quality reward models named EQR.

Preliminaries and Task Formulation
Preliminaries
The decision process for the RL problem can be defined as a
tuple (S,A, T ,R), where S denotes a finite state space, A
denotes a finite set of actions, T (s′|s,a) is a state transition
function that defines the next state s′ given the current state
s and action a, and R(s,a) is a reward function. A policy
π(a|s) determines an action a given the current state s.

Reward learning enables the application of reinforcement
learning (RL) to fine-tune an LLM. InstructGPT (Ouyang
et al. 2022) apply an RL training paradigm using Proxi-
mal Policy Gradient (PPO) (Schulman et al. 2017) as the
fine-tuning strategy. Specifically, in InstructGPT, the RL
agent πRL

ϕ is initialized with the supervised pre-trained LLM
πSFT, which aims to maximize the following combined ob-
jective function fRL:

fRL =E(x,ê)∼D
πRL
ϕ

[Rθ(x, ê)︸ ︷︷ ︸
reward

−β log(πRL
ϕ (ê | x)/πSFT(ê | x))︸ ︷︷ ︸

KL penalty

]−

γ Ex∼Dpretrain [− log(πRL
ϕ (x))]︸ ︷︷ ︸

pre-training loss

,
(1)

where x is the prompt, ê is the generated text, the reward
Rθ(x, ê) is calculated by a reward model, Dpretrain is the pre-
training distribution, and the coefficients β and γ control the
KL penalty and pre-training loss, respectively.

Explainable Recommendation Task
We formulate the ER task as follows.

Input. The input consists of the user set U , the item set V
and the concept graph:

(1) each user is represented by its ID u ∈ U and each
item is represented by the item ID v ∈ V ;

(2) the rating ru,v ∈ R>0 is a positive value given by
user u to item v. Let Ω = {(u, v) : user u rates item v}.
Note that unavailable ratings are represented by 0, namely,
ru,v = 0 where (u, v) /∈ Ω. Specifically, we treat Ωtrain, Ωtest

as the training and test dataset, respectively.

(3) the explanation eu,v is a short text, which is extracted
from a review of the user-item pair (u, v). For each expla-
nation denoted as eu,v , we assemble a corresponding set of
concepts represented as {c}u,v . These concepts are system-
atically extracted from the explanation text. Note that the el-
ements within this concept set are not arbitrary; they are key-
words pertinent to recommendation explanations, including
organizations, careers, characteristics, companies, brands,
services, products, etc. These keywords are instrumental in
mirroring user preferences and item attributes. Specifically,
we extract several concepts {c}u,v according to the follow-
ing two steps: (i) extract 1-gram to 4-grams from the expla-
nation; (ii) match them to Microsoft Concept Graph and get
the matched words as concepts.

(4) the concept graph G is a heterogeneous graph, which
includes user nodes U , item nodes V , and concept nodes C.
In order to enrich concept relations, we add the 1-hop neigh-
bors of all concepts into C. We organize the above informa-
tion in the form of knowledge graph G = {(h, r, t)|h, t ∈
C ∪ U ∪ V , r ∈ M ∪ I}, where M is the relation set from
Microsoft Concept Graph, I is the interaction set of user-
explanation-item interactions. Note that the concept graph is
only constructed based on the training dataset.

Output. Given a user-item pair (u, v) /∈ Ωtrain, our model
predicts: (1) the rating r̂u,v and (2) the explanation êu,v for
the target user-item pair (u, v) .

Note that at the training stage, the input data comprise
users, items, ground truth ratings, ground truth explanations,
and the concept graph, while during the testing stage, only
users, items, and the concept graph are exposed to the model.

Method
The architecture of LLM2ER-EQR is presented in Figure 2.
In the following subsections, we first present an LLM-based
explainable recommendation model named LLM2ER as the
backbone for the ER task. After that, to further improve the
quality of explanations, we devise the fine-tuning process of
the LLM-based backbone based on a reinforcement learning
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paradigm, where the backbone denotes the action model. We
elaborate on two types of reward models corresponding to
address consistency problem and questionable explanation
data problem. Finally, we present the whole training process
of LLM2ER-EQR .

Pre-trained Language Models, Prompt Learning,
and Explanation Generation
We introduce three modules of the LLM2ER backbone ac-
cording to the process of an ER task.

Collaborative Concept-based Rating Prediction Mod-
ule. For each user-item pair, we process this module in the
following two steps. Firstly, we learn the user and item em-
bedding based on the concept graph, which contains rich
user preferences and item features. Specifically, we adopt
HGT (Hu et al. 2020) to aggregate the interaction and con-
cept information from heterogeneous concept graphs and
obtain the corresponding node embeddings h. Secondly, we
employ a multi-layer perception (MLP) to predict the rating
that the user u rates the item v as follows:

r̂u,v = MLP([hu,hv]), (2)

where hu and hv are the user and item node embedding, [·, ·]
denotes the concatenation of vectors.

For the rating prediction task, we aim to minimize the
mean squared error loss between ground truth ratings and
the predicted ones as follows:

Lr =
1

|Ωtrain|
∑

u,v∈Ωtrain

(ru,v − r̂u,v)
2. (3)

Personalized Prompt Learning Module. Plugging per-
sonalized information into the LLM by prompt learning
can control the LLM to generate personalized explana-
tions. To construct such a personalized prompt, we create an
ER prompt template following the instruction-based prompt
schema (Geng et al. 2022), which contains detailed ER task
descriptions and personalized information as follows:

Prompt head I provides detailed instructions in the natu-
ral language format for the ER task.

User-item embeddings pair (pu,qv) are important iden-
tifiers for personalization. We use linear projection to con-
form the dimension of user and item embeddings to that of
the LLM token embedding, as follows:

(pu,qv) = (Linear(hu),Linear(hv)). (4)

Sentiment su,v reflects the user’s attitude about the item,
which is indicated by rating. Following (Li, Zhang, and
Chen 2020), we map the rating to “negative” if the rating
is less than 3 (5-scale rating), and vice versa.

Candidate concepts {ĉ}u,v are a set composed of dis-
tinct concepts collected from reasoning paths for consis-
tency. Benefiting from the attention mechanism in HGT, we
infer the reasoning paths from the target user u to target item
v by performing a weighted search on the concept graph.
Specifically, we adopt beam search to heuristically search
the top-l paths with the highest cumulative attention weights
and with no more than h hops. To limit prompt length, we
stop the search once the size of the candidate concept set
|{ĉ}u,v| reaches 10.

For each target user u and target item v, we assemble a
personalized prompt xu,v = [I,pu,qv, su,v, {ĉ}u,v], where
all the text are tokenized by the LLM’s tokenizer.

Explanation Generation Module. We adopt a pre-
trained causal language model, such as GPT-2, to generate
the explanation êu,v = (êu,v,1, êu,v,2, . . . , êu,v,n), where n
is the explanation length. For the i-th decoding, we have

êu,v,i = arg max
êu,v,i

pM(êu,v,i|xu,v, êu,v,<i), (5)

where decoding output êu,v,i is conditioned on both input
prompt xu,v and previous outputs êu,v,<i.

For the explanation generation task, we aim to the nega-
tive log-likelihood loss between the ground truth explanation
and the generated explanation as follows:

Le =
1

|Ωtrain|
∑

u,v∈Ωtrain

1

n

n∑
t=1

− log p(eu,v,i), (6)

where p(eu,v,i) is the predicted probability of token eu,v,i.

Concept Consistent Reward Model (CCR)
In order to further alleviate low-quality problems of gener-
ated explanations, we fine-tune the backbone LLM2ER in an
RL paradigm followed by InstructGPT (Ouyang et al. 2022),
with an explainable quality reward model.

To improve the generated explanation consistent with user
preferences and item features, we propose a concept con-
sistent reward model (CCR) based on BERT (Kenton and
Toutanova 2019). The CCR calculates the similarity distance
between the pair of generated explanations and the corre-
sponding sentiment-wise candidate concepts as the reward.
Specifically, CCR first encodes the generated explanations
êu,v and candidate concepts {ĉ}u,v by BERT, and then cal-
culates the cosine similarity of the averaged word embed-
ding over the words of êu,v and {ĉ}u,v . The reward is calcu-
lated by:

RCCR(êu,v, {ĉ}u,v) = cosin(avg(BERT(êu,v)), avg(BERT({ĉ}u,v))). (7)

Before we plug the CCR model into the RL paradigm,
we need to train it by reward learning. We construct con-
trastive learning to train the CCR model from the perspec-
tive of consistency. Specifically, to form the positive pair,
we take the generated explanation êu,v of a target user-item
pair (u, v) and the corresponding candidate concepts {ĉ}u,v
as a positive pair. To form the negative pair, we select some
user-item pairs as negative samples Nu′,v′ and pair êu′,v′

with the candidate concepts {ĉ}u′,v′ of each negative user-
item pair (u′, v′). The negative user-item pairs are selected
by the following rules: (1) the user or item in such user-item
pair has one that matches the target user-item pair; (2) the
negative user-item pairs have the same sentiment as that in
the target user-item pair. Finally, following (Gao, Yao, and
Chen 2021), we train the CCR model by minimizing the con-
trastive loss as:

Lc =
1

|Ωtrain|
∑

(u,v)∈Ωtrain

log
exp(rCCR(êu,v, {ĉ}u,v))∑

(u′,v′)∈Nu,v
exp(rCCR(êu′,v′ , {ĉ}u′,v′))

. (8)
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High-Quality Alignment Reward Model (HQAR)
Because the ground truth corresponding to the generated
explanation is not necessarily of high quality, we propose
a high-quality alignment reward model (HQAR) based on
generative adversarial network (GAN) (Goodfellow et al.
2014) to align the explanations generated by LLM2ER to
unpaired high-quality explanations that contain rich infor-
mation during the training process.

Specifically, we reformat LLM2ER and HQAR into a
GAN framework, where LLM2ER is the generator and
HQAR is the discriminator. The primary objective of
LLM2ER within this GAN framework is to generate high-
quality explanations with the intention of deceiving the
HQAR. Conversely, the HQAR’s goal is to discern these
high-quality explanations with accuracy. This dynamic es-
tablishes a competitive interaction between the LLM2ER and
HQAR, central to the effectiveness of the LLM2ER. Note
that HQAR includes an LLM with the same structure as the
LLM in LLM2ER. We feed the generated explanation êu,v
to the HQAR, and the HQAR outputs the probability p that
the generated explanation came from a high-quality expla-
nations dataset. We denote the negative generative loss as
the high-quality alignment reward, as follows:

RHQAR(êu,v) = −lg(êu,v) = −
n∑

i=1

log(1− pêu,v,i), (9)

where i is the token index.
We train the HQAR model by following two steps. Firstly,

we collect a high-quality explanation dataset H as a real
sample dataset. For each ground truth explanation in the
training dataset, we define a concept proportion rate of each
ground truth explanation to measure the proportion of words
in the explanation belonging to the corresponding candi-
date concepts. The concept proportion rate is calculated as
oe = |{c}u,v ∩ eu,v|/n, where n is the explanation length.
Then we set a threshold δ and select those explanations
with oe ≥ δ to form H. Note that we set the δ empiri-
cally. Secondly, we feed the generated explanation êu,v and
high-quality explanation h sampled from H to HQAR (dis-
criminator), and HQAR outputs the probability p that the
explanation came from H. We adopt a token-level binary
cross-entropy loss as a discriminator loss to train the HQAR,
which can be calculated as:

Ld = − 1

|Ωtrain|+ |H| (
∑

(u,v)∈Ωtrain

n∑
i=1

log(1− pêu,v,i) +
∑
h∈H

n∑
i=1

log phi), (10)

where i is the token index.

Model Training
The training process of the LLM2ER-EQR consists of four
steps. The first step is training the collaborative concept-
based rating prediction module by minimizing the Lr. The
second step is training the LLM2ER by minimizing the
LLLM2ER, where LLLM2ER = λrLr + λeLe. The third step is
training the two reward models, i.e., CCR and HQAR, under
a frozen LLM2ER by minimizing the LEQR, where LEQR =
λcLc + λdLd. The fourth step is fine-tuning the LLM2ER.
Specifically, training the LLM2ER under two frozen reward

models by maximizing the combined objective in Eq. (1),
where the reward function is defined as follows:
R(xu,v, êu,v) = λCCRRCCR(êu,v, {ĉ}u,v) + λHQARRHQAR(êu,v), (11)

where {ĉ}u,v is in prompt xu,v . Note that the λr, λe, λc, λd,
λCCR and λHQAR are coefficients for balancing the impor-
tance of different loss terms. We perform the third and fourth
steps alternately until the fine-tuned LLM2ER and the two
reward models reach Nash equilibrium (Goodfellow et al.
2014).

Experiment
In this section, we present extensive experiments to answer
the following question:

Q1: How does LLM2ER-EQR perform on explanation
generation task?

Q2: How do LLM2ER-EQR’s key components contribute
to its performance?

Q3: How do the concept selection affect the performance
of LLM2ER-EQR?

Q4: How about the quality of explanations generated by
LLM2ER-EQR?

Experimental Settings
Dataset Descriptions and Collection. To evaluate the effec-
tiveness of LLM2ER-EQR, we adopt three benchmark rec-
ommendation datasets, which are publicly available explain-
able contents and vary in terms of domain, size, and sparsity.
The three datasets are from Amazon (Movie & TV)1, and
Yelp (2019)2, and TripAdvisor3, respectively, and their cor-
responding recommendation explanation data are collected
from the GitHub repository4 of (Li, Zhang, and Chen 2021).
To ensure the quality of the concept graphs, we then filter out
the rare concepts and domain-dependent frequent concepts.
Statistics of the datasets are shown in Table 1.

Following the previous study (Li, Zhang, and Chen 2020,
2021; Wang et al. 2023), each dataset is randomly divided
into training, validation, and testing sets with a ratio of 8:1:1.
We repeat all experiments 5 times independently, with each
iteration involving a re-division of the dataset. The mean of
test performance is reported.

Comparison Methods. To demonstrate the effectiveness
of LLM2ER-EQR, we compare seven LM-ER baselines,
all of which generate explanations by the language model.
CAML (Chen et al. 2019b) and NETE (Li, Zhang, and Chen
2020) are two conventional GRU-based ER models to gen-
erate explanations and template-controlled explanations, re-
spectively. ReXPlug (Hada and Shevade 2021) is a state-
of-the-art ER model and applies a plug-and-play language
model to generate controlled text explanations. PETER (Li,
Zhang, and Chen 2021) is a state-of-the-art LLM-based ER
model to enhance explanation generation by prompt learn-
ing. PEVAE (Cai and Cai 2022) is a state-of-the-art LLM-
based ER model extending a hierarchical variational auto-
encoder to overcome the data sparsity. CVAEs (Wang et al.

1http://jmcauley.ucsd.edu/data/amazon
2https://www.yelp.com/dataset
3https://www.tripadvisor.com
4https://github.com/lileipisces/PETER
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Dataset
Amazon
(Movies
& TV)

Yelp
(2019)

Trip-
Advisor

# Users 7,506 27,147 9,765
# Items 7,316 18,172 5,429
# exp. 432,075 1,189,056 296,118
# con. 10,141 14,657 10,948
# Triplets 7,223,673 31,417,433 6,992,065
Avg. # exp./user 57.56 43.80 30.32
Avg. # exp./item 59.06 65.43 54.54
Avg. # con./exp. 7.33 11.46 9.73

Table 1: Statistics of the datasets. The “exp.” is the abbrevi-
ation of “explanations” and the “con.” is the abbreviation of
“concepts”

2023) is a state-of-the-art LLM-based ER model to extract
adequate characteristics for controllable generation. PRAG
(Xie et al. 2023) is a state-of-the-art LLM-based ER model
for addressing factual hallucinations problem.

Evaluation Metrics. We evaluate the performance of ex-
planation generation from the following two perspectives.

In terms of the text quality perspective, we adopt two
widely used evaluation metrics, i.e., BLEU (Chen and
Cherry 2014) and ROUGE (Lin 2004). Specifically, we
report the results of BLEU-3 and BLEU-4, denoting the
smoothed BLEU scores for 3-grams and 4-grams, respec-
tively. We present the result of ROUGE-1 and ROUGE-L,
denoting the ROUGE scores for 1-grams and longest com-
mon subsequence, respectively.

In terms of the explanation quality perspective, we adopt
three metrics for comprehensive evaluation. From a per-
sonalization aspect, we adopt Distinct-1 and Distinct-2 for
sentence-wise diversity and propose a new metric named
Concept Overlapping Ratio (COR) for word-level diversity.
COR measures the overlap of concepts in any two generated
explanations with the same item. COR is calculated as:

COR(v) =
1

|U test
v |(|U test

v | − 1)

∑
u∈U test

i ,u′∈U test
i

|(êu,v ∩ {c}u,v) ∩ (êu′,v ∩ {c}u′,v)|
|(êu,v ∩ {c}u,v) ∪ (êu′,v ∩ {c}u′,v)|

,

COR =
1

|V test|
∑

v∈V test

COR(v),
(12)

where U test
v denotes the set of users that have interactions

with v in the testing data, and V test denotes the item set in
testing data. A lower COR indicates a smaller overlap be-
tween explanations and, thus, a higher diversity. From a con-
sistency aspect, we propose Concept Matching Ratio (CMR)
to measure how many concepts are contained in the gener-
ated explanation, which is calculated as follows:

CMR =
1

|Ωtest|
∑

(u,v)∈Ωtest

∑
c∈{c}u,v

δ(c ∈ êu,v), (13)

where δ(·) is an indicator function that is true when concept
c matches 1-gram to 4-grams in êu,v . Higher CMR indicates
better performance.

Personalized Prompt. The personalized ER prompt used
in our LLM2ER is as follows, which contains four placehold-

ers, i.e., sentiment, candidate concepts, user embedding, and
item embedding.

ER prompt template:
Prompt head:Please generate
recommendation explanation.
Query input: Based on the {sentiment:
positive\negative } sentiment
and candidate concepts including
{candidate concepts, e.g., user
preferences, item features}, please
provide explanations to recommend
{item embedding} to {user embedding}.
Query output: {explanation}

For each user-item pair, we assemble the sentiment, can-
didate concepts, user embedding, and item embedding into
the above ER prompt template to construct the entire per-
sonalized prompt.

Quantitative on Explanation Tasks (for Q1)
We compare LLM2ER-EQR with seven LM-ER meth-
ods. The evaluation results of the generated explanations
on three datasets are shown in Table 2, which shows
LLM2ER-EQR consistently outperforms baselines on all
metrics. From the results, we can demonstrate the effec-
tiveness of LLM2ER-EQR from the following three as-
pects. Firstly, LLM2ER-EQR generates explanations with
the highest text quality, as it achieves the highest BLEU
and ROUGE scores, with an average improvement of
5.496% and 4.835%, respectively, compared to the best-
performing baseline. Secondly, LLM2ER-EQR exhibits the
ability to generate diverse and personalized explanations,
as is reflected by the highest Distinct scores and COR
scores among all baselines, with an average improvement of
3.940% and 12.756% compared to the best-performing base-
line, respectively. Thirdly, in terms of consistency, we ob-
serve that LLM2ER-EQR achieves the highest CMR scores
with an average improvement of 5.843% over the best-
performing baseline, which demonstrates the CCR model in
LLM2ER-EQR has the capability to alleviate the consistency
problem in the generated explanations.

Ablation Studies (for Q2)
To investigate the effectiveness of LLM2ER-EQR’s key
components, we experiment on three simplified variants
of our own model, i.e., LLM2ER, LLM2ER-CCR and
LLM2ER-HQAR, only backbone, only with concept con-
sistent reward model, and only with high-quality align-
ment reward model, respectively. As shown in Table 2,
the absence of any key component will lead to a de-
cline in performance. Specifically, LLM2ER-EQR outper-
forms LLM2ER on all eight explainable metrics, which em-
pirically demonstrates the importance of improving expla-
nation quality. LLM2ER-EQR outperform LLM2ER-HQAR
with average improvements of 9.460% on CMR, which
demonstrates LLM2ER-EQR has the strong ability to pre-
serve the consistent concepts that reflect both user pref-
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Categories Methods
BLEU (%) ROUGE (%) Distinct (%) NEW Defined

BLEU-1 BLEU-4 ROUGE-1 ROUGE-L Distinct-1 Distinct-2 COR CMR

Amazon (Movie & TV)

LM-ER

CAML 15.834 1.439 15.686 12.104 18.256 61.254 0.078 2.078
NETE 13.847 1.186 14.891 11.880 14.854 48.431 0.099 0.759

RexPlug 15.940 1.436 17.406 13.040 17.167 57.233 0.101 2.040
PETER 15.850 1.403 16.514 13.395 18.135 60.290 0.082 2.042
PEVAE 16.288 1.476 17.051 13.345 18.650 62.710 0.077 1.894
PRAG 15.756 1.389 16.417 13.316 19.003 64.420 0.069 2.146
CVAEs 17.319 1.504 17.114 14.536 18.714 62.367 0.080 2.023

Our
Model

LLM2ER 16.378 1.193 16.874 14.176 18.400 64.982 0.066 2.171
LLM2ER-HQAR 16.973 1.237 17.669 14.614 19.089 66.228 0.071 2.196
LLM2ER-CCR 17.319 1.564 18.029 14.747 18.622 65.631 0.057 2.301
LLM2ER-EQR 17.571∗ 1.572∗∗ 18.291∗∗ 15.157∗∗ 19.370∗∗ 67.044∗∗ 0.058∗∗ 2.353∗∗

Improvement1 1.457% 4.520% 5.089% 4.276% 1.931% 4.073% 16.403% 9.647%

Yelp (2019)

LM-ER

CAML 13.533 1.283 15.080 11.837 16.677 56.830 0.090 2.422
NETE 15.414 1.322 18.040 14.226 13.345 45.466 0.127 1.756

RexPlug 15.978 1.368 19.960 15.668 16.760 59.680 0.093 2.860
PETER 14.989 1.026 18.720 14.246 16.274 52.852 0.080 2.805
PEVAE 16.219 1.524 18.867 15.012 17.210 60.570 0.081 2.542
PRAG 16.612 1.146 20.747 15.789 16.901 60.045 0.071 2.897
CVAEs 17.804 1.511 20.064 16.839 16.764 59.979 0.090 2.549

Our
Model

LLM2ER 18.075 1.523 21.427 16.827 16.879 59.916 0.071 2.800
LLM2ER-HQAR 17.841 1.307 21.487 16.730 17.617 63.050 0.076 2.746
LLM2ER-CCR 17.968 1.653 21.640 16.849 16.897 62.317 0.063 2.953
LLM2ER-EQR 18.013∗ 1.662∗∗ 21.693∗∗ 16.901∗ 17.707∗∗ 64.150∗∗ 0.064∗∗ 2.995∗∗

Improvement 1.170% 9.042% 4.563% 0.365% 2.888% 5.911% 11.276% 3.365%

TripAdvisor

LM-ER

CAML 16.385 1.151 17.468 14.832 19.388 63.583 0.060 3.510
NETE 15.783 1.138 17.403 14.521 15.616 52.130 0.075 1.694

RexPlug 16.726 1.216 20.472 15.939 20.051 67.263 0.064 3.978
PETER 17.023 1.197 20.445 16.084 21.122 65.843 0.059 3.670
PEVAE 16.806 1.307 18.911 15.408 20.380 68.444 0.055 3.571
PRAG 17.179 1.213 20.634 16.232 20.956 69.226 0.049 4.008
CVAEs 18.748 1.331 20.902 16.829 21.926 68.842 0.059 3.586

Our
Model

LLM2ER 18.589 1.272 20.952 16.689 21.758 68.325 0.067 3.735
LLM2ER-HQAR 18.642 1.433 21.113 16.774 22.495 71.398 0.055 3.734
LLM2ER-CCR 19.983 1.382 21.532 17.981 21.782 69.993 0.044 4.178
LLM2ER-EQR 20.040∗∗ 1.436∗∗ 22.196∗∗ 18.032∗∗ 22.794∗∗ 72.601∗∗ 0.045∗∗ 4.189∗∗

Improvement 6.894% 9.892% 7.572% 7.146% 3.959% 4.875% 10.587% 4.516%
1

Improvement of LLM2ER-EQR over the best-performing baselines ( underlined numbers indicate best-performing baselines’ results).
∗∗ and ∗ respectively indicate the statistical significance for p < 0.01 and p < 0.05 via Student’s t-test.

Table 2: Performance comparison of all methods of generated explanations on three datasets.

erences and item features in the generated explanations.
LLM2ER-EQR outperform LLM2ER-CCR with average im-
provements of 3.713% on Distinct score, which indicates
the LLM2ER-EQR model’s capability to infuse informative
terms into unpaired insubstantial explanations through adept
alignment, thereby enriching the diversity of explanations.

Effectiveness of Concept Selection (for Q3)
To study the effectiveness of involving concepts, we evaluate
the performance of LLM2ER-EQR with different max path
lengths and path select numbers. Figure 3 shows the results
on the three datasets. From Figure 3 (a), (d), and (h), we can
observe that both the max path length and the path select
number affect the number of concepts. Jointly considering
both Figure 3 (b) and (c) for the Amazon (Movie & TV)
dataset, the performance reaches its peaks with a max path

length of 3 and a path select number of 5. A similar trend is
observed in the Yelp (2019) and TripAdvisor datasets. From
this result, we can conclude that an excessive quantity of
candidate concepts leads to an increase in COR, thereby di-
minishing the degree of personalization, while an inadequate
number of candidate concepts results in diminished CMR.
Therefore, we select the max path length as 3 and the path
select number as 5 for our model.

Qualitative Case Study (for Q4)
We present some concrete cases to show the improvement
of generated explanations of our model. For comparison,
we show three cases of explanations generated by baselines
and LLM2ER-EQR in the Amazon dataset (c.f., Figure 4).
For each user-item pair in the three cases, we display con-
cepts that the user and item most frequently mentioned in
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Figure 3: Performance on different max path lengths and
path select numbers on three datasets.

the training dataset as user preferences and item features,
respectively. Overall, compared with all baselines, our ex-
planations are more informative, similar to ground-truth ex-
planations, and exhibit fluency and coherence. Specifically,
by jointly comparing the generated explanations between
case 1 and case 2, when recommending the same item to
different users, LLM2ER-EQR generates personalized and
diverse explanations, aligning effectively with users’ prefer-
ences. Moreover, our explanations contain the largest num-
ber of user preferences and item features, demonstrating that
LLM2ER-EQR can effectively maintain the consistency of
generated explanations.

Discussion and Conclusion
Legacies of Language Models. It is worth noting that a
large part of our framework relies on the pre-trained LLMs
(Brown et al. 2020). This means that LLM2ER naturally in-
herits the advantages and disadvantages of the pre-trained
LLM. Specifically, the advantage is that LLM2ER-EQR can
utilize the implicit knowledge existing in the pre-trained
LLM to generate explanations, while the disadvantage is
that it may introduce risks, such as potentially producing of-
fensive language, propagating social biases and stereotypes,
and leaking private information (Weidinger et al. 2021). To
alleviate such a problem, we have made efforts in both train-
ing and inference stages: (1) during the training stage, the
LLM is fine-tuned by the cleaned ER datasets free of harm-
ful information to guide it to generate high-quality explana-
tions; (2) during the inference stage, we construct prompts
with reasoned concepts about user preferences and item at-

Ground-
truth

There will be a spin-off movie featuring wolverine. He has a good character and intense
actions.

CAML Intense movie. Wolverine's character is good. Enjoy it.
NETE The movie is very fun and  intense, and the main  character is very good.
ReXPlug I like a wolverine movie because he is the most popular character on screen.
PETER Wolverine is cool and characters are good. A good movie for action fans.
PEVAE The wolverine movie is enjoyable, his actions and character are good.
PRAG The movie excelled with intense character, iconic wolverine, groundbreaking action.
CVAEs The movie is a character-driven action movie with intense wolverine scenes.
LLM2ER The movie crafted a good character and presented intense action scenes.
LLM2ER-
EQR

The movie crafted an impressive wolverine character and presented intense action
scenes.

Item: X-Men
Item feature: screen, character, action, wolverine, scenes, intense, future
User preferences: screen, character, action, enjoy, wolverine, score, tear

Ground-
truth One can definitely tell that this director has a long future in directing action movies.

CAML It is an action movie directed by a good director.
NETE The movie is a very good action movie and the story is very intense.
ReXPlug The good director and wolverine‘s character makes the movie a must-see.

PETER This intense movie is directed by a skilled action director.
PEVAE The director made a good action movie.
PRAG The movie has definite action, deep character and futuristic scenes.
CVAEs This movie feature intense action, good characters, and a skillful director.
LLM2ER The excellent director achieved a satisfying blend of scenes and character.
LLM2ER-
EQR The action director has a vision that blends futuristic scenes and captivating character.

Item: X-Men
Item feature: screen, character, action, wolverine, scenes, intense, future
User preferences : director, definite, action

Ground-
truth

It 's brilliant that George Lucas kept some of the themes from the previous films going 
here.

CAML I like the war theme of the popular and wonderful movie.
NETE The movie is very popular and the theme is about war.
ReXPlug George Lucas genius shines in this movie and the theme links to previous ones. 
PETER This war movie is worth watching and it is a continuation of the previous theme.
PEVAE It is a popular movie, maintaining themes from previous films.
PRAG This movie features brilliant theme, widespread popularity and wonderful story telling.
CVAEs This movie kept previous theme, being highly popular.
LLM2ER George Lucas astutely kept the theme of the previous films to create this war film.
LLM2ER-
EQR

George Lucas kept the theme of the previous films, creating a wonderful and popular
film.

Item: Star Wars
Item feature: George Lucas, theme, previous, war
User preferences : popular, wonderful, brilliant, previous

3

1

2

Figure 4: Explanations generated by baselines and
LLM2ER-EQR. The item features and user preferences men-
tioned in the generated explanation are highlighted.

tributes to guide LLM generate explanations in the direction
without harmful information. Nonetheless, we must admit
that when actually deploying our model in a real scenario,
it is necessary to take post-processing to further prevent the
display of harmful information to users.

Conclusions and Future Work. In this paper, we pro-
pose a novel LLM-based ER backbone LLM2ER and fine-
tune such a backbone as LLM2ER-EQR in an RL paradigm
with two explainable quality reward models, to address
three low-quality problems, i.e., personality, consistency,
and poor review quality in explanations. Extensive exper-
iments demonstrate the superiority of LLM2ER over the
state-of-the-art methods for the explainable recommenda-
tion tasks. In the future, we plan to fully exploit LLM2ER ’s
potential by migrating to multimodal recommended forms.
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