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Abstract

Graph Neural Networks (GNNs) have shown great perfor-
mance in learning representations for graph-structured data.
However, recent studies have found that the interference be-
tween topology and attribute can lead to distorted node rep-
resentations. Most GNNs are designed based on homophily
assumptions, thus they cannot be applied to graphs with
heterophily. This research critically analyzes the propaga-
tion principles of various GNNs and the corresponding chal-
lenges from an optimization perspective. A novel GNN
called Graph Neural Networks with Soft Association be-
tween Topology and Attribute (GNN-SATA) is proposed.
Different embeddings are utilized to gain insights into at-
tributes and structures while establishing their interconnec-
tions through soft association. Further as integral compo-
nents of the soft association, a Graph Pruning Module (GPM)
and Graph Augmentation Module (GAM) are developed.
These modules dynamically remove or add edges to the
adjacency relationships to make the model better fit with
graphs with homophily or heterophily. Experimental results
on homophilic and heterophilic graph datasets convincingly
demonstrate that the proposed GNN-SATA effectively cap-
tures more accurate adjacency relationships and outperforms
state-of-the-art approaches. Especially on the heterophilic
graph dataset Squirrel, GNN-SATA achieves a 2.81% im-
provement in accuracy, utilizing merely 27.19% of the orig-
inal number of adjacency relationships. Our code is released
at https://github.com/wwwfadecom/GNN-SATA.

Introduction
A growing trend has recently been observed in generating
data characterized by intricate relationships and interdepen-
dencies between objects, frequently represented as graph
data. Illustrative examples encompass social networks (Guo
et al. 2022), citation networks (Zhao et al. 2021), and fi-
nancial networks (Bi et al. 2022). Graph neural networks
(GNNs) have been proven highly effective in various graph
data applications, including recommender systems (Fan
et al. 2019), data mining (Wu et al. 2020a), and natural lan-
guage processing tasks (Wu et al. 2020b).

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

GNNs can be broadly classified into two categories:
spectral-based GNNs and spatial-based GNNs. Spectral-
based GNNs utilize the eigendecomposition of the Lapla-
cian matrix of the graph to update node representations
by transforming and aggregating the eigenvectors. Spatial-
based GNNs perform information propagation and aggrega-
tion directly in the graph structure. Some researchers (Ma
et al. 2021; Yang et al. 2021; Zhu et al. 2021) have shown
that spectral-based GNNs are designed to optimize a unified
objective optimization framework, including a graph Lapla-
cian regularization and feature-fitting term. The Laplacian
regularization term utilizes the topology smooth feature to
acquire a stable embedding that eliminates noise, and the
feature fitting term establishes a link between the node em-
bedding and the node attributes.

However, recent studies have revealed that the inter-
ference between topology and attribute can have a detri-
mental impact on the performance of GNNs. On the one
hand, topology frequently influences the representation of
attributes. GNNs that prioritize topological smoothness tend
to minimize differences between interconnected nodes, lead-
ing to over-smoothing issues when multiple layers are
stacked and resulting in the loss of node attribute informa-
tion (Jin et al. 2021). The challenge becomes more pro-
nounced in the context of heterophilic graphs, as relying
on inaccurate topological relations for transfer can yield
entirely distinct representations for two seemingly similar
nodes. On the other hand, inaccurate or incomplete node at-
tributes may distort the encoding of topology. In tasks like
node link prediction, GNNs that rely on both attribute and
topology often exhibit inferior performance compared to en-
coding methods that exclusively hinge on topology, such
as matrix factorization (Mnih and Salakhutdinov 2007) and
random block model (Airoldi et al. 2008).

In a recent development, Yang et al. (Yang et al. 2022)
introduced the utilization of the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton et al. 2005) to enforce
the mutual exclusivity of attribute and topology. By doing
so, they effectively eliminate shared information and de-
rive two independent representations. This approach serves
to mitigate the interference that arises from the interplay
between attribute and topology. Compared with the previ-
ous methods, Yang et al.’s model exhibits impressive perfor-
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mance on heterophilic data, although its performance on ho-
mophilic data is generally consistent. This distinction can be
attributed to the relatively dependable relationship between
attributes and structures in homophilic data. Consequently,
opting for a straightforward learning of mutually exclusive
representations may not be the optimal choice in such sce-
narios.

In order to alleviate the interference between topological
structures and attributes, this paper proposes a novel graph
neural network model called GNN-SATA, which aims to ad-
dress the problem of node embedding and topological distor-
tion caused by attribute and topological interference. It em-
ploys different representations for learning node attributes
and topology, and recognizes the interconnectedness of fea-
tures and structures by a soft association. Further, we intro-
duce two modules, GPM and GAM, to explore an adaptive
graph relationship in which GPM is used to prune the origi-
nal adjacency relationship according to the established asso-
ciation, and GAM is used to enhance the adjacency relation-
ship. Finally, the model is trained based on the cross-entropy
loss of the semi-supervised node classification. The contri-
butions of this paper can be summarized as follows:

• We proposed GNN-SATA, a novel GNN model that ad-
dresses the interference between attribute and topology
by establishing a soft association between node attributes
and topology.

• To investigate more reliable graph relations, we propose
two modules, namely GAM and GPM, to explore the
topological relationships among nodes dynamically. Ex-
perimental results demonstrate the effectiveness of these
modules in enhancing the homophily of graph data and
improving the model’s performance.

• Compared with state-of-the-art methods, extensive com-
parative experiments are conducted on six benchmark
datasets highlight the superiority of GNN-SATA.

Relate Works
Typical Graph Neural Networks
The information propagation of GNNs involves the transfor-
mation and aggregation of node characteristics at a specific
depth based on topological information. Various GNN mod-
els employ different propagation techniques. The following
are the message passing formulae of Graph Convolutional
networks (GCN) (Kipf and Welling 2017) and Simplifying
Graph Convolutional networks (SGC) (Wu et al. 2019):

GCN : Zk+1 = σ(ĀZkWk) (1)

SGC : Zk+1 = ĀZk (2)

where X is node feature matrix, Z0 = X, Ā is the reg-
ularized adjacency matrix which includes a self-loop, and
σ = Relu and W are the non-linear activation function
and the weight matrix of the corresponding layer, respec-
tively. To learn the representation of nodes, GCN applies
linear transformation and non-linear activation K times.
SGC eliminates the non-linear activation and weight ma-
trix, which lessens the computational complexity of GCN

and improves performance for some straightforward graph
shapes while being brief and effective.

GCN and SGC learn the data representation Z by opti-
mizing the following objective:

min
Z

tr
(
Z⊤L̃Z

)
=

N∑
i,j

Āi,j ∥Zi − Zj∥2 ,Z = XW∗ (3)

where W∗ = W0 · · ·Wk−1. and N is the number of
nodes. In essence, this acts as a low-pass filter on the in-
put node by smoothing two adjacency nodes to assign them
with a more comparable representation. However, when
numerous GCN or SGC layers are stacked together, the
over-smoothing issue arises. A few networks focused on
solving the over-smoothing problem were suggested, such
as APPNP (Gasteiger, Bojchevski, and Günnemann 2019),
GCNII (Chen et al. 2020), JKNet (Xu et al. 2018) and
DAGNN (Liu, Gao, and Ji 2020). Their inter-layer connec-
tion may be described as follows:

APPNP : Zk+1 = (1− λ)ĀZk + λX

GCNII : Zk+1 = (1− λ)
(
ZkW

)
+ λX

JKNet : Zk+1 =

k+1∑
t=1

λtĀ
tXW∗

DAGNN : Zk+1 =
k+1∑
t=0

λtĀ
tH,H = fθ(X)

(4)

where fθ(X) is the non-linear feature transformation utiliz-
ing an MLP before the propagation process, λ and λt are
the appropriate balancing coefficients. By creating a link be-
tween the convolutional layer’s output and the original in-
put, APPNP and GCNII reduce the over-smoothing problem
and improve node discrimination. JKNet and DAGNN alle-
viate the over-smoothing issue by fusing multi-scale infor-
mation from different layers. The optimization objective of
the above four methods can be expressed as:

min
Z

∥Z−X∥2F + α1 tr
(
Z⊤L̃Z

)
(5)

compared with Eq.(3), the above formula retains more orig-
inal feature information X to alleviate the over-smoothing
problem.

Homophily and Heterophily
In graph networks, homophily refers to a situation in which
similar pairs of nodes may be more likely to be linked than
other pairs, and heterophily refers to a situation in which
dissimilar pairings are more likely to be connected. Smooth-
based GNNs and their variations are built on the homophily
assumption while omitting the fact that heterophilic graph
architectures are frequently found in the real world. To ad-
dress the challenges posed by heterophilic graphs, Pei et
al. (Pei et al. 2020) employed geometric transformations in
conjunction with graph neural networks to better capture
interactions between nodes in heterophilic graphs. Zhu et
al. (Zhu et al. 2020a) introduced the concept of hypergraphs,
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Figure 1: An overview of the proposed GNN-SATA model.

which enable edges to connect multiple nodes, enhancing
their capacity to represent and manage diverse connections.
Yang et al. (Yang et al. 2022) iteratively update node repre-
sentations by collecting semantic information and removing
common information to improve the model’s performance
in heterophilic networks. Additionally, Huang et al. (Huang
et al. 2023) proposed a straightforward and efficient mid-
pass filter with increased resilience. These approaches offer
promising insights into handling heterophily in graph net-
works and contribute to advancing graph neural network re-
search.

Model Formulation
Let G = {X,V, E ,A} be an attribute graph with C class
nodes. V = {v1, . . . , vN} and E represent the sets of nodes
and edges respectively, N = |V| is the number of nodes.
X = [x1, . . . ,xN ]⊤ ∈ RN×d is node feature matrix, d
is the dimension of features. VL is labeled training set,
and the corresponding labels are YL = {y1, y2, . . . , yL}.
1 = {1}N×N ,A = (aij)N×N ∈ RN×N is an adjacency
matrix of G, aij = 1 if a connecting edge (i.e., (vi, vj) ∈ E)
between node vi and vj exists, else aij = 0. The degree ma-
trix of A is denoted as D, and Ā = D̃− 1

2 ÃD̃− 1
2 is the regu-

larized adjacency matrix, where Ã = A+ I is an adjacency
matrix with self-connections and D̃ = D+ I. L̃ = I− Ā is
the Laplacian matrix that represents a normalized symmetric
positive semi-definite network. The node classification task
is to classify {x1, . . . ,xN} into C categories.

The Proposed GNN-SATA
The objective of Eq.(5) is to acquire a representation Z that
closely aligns with the attributes of a node while also satis-
fying the topological constraints. However, it is challenging
to extract optimal attribute and structural embedding simul-
taneously (Yang et al. 2022). Furthermore, in the case of
high heterophilic graph data, a feature smooth representa-
tion based on inaccurate graph structure may not effect node
representation extraction and may have the opposite influ-
ence (Zhu et al. 2020a; Jin et al. 2021; Yang et al. 2023).
Consequently, we propose to learn feature-structure repre-
sentation separately while simultaneously establishing the

soft association between attribute and topology via Eq.(6).
That is:

min
Z,U

∥U−X∥2F+α1 tr
(
Z⊤L̃Z

)
+α2

∥∥UU⊤ −A
∥∥2
F

(6)

where U and Z denote the attribute and topology represen-
tation of graph data, respectively, which are associated with
each other by soft association via the third term. Specifically,
we use the representation U extracted from the features to
construct a similarity matrix, bringing this matrix close to
the original adjacency matrix A to establish connections be-
tween features and structures. The third term is balanced by
the weight coefficient α2, which acts as an appropriate con-
straint in the learning process of U and Z.

In order to further enhance the versatility of the model on
homophilic and heterophilic graphs, the GNN-SATA model
has been proposed, consisting of the Graph Pruning Module
(GPM) and the Graph Augmentation Module (GAM). The
GPM is responsible for removing irrelevant or false edges
from the original graph to ensure these edges do not affect
the network. Simultaneously, the GAM module investigates
the absence of edge connections and supplements the origi-
nal graph.

The GPM achieves this by introducing a learnable matrix
EP to prune the original adjacency matrix A, using A⊙EP

instead of A. Pruning edges is guided by the soft association
between attribute and downstream tasks. Nodes with low
feature similarity are likelier to have no connections, and the
feedback from downstream tasks aids the model in making
decisions. However, for graphs with high heterophily, sim-
ply deleting edges may cause the GNN to rely on fewer or
no edges during iteration. To address this, we incorporated
a mechanism to the model attempting to add edges while
removing untrusted edges. Like edge pruning, an adaptive
matrix EA is introduced to act on the complementary matrix
(1−A) of A. The objective function of GNN-SATA can be
expressed as:

min
Z,U,EP ,EA

∥U−X∥2F + α1 tr
(
Z⊤L̃AZ

)
+ α2

∥∥UU⊤ − (A⊙EP + (1−A)⊙EA)
∥∥2
F
.

(7)

where ⊙ represents element-wise multiplication. And note
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Algorithm 1: Optimization Algorithm of GNN-SATA
Input:Feature matrixX, adjacency matrix A, iterations T =
200 and K ∈ {2, 3, 4}, Labels YL, Hyper-parameter α1, α2.
Parameter: WL,WU.
Output: Classification results M′.

1: Initializing EP and EA.
2: for iter1 = 1,2,· · · ,T do
3: for iter2 = 1,2,· · · ,K do
4: Calculate Uk+1,Zk+1,Ek+1

A ,Ek+1
P by Eq.(15),

(16),(17),(18).
5: end for
6: Calculate M = [UK∥ZK ]
7: Calculate classification results M′ by Eq.(8).
8: Calculate classification loss by Eq.(9)
9: Update parameter WL,WU by gradient descent.

10: end for

that when the model applies to non-boolean adjacency ma-
trix A, we replace 1−A with 1−B(A) where B(·) denotes
the elementwise boolean operator.

GNN-SATA utilizes the concatenated representation of
UK and ZK for classification tasks. The spliced encod-
ing is expressed as M = [UK∥ZK ] and is used for semi-
supervised node classification tasks after linear transforma-
tion and softmax function:

M′ = softmax(WL ·M+ b) (8)

where M′
ik represents the possibility that the i-th node be-

longs to the k-th class. Similarly, the loss function of labeled
data can be expressed as:

L =
∑

vi∈VL

ℓ (m′
i,yi) (9)

where yi is the one-hot encoding of yi and ℓ(·) is the cross
entropy function. Algorithm 1 shows the entire optimization
process of GNN-SATA.

Model Optimization
To determine U and Z, we use the alternating direction op-
timization by vanishing the partial derivative of the target
function of Eq.(7) for all variables, i.e. U,Z,EP ,EA. For
convenience, let A′ = (1−A) and A = A⊙EP+A′⊙EA),
then

2(U−X) + 2α2(2UU⊤ − Ā)U = 0 (10)

2α1L̃AZ = 0 (11)

VP + 2α2(−A⊙ ÛP +A⊙A⊙EP ) = 0 (12)

VA + 2α2(−A′ ⊙ ÛA +A′ ⊙A′ ⊙EA) = 0 (13)

where Ā is the regularized adjacency matrix like Ā,VP ij =
1
2α1Aij∥Zi−Zj∥22, Ā,VAij =

1
2α1A

′
ij∥Zi−Zj∥22, ÛP =

UU⊤ −A′ ⊙ EA, ÛA = UU⊤ −A ⊙ EP . The iterative
relationship between the k-th layer and the k+ 1-th layer of

Dataset Nodes Features Classes Edges H(A)
Cora 2708 1433 7 5429 0.809

Citeseer 3327 3703 6 4732 0.721
Photo 7650 745 8 119081 0.824

Computer 13752 767 10 245861 0.791
Squirrel 5201 2089 5 217073 0.203

Chameleon 2277 2325 5 36101 0.233

Table 1: The statistics of six datasets.

the model can be expressed as:

Uk+1 = X− α2(2U
kUk⊤ − Ā)Uk (14)

Zk+1 = ĀZk (15)

Ek+1
P = (2α2A⊙ Ûk

P −Vk
P )/(2α2A⊙A) (16)

Ek+1
A = (2α2A

′ ⊙ Ûk
A −Vk

A)/(2α2A
′ ⊙A′) (17)

where Vk
ij = 1

2α1Aij∥Zk+1
i − Zk+1

j ∥22, Ûk =

Uk+1Uk+1⊤ − A′ ⊙ EA. And we introduced additional
training parameters WU and the activation function σ =
Relu to Eq.(14) to enhance the model’s capacity for repre-
sentation and optimize the training process while simultane-
ously repeatedly updating Uk+1 and Zk+1 to minimize the
optimization objective. The following is the optimized iter-
ation method of Eq (14):

Uk+1 = X− α2σ[(2U
kUk⊤ − Ā)UkWU] (18)

in Eq (18), UkUk⊤ − Ā represents the difference between
the feature-based similarity relationship and the adaptive
matrix A, and X − α2σ[(2U

kUk⊤ − Ā)UkWU] repre-
sents the component that eliminates the difference while re-
taining the commonality, thereby establishing a soft asso-
ciation between features and structures. The feature-based
representation U allows us to discover the structure’s com-
monalities while preserving the original features’ unique-
ness. In Eq (15), ĀZk is the label propagation algorithm
(LPA) (Raghavan, Albert, and Kumara 2007) in community
detection.

Experiments
This section describes the datasets, comprised methods, and
experimental parameter configurations to evaluate GNN-
SATA. In addition, we analyze the experimental results and
demonstrate the significance of the proposed soft associa-
tion, GPM and GAM through ablation studies.

Datasets
The proposed GNN-SATA is evaluated on four high ho-
mophilic datasets (Cora, Citeseer, Photo, Computer) and two
heterophilic (Squirrel, Chameleon) datasets. The attribute
statistics of datasets are shown in Table 1.

The training process iterates for 200 epochs on a machine
with RTX 3090 Ti GPU. In order to assess the effectiveness
of the proposed model in classification tasks, we partitioned
the nodes of each class in all datasets into three sets: 60%
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for training, 20% for validation, and 20% for testing like
other baselines. We utilized Accuracy (ACC), a commonly
employed and significant evaluation metric to measure the
model’s performance. A higher value of this metric signi-
fies the superior performance of the model. In comparison,
the results of the baseline methods are reported according to
their original references.

Competitive Methods
We demonstrate the efficacy of GNN-SATA by comparing
it to 13 classical and state-of-the-art baselines. According to
their role, all methods can be divided into three categories:

Classical GCN methods: GCN (Kipf and Welling 2017),
GAT (Veličković et al. 2017) and GraphSAGE (Hamilton,
Ying, and Leskovec 2017) are three classical GNNs.

Methods for alleviating the over-smoothing prob-
lem: GCNII (Chen et al. 2020) introduces a personal-
ity initialization method. APPNP (Gasteiger, Bojchevski,
and Günnemann 2019) incorporates personalized features.
JKNet (Xu et al. 2018) alleviates over-smoothing with skip
connections.

Methods for handling heterophilic graphs: Geom-
GCN (Pei et al. 2020) incorporates geometric info for ef-
fective graph convolutions. GPRGNN (Chien et al. 2021)
adapts weights using graph pagerank for feature extraction.
FAGCN (Bo et al. 2021) uses adaptive gating for signal in-
tegration in message passing. H2GCN (Zhu et al. 2020b)
learns from heterophilic graphs with multiple modalities.
Ordered GNN (Song et al. 2023) utilizes an ordered gating
mechanism to prevent the mixing of node features within a
hop to enhance the robustness of the model.

Analysis of Results
The classification results of both the proposed method and
the comparison methods on six benchmark datasets are pre-
sented in Table 2. Table 2 reveals the following observations:

GNN-SATA demonstrates strong performance across all
datasets. On average, the proposed method improves by
1.82% compared to the optimal baseline results across the
six datasets, with a remarkable 2.81% improvement specif-
ically on the Squirrel dataset, confirming the method’s su-
periority. GNN-SATA employs a more straightforward and
efficient process by concatenating the final representations
of attributes and structures, in contrast to the comparative
method H2GCN which enhances the representation ability
by integrating self-encoding, neighbor encoding, high-order
adjacency encoding, and intermediate layer encoding to ad-
dress the challenges posed by heterophilic graphs. However,
this approach requires significant memory resources and be-
comes unfeasible for large graphs.

The MLP-based methods outperform several classic and
advanced graph neural network methods, including GCN,
GAT, GraphSAGE, and Geom-GCN, on the highly het-
erophilic Squirrel and Chameleon datasets. These graph
neural network approaches rely too much on homophily as-
sumption which leads to poor results on datasets with het-
erophily due to topology and attribute interference. Further-
more, although GNN-BC achieves suboptimal results on
most graph data with low homophily, it exhibits moderate

performance on homophilic data. This can be attributed to
the authors’ treating features and structures as opposing en-
tities, enforcing HSIC constraints that render the representa-
tions of features and structures mutually exclusive. Conse-
quently, the interconnection between features and structures
must be considered for effective results. In contrast, GNN-
SATA enhances the independence of attribute and topology
by learning their respective information separately and cap-
turing their commonality via establishing soft associations
between attribute and topology. Therefore, the best results
have been achieved in both homophilic and heterophilic
graphs.

Besides, the proposed model can significantly improve
on datasets with heterophily, especially the Squirrel and
Chameleon datasets. We analyze that this is due to the criti-
cal role played by the proposed GAM and GPM models. For
datasets with high heterophily, the pruning and enhancement
of the adjacency matrix can alleviate the negative impact
caused by inaccurate structure to a certain extent so that the
learned structural information is more accurate and better re-
sults can be obtained. And the Ablation Study substantiates
this statement.

Ablation Study
Ablation experiments are conducted to assess the individual
contributions of different modules in our model. The four
variants tested were: SATA-S, SATA-P, SATA-A, and SATA-
AP, and the experimental results are shown in Table 3.

• SATA-S: The proposed variant model, denoted as SATA-
S, is essentially GNN-SATA with the exclusion of soft
association. To avoid a trivial solution where U = X, a
two-layer MLP is employed for nonlinear transformation
of features.

• SATA-P: The SATA-P variant refers to the GNN-SATA
model without the GPM, which implies that the model
eliminates the edge pruning in the soft association com-
ponent and solely preserves the edge augmentation.

• SATA-A: The SATA-A variant refers to the GNN-SATA
model without the GAM, which implies that the model
eliminates add edges in the soft association component
and solely preserves the edge pruning.

• SATA-AP: The SATA-AP variant pertains to the GNN-
SATA model that lacks GAM and GPM. Consequently,
the edges in the soft association component of the model
remain fixed and cannot be modified. The guidance re-
lations become unidirectional, generated solely by topol-
ogy guidance features.

The SATA-S exhibits a decreased performance on all
datasets. The variant model independently acquires knowl-
edge of feature representation and topology structure and
subsequently merges the representation. It is illogical to con-
sider the attribute and topology of identical data as two unre-
lated entities. Moreover, the SATA-S outperforms the GCN
and MLP, indicating the indispensability of integrating at-
tribute and topology learning.

The effect of SATA-AP is decreased in all datasets, but
the decline was more evident in datasets with heterophily.
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Dataset Cora Citeseer Photo Computer Squirrel Chameleon
GCN 85.77 ± 0.2 73.68 ± 0.31 90.54 ± 0.21 82.52 ± 0.32 23.96 ± 0.26 28.18 ± 0.23
GAT 86.37 ± 0.30 74.32 ± 0.27 90.09 ± 0.27 81.95 ± 0.38 30.03 ± 0.25 42.93 ± 0.28
GraphSAGE 87.77 ± 1.04 71.09 ± 1.30 90.51 ± 0.25 83.11 ± 0.23 36.28 ± 1.73 49.24 ± 1.68
MLP 74.82 ± 2.22 70.94 ± 0.39 78.69 ± 0.30 70.48 ± 0.28 37.04 ± 0.46 49.67 ± 0.78
GCNII 88.49 ± 2.78 77.08 ± 1.21 90.98 ± 0.93 86.13 ± 0.51 37.85 ± 2.76 60.61 ± 2.00
APPNP 87.87 ± 0.85 76.53 ± 1.33 91.11 ± 0.26 81.99 ± 0.26 33.29 ± 1.72 54.30 ± 0.34
JKNet 88.93 ± 1.35 74.37 ± 1.53 87.70 ± 0.70 77.80 ± 0.97 44.24 ± 2.11 62.31 ± 2.76
Geom-GCN-I 85.19 ± 1.13 77.99 ± 1.23 NA NA 33.32 ± 1.59 60.31 ± 1.77
Geom-GCN-P 84.93 ± 0.51 75.14 ± 1.50 NA NA 38.14 ± 1.23 60.90 ± 1.13
Geom-GCN-S 85.27 ± 1.48 74.71 ± 1.17 NA NA 36.24 ± 1.05 59.96 ± 2.03
GPRGNN 88.65 ± 1.37 77.99 ± 1.64 91.93 ± 0.26 82.90 ± 0.37 49.93 ± 1.34 67.48 ± 1.98
FAGCN 87.77 ± 1.69 74.66 ± 2.27 91.96 ± 0.71 86.09 ± 0.40 40.88 ± 2.02 61.12 ± 1.95
H2GCN-1 86.92 ± 1.37 77.07 ± 1.64 OOM OOM 36.42 ± 1.89 57.11 ± 1.58
H2GCN-2 87.81 ± 1.35 76.88 ± 1.77 OOM OOM 37.90 ± 2.02 59.39 ± 1.98
GNN-BC 88.75 ± 1.21 76.70 ± 0.77 93.17 ± 0.67 89.60 ± 0.89 61.41 ± 1.55 74.63 ± 0.93
Ordered GNN 88.37 ± 0.75 77.31 ± 1.73 NA NA 62.44± 1.96 72.28 ± 2.29
GNN-SATA 91.24 ± 0.69 78.03 ± 0.75 93.62 ± 0.55 91.34 ± 0.29 65.25 ± 1.33 77.12 ± 0.96

Table 2: The classification results on all six datasets. The best classification results are bolded, and the second-best results are
underlined.

Examples include the Squirrel and Chameleon datasets. We
conclude that this is because edge pruning and augmenting
are more critical for heterophily datasets. On the one hand,
untrue edges can be deleted. On the other hand, connections
can be established based on soft associations to explore reli-
able edges. The next Section Analysis of Adaptive Matrix
A illustrates that the proposed method significantly reduces
the heterophily of nodes.

Simultaneously, the outcomes of SATA-A and SATA-P
exhibit superior performance on all datasets compared to
SATA-AP, signifying the contribution of both GAM and
GPM modules in enhancing the model’s efficacy. The ex-
perimental findings reveal that SATA-A yields higher results
than SATA-P, indicating the greater significance of GPM in
adapting topology relationships. Adding edges requires ex-
ploring edges that don’t exist, making it more challenging
than pruning existing edges. Consequently, GAM’s effect on
improving the model’s performance is comparatively lesser
than GPM’s.

Analysis of Adaptive Matrix A
Initially, this study introduces a homophily rate H(·) pro-
posed by Pei et al. (Pei et al. 2020) to measure the proportion
of edges connecting nodes with the same class in a graph.

Dataset SATA-S SATA-A SATA-P SATA-AP GNN-SATA
Cora 86.33 91.24 90.05 89.23 91.24

Citeseer 75.01 76.60 76.30 76.00 78.33
Photo 91.33 93.30 92.33 92.12 93.62

Computer 82.32 90.76 90.26 90.14 91.34
Squirrel 35.23 63.38 61.95 61.23 65.25

Chameleon 50.44 75.60 73.76 72.89 77.12

Table 3: The ablation experiment results of five modules.
The best classification results are bolded, and the second-
best results are underlined.

The matching rate of the adaptive adjacency matrix H(A)
can be expressed as:

H(A) =
|{(u, v) : (u, v) ∈ EA ∧ yu = yv}|

|EA|
. (19)

To analyze the A matrix more specifically, statistical anal-
ysis was conducted on the edges of the matrix, as presented
in Table 4. From Table 4, we can get the following conclu-
sions:

It can be seen from |EA|/|EA| that datasets with high ho-
mophily tend to learn more edges. This is because it is easier
to add edges to datasets with high homophily, and the ho-
mophily rate can be increased by adding more homophilic
edges so that the edge-increasing effect of GAM is more
prominent. On the contrary, graph data with heterophily
contains more heterophilic edges, and GPM enhances the
homophily ratio by removing such edges. For instance, in
the Squirrel dataset, utilizing merely 27.19% of the original
number of adjacency relationships and achieve better results
than the baseline methods.

Furthermore, H(A)/H(A) > 1 on all datasets demon-
strates that the proposed model has enhanced the homophily
rate for all datasets, and the improvement effect is more ob-
vious for datasets with lower homophily.

Analysis of Parameters
This section examines the two hyperparameters α1 and α2 in
Eq (7). The purpose of parameter α1 is to balance the loss as-
sociated with topological smoothness constraints, while pa-
rameter α2 is used to balance the loss related to soft associ-
ation constraints. The value of parameter α1 is chosen from
the set [1, 3, 5, 7, 10], while parameter α2 is selected from
the set [0.001, 0.01, 0.1, 1]. From Figure 3, it is evident that
GNN-SATA demonstrates robustness in response to varia-
tions in α1. However, changes in α2 have a pronounced im-
pact on the model. Similar results across both homophilic
and heterophilic graphs, as observed in cases like Cora and
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Dataset Cora Citeseer Photo Computers Squirrel Chameleon
|{(u, v) : (u, v) ∈ EA ∧ yu = yv}| 5858 5044 97966 102265 203679 4154
|{(u, v) : (u, v) ∈ EA ∧ yu ̸= yv}| 1118 1310 20956 51888 44973 9939
|EA| 6976 6354 123221 255567 59024 14039
|EA|/|EA| 1.286 1.35 1.035 1.04 0.271 0.389
H(A) 0.84 0.794 0.83 0.797 0.238 0.296
H(A)/H(A) 1.038 1.101 1.007 1.008 1.172 1.265

Table 4: The statistical data pertaining to A.

(a) Cora-RAW (b) Citeseer-RAW (c) Photo-RAW (d) Computer-RAW (e) Squirrel-RAW (f) Chameleon-RAW

(g) Cora-SATA (h) Citeseer-SATA (i) Photo-SATA (j) Computer-SATA (k) Squirrel-SATA (l) Chameleon-SATA

Figure 2: The visualization of classification results.
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Figure 3: The accuracy of node classification with different
parameters α1 and α2.

Chameleon. For parameter α1, the model achieves superior
results when its value is set to 3 or 5, indicating that ap-
propriate topology smoothing constraints lead to improved
performance.

Additionally, parameter α2 yields the best results when
its value is set to 0.01, while a value of 1 produces poor
results. This discrepancy arises because the proposed soft
association constraint aims to establish a more flexible as-
sociation between topology and attribute, thereby mitigat-
ing issues related to over-smoothing and distortion of node
representations. Setting large values of α2 causes the model
to degenerate to an approximation to Eq.(3). Consequently,
avoiding setting the α2 too high is advisable.

Classification Result Visualization

Figure 2 visually presents the classification results in a two-
dimensional space using the T-SNE (Van der Maaten and
Hinton 2008) algorithm to provide a more intuitive verifica-
tion of the proposed model’s effectiveness. In contrast to the
original raw irregular data distribution (-RAW), GNN-SATA
(-SATA) effectively categorizes the data into distinct groups,
providing compelling evidence of the proposed model’s ca-
pability in classifying various irregular data.

Conclusion
This paper proposes a novel graph neural network for semi-
supervised node classification called GNN-SATA. The net-
work is designed based on the optimization principle of
graph neural networks and incorporates a soft association
constraint. The soft associations aim to address the issues of
node representation distortion arising from the compromise
between attribute and topology. Additionally, GNN-SATA
utilizes the GAM and GPM to adaptively adjust the soft as-
sociation by adding or removing edges based on the topol-
ogy, node attribute, and classification tasks. The analysis
of the adjacency matrix A demonstrates that the GAM and
GPM techniques effectively enhance homophily and signif-
icantly impact the addition and removal of adjacency matrix
edges. Furthermore, the performance of node classification
serves as evidence of the efficacy of the GNN-SATA model.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9266



Acknowledgments
This research was supported by the National Key R&D Pro-
gram of China (No.2021ZD0111902), NSFC (62172023,
U21B2038, U19B2039), Beijing Natural Science Founda-
tion (4222021) and the China Postdoctoral Science Founda-
tion under Grant 2023M740201.

References
Airoldi, E. M.; Blei, D.; Fienberg, S.; and Xing, E. 2008.
Mixed membership stochastic blockmodels. Advances in
Neural Information Processing Systems, 21.
Bi, W.; Xu, B.; Sun, X.; Wang, Z.; Shen, H.; and Cheng,
X. 2022. Company-as-tribe: Company financial risk assess-
ment on tribe-style graph with hierarchical graph neural net-
works. In ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, 2712–2720.
Bo, D.; Wang, X.; Shi, C.; and Shen, H. 2021. Beyond
low-frequency information in graph convolutional networks.
In AAAI Conference on Artificial Intelligence, volume 35,
3950–3957.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020.
Simple and deep graph convolutional networks. In Interna-
tional Conference on Machine Learning, 1725–1735.
Chien, E.; Peng, J.; Li, P.; and Milenkovic, O. 2021. Adap-
tive universal generalized pagerank graph neural network. In
International Conference on Learning Representations.
Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; and Yin,
D. 2019. Graph neural networks for social recommendation.
In The World Wide Web Conference, 417–426.
Gasteiger, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
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