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Abstract

As societies become increasingly aware of data privacy, reg-
ulations require that private information about users must
be removed from both database and ML models, which is
more colloquially called ‘the right to be forgotten‘. Such pri-
vacy problems of recommendation systems, which hold large
amounts of private data, are drawing increasing attention. Re-
cent research suggests dividing the preference data into mul-
tiple shards and training submodels with these shards and
forgetting users’ personal preference data by retraining the
submodels of marked shards. Despite the computational effi-
ciency development compared with retraining from scratch,
the overall recommendation performance deteriorates after
dividing the shards because the collaborative information
contained in the training data is broken. In this paper, we
aim to propose a forgetting framework for recommendation
models that neither separate the training data nor jeopardizes
the recommendation performance, named Recommendation
Reverse Learning (RRL). Given the trained recommendation
model and marked preference data, we devise Reverse BPR
Objective (RPR Objective) to fine-tune the recommendation
model to force it to forget the marked data. As the recommen-
dation model encodes the complex collaborative information
among users, we propose to utilize Fisher Information Matrix
(FIM) to estimate the influence of reverse learning on other
users’ collaborative information and guide the updates of rep-
resentations. We conduct experiments on two representative
recommendation models and three public benchmark datasets
to verify the efficiency of RRL. For the forgetting complete-
ness, we use RRL to make the recommendation model poi-
soned by shilling attacks forget malicious users.

Introduction
Recommender systems play an essential role in a variety
of real-world applications such as social media (Song et al.
2021; Wu et al. 2022), e-market (He et al. 2020; Wang et al.
2019; Wu et al. 2021; Chen et al. 2020) and etc. Recom-
mender systems are composed of collected interactions (e.g.,
clicks, likes, and buys) and recommendation models, where
the personalized recommendation services are the predic-
tion results of recommendation models learned from the his-
torical interactions (He et al. 2020; Wang et al. 2019). To
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Figure 1: Overview of existing two types of forgetting
marked interactions (1) Retrain-based approaches and
(2) Reverse Learning.

provide accurate recommendation services, existing recom-
mendation models rely on collaborative filtering to recon-
struct the historical interactions based on the embeddings
of users and items. In the face of demands for privacy, data
protection regulations2 require systems gleaning private data
like recommendation systems must allow users to eliminate
their private data from not only the database but also the
recommendation model, which is termed recommendation
unlearning (Chen et al. 2022a).

Recently, recommendation unlearning approaches, which
aim to eliminate the influence of marked interactions from
recommendation models, become a popular research topic
(Chen et al. 2022a; Bourtoule et al. 2021). The naive way
to achieve this is to remove the marked interactions from
the historical interactions and retrain the recommendation
model from scratch, which is computationally expensive Re-
cently, some studies propose to split the historical interac-
tions into several shards and train a submodel on each shard
(Chen et al. 2022a; Bourtoule et al. 2021). When the dele-
tion requirement comes, the corresponding submodel will
be retrained from scratch. Finally, the predictions of all
submodels will be aggregated to provide the recommenda-
tion services. We refer to this kind of unlearning approach
as retrain-based unlearning. Despite that retrain-based ap-
proaches guarantee the enforcement of deletion and un-
learning efficiency, the recommendation performance dete-

2CCPA in California, GDPR in Europe, PIPEDA in Canada,
LGPD in Brazil, and NDBS in Australia.
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riorates considerably 1. This is because splitting the interac-
tion data into shards will inevitably destroy the collaborative
information contained in the interactions, which reveals the
similarity between users (items).

In this light, we resort to a recently emerging line
of unlearning techniques named reverse learning (Graves,
Nagisetty, and Ganesh 2021; Wu et al. 2023). Reverse learn-
ing approaches aim to update the parameters of the current
model to force the model ’forget’ the marked data, as if
the marked data did not participate in the training process
(Graves, Nagisetty, and Ganesh 2021). To our best knowl-
edge, no effort has been made to tailor the reverse learning
for recommendation models, due to the following two main
challenges.

• C1: How to determine the reverse objective for forget-
ting interaction data? Related literature mainly focuses
on traditional machine learning models like image clas-
sification models. Given a marked image, the memoriza-
tion of the model on the marked image can be quantified
by the classification loss (Graves, Nagisetty, and Ganesh
2021). Therefore, the reverse objective is to maximize the
up-weighted loss. Differently, the marked targets in the
settings of recommender systems are users’ interactions,
about which the information memorized in the recommen-
dation model relies on both the predicted scores and ranks
of the marked interactions.

• C2: How to balance the removal completeness and recom-
mendation performance for reversing? The recommenda-
tion model encodes collaborative information latent in the
historical interactions to model similarity between users
(items) into user and item representations, i.e., collabo-
rative similarity. Accordingly, forgetting marked interac-
tions should not only update the representations of related
users and items but also other implicitly related users and
items. In addition, such collaboratively updating may in-
fluence other collaborative information entangled in the
representations. Therefore, how to update the user and
item representations according to the reverse objective
should be carefully designed.

In this paper, we propose a reverse learning framework
for recommendation unlearning, named recommendation re-
verse learning (RRL). To tackle the first challenge, we devise
a reverse objective named Reversed Personalized Ranking
(RPR) objective, which considers both predicted scores and
ranks of the marked interactions. That is, the predicted score
of the marked interactions should be similar or even smaller
than the items not interacting. As for the second challenge,
we introduce the Fisher Information Matrix (FIM) to mea-
sure the collaborative similarities among user and item rep-
resentations. After this, we devise a Collaborative Similarity
Regularizer (dubbed CS regularizer) and add it to the re-
verse objective to guide the updates of user and item repre-
sentations. Finally, we present a theoretical interpretation of
the proposed RRL framework, indicating that the impact of
RRL on the recommendation model is equivalent to retrain-

1In our empirical evaluation the recommendation performance
will deteriorate 10% ∼ 30%

ing the model from scratch. We summarize the contributions
of this paper as follows.
• To our best knowledge, we for the first time tailor re-

verse learning for forgetting interactions in recommen-
dation tasks.

• We devise the reverse objective with fisher information
regularizer to enforce the guarantee of removal com-
pleteness and recommendation performance. Besides, we
present a theoretical analysis of the proposed framework
to facilitate the verification of forgetting.

• We conduct empirical evaluations on three benchmark
datasets and implement RRL in two representative rec-
ommendation models. The empirical results demonstrate
that after forgetting marked interactions the overall per-
formance is still comparable to retrain counterpart while
the running time is much shorter. Besides, we design ex-
periments based on shilling attacks to verify the proposed
RRL can completely forget the marked interactions.

Related Work
Privacy Concern about Recommendation Systems
Recommendation systems face serious data privacy issues
since RS engines aim to personalize content according to
users’ preferences, and handle sensitive information from
users to provide personalized recommendations (He et al.
2020; Wang et al. 2019; Chen et al. 2020; Wu et al. 2021).
These systems glean large amounts of data for ensuring ac-
curate and engaging recommendations, which are automat-
ically gathered or explicitly provided by users (Portugal,
Alencar, and Cowan 2018). Nowadays, users’ privacy can
be exposed in many ways, e.g., the semi-trust recommen-
dation systems expose users’ data to third parties for mon-
etary benefits (Zhang et al. 2021), and malicious attackers
steal the users’ private information by leveraging the rec-
ommendation systems’ ability of inferring preferences of
users, i.e., membership inference attack (Zhang et al. 2021).
Accordingly, lots of efforts have been made to study and
develop powerful privacy preservation mechanisms for rec-
ommendation systems, which can be roughly grouped into
three categories (1) Architecture-based solutions, e.g., feder-
ated recommendation learning (Luo, Xiao, and Song 2022;
Chen et al. 2023; Cai et al. 2022; Meihan et al. 2022). (2)
Algorithm-based solutions, e.g., anonymization techniques
(Chang et al. 2010), obfuscation techniques (Zhang et al.
2023), and differential privacy (Shen and Jin 2014; Chen
et al. 2022b). (3) Ethical guidelines and regulations for pri-
vacy, e.g., right to be forgotten.

Machine Unlearning
Machine unlearning aims to help machine learning mod-
els remove the influence of a specific subset of training
examples, which is an emergent subfield of pursuing eth-
ical machine learning algorithms (Graves, Nagisetty, and
Ganesh 2021; Bourtoule et al. 2021; Liu et al. 2020; Wu,
Hashemi, and Srinivasa 2022; Gupta et al. 2021; Sekhari
et al. 2021; Lin et al. 2023; Yan et al. 2022; Brophy and
Lowd 2021). Machine unlearning approaches are first stud-
ied on traditional machine learning tasks like regression
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(Tarun et al. 2023) and classification (Brophy and Lowd
2021; Lin et al. 2023), which fall into two groups (1) retrain-
based approaches (Bourtoule et al. 2021) and (2) reverse
learning approaches (Graves, Nagisetty, and Ganesh 2021;
Wu, Hashemi, and Srinivasa 2022). First, retrain-based ap-
proaches aim to speed up the naive retrain approach, i.e.,
retrain the whole machine learning model from scratch
(Chen et al. 2022a), by splitting the large model into sev-
eral lightweight models. To maintain the comparable perfor-
mance in comparison to the original model, many studies
propose ensemble-based strategies to aggregate the predic-
tion results of lightweight models (Bourtoule et al. 2021).
This kind of method is efficient in dealing with IID data
where the training examples are independent, whereas some
research observes large performance degradation in non-
IID data like graph structure data (Wu et al. 2023). It is
mainly because splitting inevitably breaks the data depen-
dency which is significant for non-IID data learning (Wu
et al. 2023). Similarly, for the recommendation model, the
utility gap is also large, and thus in this paper, we aim to
propose an unlearning mechanism without splitting the rec-
ommendation models.

The reverse learning approach’s purpose is to revert the
optimization process of the model as if the deleted data
did not exist (Graves, Nagisetty, and Ganesh 2021; Wu,
Hashemi, and Srinivasa 2022). These methods are inspired
by the stochastic gradient descent process of machine learn-
ing models, and removing the information of the marked
data is to revert the process through up-weighted loss
(Graves, Nagisetty, and Ganesh 2021) and negative gradi-
ents (Wu et al. 2023). To further enhance the reversing time,
some studies propose to utilize the influence function to di-
rectly approximate the unlearned model (Guo et al. 2019).
Nevertheless, to our best knowledge, there is no effort to tai-
lor reverse learning for recommendation models.

Verification of certifying that the model completely re-
moves the information of the marked data is essential. There
are two main criteria for the evaluation metrics (1) certify
that one cannot easily distinguish between the unlearned
models and their retrained counterparts, e.g., the perfor-
mance degradation of unlearned data (Wu, Hashemi, and
Srinivasa 2022) and membership inference attack (Shokri
et al. 2017; Conti et al. 2022) (2) inject poisoned data (e.g.,
backdoor data) for deceiving the machine learning model,
and verify the unlearning effectiveness by the attack success
rate before/after unlearning (Wu et al. 2023). We mainly use
the second criterion to verify the unlearning effectiveness,
because (1) the predicted scores of training data are not very
significant. (2) there is no efficient membership inference at-
tack against recommendation models.

Backgrounds & Settings
Recommendation system is composed of database D and
recommendation model fθ where θ denotes the model pa-
rameters. Specifically, database D contains N users, de-
noted as u ∈ U , M items, denoted as i ∈ I , and interaction
matrix Y ∈ RN×M where yui = 1 represents that user u has
interacted with item i and yui = 0 versus vice. Recommen-
dation model fθ aims to encode the collaborative signals la-

tent in the interaction data that reveals the similarity between
users (or items), named collaborative similarity, into users’
and items’ d-dimentional embeddings, i.e., eu = fθ(u) and
ei = fθ(i). After this, the personalized preferences are mod-
eled by ŷui = eTu ei, and then the item having a higher pre-
diction score and never being interacted with by the user will
be recommended.

To obtain informative embeddings that can accurately
characterize users’ preferences, the embeddings will be op-
timized through a ranking loss to ensure the interacted items
have higher prediction scores than those not interacted with.
For instance, one of the most popular ranking losses, named
Bayesian Personalized Ranking loss (BPR) (Rendle et al.
2012), is represented as

LBPR(D; θ) =
∑
u∈U

∑
i∈I+u ,j∈I−u

−lnσ(ŷui − ŷuj) + λ∥θ∥2. (1)

where σ(·) is the sigmoid function, λ is the weight hyper-
parameter and I+u , I−u are interacted items set of u and non-
interacted items set of u respectively. The optimized param-
eters of the recommendation model fθ are denoted as θ0.
In the recommendation model, most of the parameters are
embeddings of users and items, and the remaining parame-
ters are additional modules like non-linear layers (He et al.
2017). Therefore, in the following unlearning process, the
core is to update the embeddings in the recommendation
model according to the unlearning requirements.

The unlearning target of recommendation systems is to re-
move the private interactions from both the database and rec-
ommendation model according to users’ requirements. Note
that users may require the system to delete either all their in-
teraction data or a subset of their interaction data. For the
sake of discussion, we assume that a user u requires the
system to delete her/his interactions I+u from the database
which are referred to as marked interactions2. After receiv-
ing the requirement, the recommendation system needs to
take the following two workflows:

• Workflow I: Remove data from the database. Marked in-
teraction data yui ∈ I+u should be removed from the in-
teraction matrix, e.g., by setting them as 0.

• Workflow II: Retrain the recommendation model. The
recommendation model fθ should be retrained accord-
ing to the training process in Eq 1 on the interaction data
updated by Workflow I.

In workflow II, retraining the recommendation model
from scratch is computationally inefficient, because the
amount of interactions and the size of the recommendation
model are both very large. To tackle this, reverse learning
mechanism R(·) takes the current model fθ, the marked in-
teraction I+u and the database D as inputs, to output a new
model fθ. In contrast to retraining from scratch, the reverse
learning mechanismR updates the current recommendation
model for only several steps, which is similar to the inverse
of the forward optimization process. Additionally, the new
model also satisfies the following criteria (1) Unlearning
Completeness - to remove the information of marked inter-

2We discuss the removal of partial interactions and multiple
users in Experiments
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actions completely, (2) Comparable Recommendation Per-
formance - brings little utility gap in comparison to retrain-
ing from scratch.

Recommendation Reverse Learning
In this section, we present a reverse learning framework for
recommendations named recommendation reverse learning
(RRL), which is mainly composed of reverse personalized
ranking objective and collaborative similarity regularizer.

Reverse Personalized Ranking Objective
To achieve the goals of reversion, it is essential to design
a suitable reverse objective to guide the reversing process
of the recommendation model. As for traditional machine
learning tasks like image classification, the classification
model tends to perform better on their training data (Graves,
Nagisetty, and Ganesh 2021). Accordingly, given a marked
image, the reverse objective is to minimize the predicted
probability to a sufficiently small value. Similarly, in a rec-
ommendation system, the predicted score of interacted items
will be larger than the non-interacted items for an arbi-
trary user. Accordingly, the reverse objective of user u for
her/his marked interactions can be: make the predicted score
of marked interactions smaller than items not interacting,
which can be written as follows.

minLRPR =
∑
i∈I+

u

∑
j∈I−

u

lnσ(ŷui − ŷuj). (2)

The remaining problem is how to update representations.

Collaborative Similarity Analysis via Fisher
Information Matrix
Based on the objective of RPR in Eq 2, reverse learning
is to update the embeddings of the recommendation model.
We consider the following two scenarios: (1) Updating the
user embedding only: the item embeddings containing the
user preference are not updated, resulting in an incomplete
removal. (2) Updating both the user embeddings and item
embeddings: Since preference information is entangled in
item embeddings, such updates may cause catastrophic for-
getting of other user preferences, resulting in inaccurate rec-
ommendations for other users. In a word, updating the em-
beddings of the recommendation model according to the
RPR objective is faced with the trade-off between normal
utility and remove completeness. These are mainly because
the user and item embeddings are embodied the similarities
in the interaction data, i.e., collaborative similarity. To pur-
sue remove completeness and comparable normal utility, we
need a method that can measure the collaborative similari-
ties between users (items), and determine which embeddings
should be updated.

To this end, we resort to the Fisher Information Ma-
trix (FIM) over the learned embeddings θ0 to represent the
collaborative similarities. FIM is equivalent to the second
derivative of the BPR loss. Specifically, given an arbitrary
user u, the FIM over embedding eu measured by current em-
beddings can be written as Fu = E[∇

2LBPR(D;θ)
∇2eu

]. This ma-
trix can help measure the correlation between eu and other

embeddings after learning interaction data D. That is, given
another arbitrary embedding ei, the correlation between ei
and eu can be calculated by Corr(ei, eu) = eTi Fueu.

The larger value of Corr(ei, eu) indicates that the collab-
orative similarity between ei and eu is larger. Accordingly,
perturbing eu leads to the corresponding perturbations in
ei. Therefore, we propose that after perturbations eu and ei
should satisfy the correlation before perturbations, that is,
Corr(δ(ei), δ(eu)) ≈ Corr(ei, eu).

In this light, we propose to add the collaborative simi-
larities as a regularizer during the optimization of the RPR
objective. The revised RPR objective can be written as fol-
lows (named Collaborative Similarity Regularizer, dubbed
CS regularizer).

L′
RPR = LRPR + (θ − θ0)

TFθ0(θ − θ0). (3)

Note that Fθ0 represents the FIM calculated on all embed-
dings. With the help of the regularizer, when we optimize
the RPR objective through SGD, it will collaboratively up-
date other embeddings w.r.t. the embeddings in the RPR ob-
jective. As for those embeddings having small collaborative
similarities, they will not be updated. Finally, the proposed
RRL framework can balance between forgetting complete-
ness and normal utility.

Nevertheless, there still remains a concern that it is com-
putationally expensive to calculate the FIM in the settings
of the recommendation model. Therefore, we propose to
approximate the FIM by the first-order derivatives, that is,
Fθ0 ≈ E[∇θLBPR(D; θ)∇θLBPR(D; θ)T ]. Such approxi-
mation is widely studied and used in the related literatures
such as continual learning (Zenke, Poole, and Ganguli 2017)
and multi-task learning (Li, Liao, and Carin 2009).

Bayesian Interpretation of RRL
We present the theoretical interpretation of the RRL objec-
tive in Eq 3 through the Bayesian theorem. Denote the re-
maining interactions as D/∆D. The learning process can be
regarded as maximizing the posterior distribution estimated
by θ, i.e., maxP (θ | D), with a certain prior distribution of
g(θ). Such posterior distribution P (θ | D) can be decom-
posed as follows.

P (θ | ∆D,D/∆D) =
P (θ | D/∆D)P (∆D | θ,D/∆D)

P (∆D,D/∆D)
. (4)

logP (θ | D) = logP (θ | D/∆D)+ (5)

logP (∆D | θ)− logP (∆D).

We can derive the log posterior distribution logP (θ |
D/∆D) as,
logP (θ | D/∆D) = logP (θ | D)−logP (∆D | θ)+logP (∆D).

Maximizing the log posterior distribution logP (θ | D/∆D)
is equivalent to retraining a recommendation model from
scratch after removing ∆D from D. According to Eq 6, it
is also equivalent to maximizing the posterior distribution
on the whole interaction D, and minimizing the likelihood
on marked interaction ∆D.

Minimizing the likelihood of marked interaction ∆D is
equivalent to minimizing the RPR objective in Eq 2. Then
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the optimal parameters θ0 are learned by maximizing the
log-likelihood P (D | θ) which is equivalent to minimiz-
ing the BPR loss in Eq 1. We can approximate the posterior
logP (θ | D/∆D) by leveraging θ0 and assuming the prior
distribution g(θ) as a normal distribution N (θ, σ2) as

L(θ) ≈ LBPR(D; θ0) + (θ − θ0)
T ∂LBPR(D; θ)

∂θ0
(6)

+
1

2
(θ − θ0)

T ∂2LBPR(D; θ)

∂2θ0
(θ − θ0).

As at the optimal point, we have LBPR(D; θ0) ≈ 0 and
∥∂LBPR(D;θ)

∂θ0
∥2 ≈ 0. Then we can derive the approximation

of optimal posterior distribution as

L(θ) ≈ 1

2
(θ − θ0)

T ∂2LBPR(D; θ)

∂2θ0
(θ − θ0). (7)

Note that the term ∂2LBPR(D;θ)
∂2θ0

is the Fisher Information
Matrix. Based on this, we conclude that maximizing the pos-
terior distribution logP (θ | D/∆D) is equivalent to the RRL
objective in Eq 3 which is to minimize the RPR objective
with a CS regularizer.

Comprehensive Framework
In summary, after the arrival of unlearning requirements
∆D, the proposed RRL framework will update current pa-
rameters for several steps according to

θ ← θ − α∇θ(LRPR + (θ − θ0)
TFθ0(θ − θ0)). (8)

where α is the learning rate. Note that the FIM Fθ0 is cal-
culated offline after the model learning on the entire dataset
D, which does not influence the complexity of optimizing
Eq 8. In addition, we consider the generalization of RRL to
the following scenarios,

• Unlearning more users and more interactions. There may
not be one user to evoke the unlearning, and different users
may require to unlearn different numbers of interactions,
which only affects the size of marked interactions.

• Sequential unlearning {∆D1, ...,∆DK}. After unlearn-
ing a set of marked interaction ∆Dk, the unlearned model
is fθk and the remaining interactions is D/{∆D1∪...∪∆Dk}.
The FIM will be re-estimated offline according to fθk and
D/{∆D1∪...∪∆Dk}, and will be used in the next unlearn-
ing ∆Dk+1. In our experiments, we verify that the RRL
framework can balance the remove completeness and nor-
mal utility in the setting of sequential unlearning.

• Recommendation model with different architectures. The
proposed RRL framework can be directly applied to rec-
ommendation models with parameters that are not exactly
embeddings, e.g., deep learning-based recommendation
models with non-linear layers (He et al. 2017), as the gra-
dients in Eq 8 can be directly computed. The FIM of such
parameters indicates the contribution of marked interac-
tions on learning these parameters.

Experiments
In this section, we conduct empirical evaluations on the pro-
posed RRL to study the following research questions. RQ1:

Dataset #Users #Items #Dense
Gowalla 29,858 40,981 0.084%
Yelp2018 31,668 38,048 0.130%
ML-1M 6,022 3,043 4.888%

Table 1: Statistics of datasets

How does RRL perform in terms of recommendation and
running time as compared with the existing unlearning ap-
proaches? RQ2: Can RRL achieve removal completeness
of the marked interactions on the learned recommendation
model? RQ3: How does the performance of RRL under dif-
ferent unlearning settings?

Experimental Setup
Datasets. We use three real-world recommendation datasets,
i.e., Gowalla (Liang et al. 2016), Yelp2018 (Wang et al.
2019), and Movilens-1m (dubbed as ML-1M)3 which are
widely used for benchmarking. Table 1 shows statistics
of three datasets. Each dataset is split into training/valida-
tion/testing sets by the ratio of 70/10/20%. Validation sets
are used to tune hyper-parameters.
Baselines & Recommendation models. We compare RRL
with three retraining-based unlearning strategies which are
Retrain, SISA (Bourtoule et al. 2021) and RecEraser (Chen
et al. 2022a). The approach Retrain means to delete the
marked interactions from the database and train the recom-
mendation model from scratch. SISA is a traditional ma-
chine unlearning approach that splits training data into sev-
eral shards and trains a submodel for each shard. RecEraser
enhances SISA by introducing an attention mechanism to
aggregate the predictions of each shard, which can help de-
velop the recommendation performance of SISA. In addi-
tion, we implement these unlearning strategies and RRL on
two representative recommendation models, which are MF-
BPR (Rendle et al. 2012) and LightGCN (He et al. 2020).
Specifically, MF-BPR optimizes user and item representa-
tions according to BPR, and LightGCN leverages neighbor-
hood aggregation to augment the representations.
Evaluation metrics. To evaluate the recommendation per-
formance after unlearning, we adopt two widely-used eval-
uation metrics (He et al. 2020): Recall@K and NDCG@K,
which are measured on the remaining interactions after un-
learning. By default, we set K = 20. To evaluate the re-
moval completeness, we leverage shilling attacks, e.g., Pop-
ularity Attack (Fang et al. 2018; Mobasher et al. 2007) and
Bi-level Attack (Tang, Wen, and Wang 2020). First, shilling
attacks inject malicious users with poisoned interactions into
the database aiming to increase the recommendation of a tar-
get item, denoted as #Rec. Second, the unlearning strate-
gies are used to unlearn these malicious users and #Rec
after unlearning is used to measure the unlearning degree.
If #Rec is small enough after unlearning, the removal is
considered to be complete. To evaluate the unlearning effi-
ciency, we utilize the training (updating) time dubbed RT .

3https://grouplens.org/datasets/movielens/1m/
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MF-BPR LightGCN
Recall NDCG RT(s) Recall NDCG RT(s)

Gowalla

Original 0.144 0.114 12575.0 0.182 0.154 23645.0
Retrain 0.143 0.115 12841.0 0.180 0.153 24120.0
SISA 0.051 0.046 3782.5 0.080 0.071 26796.9
RecEraser 0.111 0.094 11165.8 0.148 0.128 17038.6
Ours 0.144 0.114 3.5 0.181 0.154 255.0

Yelp2018

Original 0.047 0.038 19232.0 0.063 0.052 41687.0
Retrain 0.047 0.038 19440.0 0.063 0.052 42900.0
SISA 0.037 0.030 13286.7 0.034 0.028 36507.1
RecEraser 0.043 0.035 20734.3 0.051 0.042 17462.3
Ours 0.046 0.037 27.5 0.063 0.052 316.4

ML-1M

Original 0.208 0.194 12171.0 0.246 0.234 20868.0
Retrain 0.205 0.191 12240.0 0.243 0.230 18900.0
SISA 0.215 0.211 30016.1 0.192 0.194 5606.8
RecEraser 0.241 0.227 3745.9 0.226 0.220 8316.3
Ours 0.207 0.193 116.2 0.250 0.239 682.5

Table 2: Comparison of recommendation performance and running time for different unlearning strategies.

Figure 2: Verification of removal completeness by unlearning malicious users injected by shilling attacks.

Implementation details. We randomly sample 100 users
from the database, and 50% of these users require to delete
all their interactions. For the remaining 50% of these 100
users, we randomly sample r% of personalized interactions
to unlearn. The remaining users are used to measure the rec-
ommendation performance after unlearning. For each base-
line model, we mostly follow the suggested experimental
settings and set the hyper-parameters as suggested in the
original papers, including but not limited to the learning rate,
the regularization coefficient, etc. The depth LightGCN is
set to 3, and the size of the embeddings of recommenda-
tion models is set as 128. Finally, for shilling attacks used
to verify removal completeness, we randomly choose an un-
popular item as the target item to measure #Rec, and the
number of malicious users is set as 10% of all users.

RQ1: Evaluation of Utility and Efficiency
We first present the empirical evaluation of recommenda-
tion performance and unlearning efficiency in Table 2. For
the overall performance of the unlearned model, the results
of the proposed RRL are the most equivalent to the re-
sults of Retrain. After unlearning, the recommendation per-
formance of Retrain and RRL will slightly decrease, e.g.,
0.001. We infer the main reason is that unlearning 100

users’ interactions may increase the sparsity of recommen-
dation data, resulting slight deterioration of recommenda-
tion performance. In addition, we have the following ob-
servations. (1) Both SISA and RecEraser on Gowalla and
Yelp2018 cause the deterioration of recommendation perfor-
mance, e.g., for Gowalla, the decrease of Recall ranges from
0.001 to 0.09, and the decrease of NDCG is in the range
of [0.01, 0.07] while for Yelp2018 the decrease of Recall
ranges from 0.001 to 0.03, and the decrease of NDCG is in
the range of [0.024, 0.03]. This is mainly because splitting
the interactions into different shards improves the sparsity
of these two datasets which are very sparse in the first. (2)
SISA and RecEraser perform much better than Retrain and
RRL on dataset ML-1M. This is because the dataset ML-
1M is not very sparse, e.g., its density is about 37 and 58
times larger than Yelp2018 and Gowalla respectively. We
have checked the performance of submodels of SISA and
RecEraser which is much worse than Retrain and RRL. But
the aggregation of results of submodels can enhance the rec-
ommendation performance on such datasets.

As for the unlearning efficiency, all the unlearning strate-
gies are much more efficient than Retrain. Especially, RRL
is the most effective, e.g., RRL costs only 3.5s on unlearn-
ing interactions of Gowalla. This is because when unlearn-
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Figure 3: Recommendation performance under the settings of sequential unlearning. The x-axis denotes the index of
marked interactions. In (a)-(b), | Dk |= 10, while in (c)-(d), | Dk |= 20.

Figure 4: Recommendation performance of unlearning
different users.

ing interactions are distributed on all shards SISA and Re-
cEraser have to retrain all models and even additional mod-
ules which costs additional training time.

RQ2: Evaluation of Removal Completeness
In order to prove the removal completeness, we propose to
utilize shilling attacks to inject malicious users and unlearn
these malicious users. The attack performance #Rec be-
fore/after unlearning is shown in Fig 2. As we can see, after
unlearning, the #Rec of the target item will be decreased,
e.g., it will be decreased to 0 on MF-BPR model and will be
decreased by almost 80 percent on LightGCN. In addition,
the proposed RRL is agnostic to the types of shilling attacks.
When unlearning malicious users generated by Popularity
Attack and Bilevel Attack, the recommendation of the target
item can be decreased by at least 80 percent. This indicates
that the proposed RRL can enforce the guarantee of removal
completeness.

RQ3: Studies of RRL
Sequential unlearning. We also verify the utility in the set-
ting of sequential unlearning. Especially, we split the 100
marked users into 5 or 10 groups. At each time, we unlearn
each group of users’ interactions. In Fig 3, even though the
model is sequentially updated, the recommendation perfor-
mance will not be impacted. This is because RRL will up-
date the FIM to prepare for the next unlearning. With dif-
ferent sizes of groups, the decreases after unlearning are
not very significant. Especially, sequentially unlearning the
larger groups, e.g., the size of each group is 20, may influ-
ence more about the overall performance because the nega-
tive impacts may accumulate.

MF-BPR LightGCN
Recall NDCG #Rec Recall NDCG #Rec

I
Org 0.144 0.114 44 0.174 0.145 2115
w/ 0.144 0.112 3 0.170 0.139 126
w/o 0.134 0.102 1 0.174 0.144 716

II
Org 0.145 0.116 1564 0.182 0.154 2177
w/ 0.144 0.116 1 0.172 0.145 299
w/o 0.135 0.104 98 0.170 0.143 786

Table 3: Removal completeness and overall perfor-
mance w/ or w/o CS. I is Popularity Attack and II is
Bilevel Attack.

Unlearning different users. Different users will have differ-
ent contributions to the learning of recommendation models.
For instance, unlearning a user with a large number of histor-
ical interactions will decrease the recommendation perfor-
mance because his/her interactions have contributed more to
the recommendation model. The results are shown in Fig 4.
The sets of marked users are ranked by the average degree
of these users, e.g., from the smallest degree to the largest
degree. As we can see, when unlearning the most important
users, the overall performance will degrade, but the degra-
dation is not larger than 0.05.
Ablation studies I: w/ or w/o CS regularizer. As shown in
Table 3, without a CS regularizer, RRL cannot unlearn the
influence of malicious users completely, and the overall per-
formance will also be negatively impacted.

Conclusion
In this work, we present the first reverse learning for recom-
mendation systems to enforce the recommendation model
to forget private data. As a solution, we propose a frame-
work called RRL that is composed of a reversed person-
alized ranking objective and a fisher information regular-
izer. Extensive experiments validate that RRL achieves the
guarantee of removal completeness, impressive forgetting
efficiency and comparable normal utility. Future work may
consider integrating RRL into more complicated recom-
mendation settings such as sequential recommendation, and
multi-model recommendation systems. Moreover, it would
be meaningful to deploy and validate the proposed frame-
work on real-world platforms to protect the privacy of rec-
ommendation systems.
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