
ROGPL: Robust Open-Set Graph Learning via Region-Based Prototype Learning

Qin Zhang1, Xiaowei Li1, Jiexin Lu1, Liping Qiu1, Shirui Pan2, Xiaojun Chen1*, Junyang Chen1

1College of Computer Science and Software Engineering, Shenzhen University, China 2School of Information and
Communication Technology, Griffith University, Australia.

qinzhang@szu.edu.cn, {lixiaowei2022, lujiexin2022, qiuliping2021}@email.szu.edu.cn, s.pan@griffith.edu.au,
{xjchen, junyangchen}@szu.edu.cn

Abstract

Open-set graph learning is a practical task that aims to
classify the known class nodes and to identify unknown
class samples as unknowns. Conventional node classification
methods usually perform unsatisfactorily in open-set scenar-
ios due to the complex data they encounter, such as out-
of-distribution (OOD) data and in-distribution (IND) noise.
OOD data are samples that do not belong to any known
classes. They are outliers if they occur in training (OOD
noise), and open-set samples if they occur in testing. IND
noise are training samples which are assigned incorrect la-
bels. The existence of IND noise and OOD noise is preva-
lent, which usually cause the ambiguity problem, including
the intra-class variety problem and the inter-class confusion
problem. Thus, to explore robust open-set learning methods
is necessary and difficult, and it becomes even more diffi-
cult for non-IID graph data. To this end, we propose a uni-
fied framework named ROGPL to achieve robust open-set
learning on complex noisy graph data, by introducing pro-
totype learning. In specific, ROGPL consists of two modules,
i.e., denoising via label propagation and open-set prototype
learning via regions. The first module corrects noisy labels
through similarity-based label propagation and removes low-
confidence samples, to solve the intra-class variety problem
caused by noise. The second module learns open-set proto-
types for each known class via non-overlapped regions and
remains both interior and border prototypes to remedy the
inter-class confusion problem. The two modules are itera-
tively updated under the constraints of classification loss and
prototype diversity loss. To the best of our knowledge, the
proposed ROGPL is the first robust open-set node classifica-
tion method for graph data with complex noise. Experimental
evaluations of ROGPL on several benchmark graph datasets
demonstrate that it has good performance.

Introduction
Graph neural networks (GNNs) (Gilmer et al. 2017; Guo
et al. 2022; Hamilton, Ying, and Leskovec 2017; Tan et al.
2023) have become a prominent technique to analyze graph
structured data in many real-world systems, such as traffic
state prediction (Zheng et al. 2020), disease classification
(Chereda et al. 2019), and user profile completion in social
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networks (Wong et al. 2021). The recent success of super-
vised GNNs is built upon two crucial cornerstones: that the
training and test data are drawn from an identical distribu-
tion, and that large-scale reliable high-quality labeled data
are available for training. However, in real-world applica-
tions, large-scale labeled data drawn from the same distribu-
tion as test data are usually unavailable.

Real-world applications normally are in open-set scenar-
ios (Zhang et al. 2023a; Nimah et al. 2021; Zhang et al.
2022), the existence of new-emerged out-of-distribution
(OOD) samples, i.e.samples that do not belong to any known
classes, is prevalent. They are outliers if they occur in train-
ing (OOD noise), and open-set samples if they occur in
testing. Moreover, the manually generating clean labeled
data set would involve domain experts evaluating the qual-
ity of collected data and thus is very expensive and time-
consuming (Zhang, Luo, and Gu 2023). Alternatively, we
can collect data and labels based on web search (Yu et al.
2018), crowdsourcing (Fang, Yin, and Tao 2014; Li et al.
2017a) and user tags (Li et al. 2017b; Xiao et al. 2015).
These data and labels are cheap but inevitably noisy (Zhang,
Luo, and Gu 2023; Li et al. 2022).

The presence of OOD noise and IND noise ( in-
distribution samples with incorrect labels) can be detrimen-
tal to GNNs (Zhang et al. 2021), as they would cause the am-
biguity problem, including the intra-class variety problem in
which samples with same class labels may contain objects of
different semantic categories, and the inter-class confusion
problem in which samples of different intent classes may
contain objects of similar semantic categories(Wang et al.
2023). The open-set unknown class samples occur during
testing further complicates this problem.

Thus, it is necessary to build robust open-set learning
models (Wu et al. 2021) that can learn from noisy data,
achieving classification of known class samples and iden-
tification of unknown open-set class samples during testing.
Previous works mainly concentrated on robust learning or
open-set learning separately, the problem of robust open-set
learning with complex noise has not been sufficiently ex-
plored so far (Huang, Wang, and Fang 2022; Zhang et al.
2023b), and it becomes even more difficult for non-IID
graph data.

In this paper, as shown in Fig. 1, for solving the prob-
lem of open-set graph learning with complex IND and OOD
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Figure 1: Overview of the proposed ROGPL. In the la-
tent representation space, two modules are designed: de-
noising via label propagation and open-set prototype learn-
ing via regions. In specific, we first correct noisy labels
through similarity-based label propagation and removes
low-confidence samples, to solve the intra-class variety
problem caused by noise. Then we learn open-set proto-
types for each known class via non-overlapped regions and
remains both interior and border prototypes to remedy the
inter-class confusion problem. These two modules are itera-
tively updated under the constraints of classification loss and
prototype diversity loss.

noise, we propose a new framework ROGPL to do ro-
bust open-set node classification. It consists of two main
steps: denoising via label propagation and open-set proto-
type learning via regions. Specifically, in the latent repre-
sentation space, ROGPL first corrects noisy labels through
similarity-based pseudo-label propagation and remove low-
confidence samples, to solve the intra-class variety problem
caused by noise. Then the second module learns open-set
prototypes for each known class via non-overlapped regions
and remains both interior and border prototypes to remedy
the inter-class confusion problem. The two modules are it-
eratively updated under the constraints of both classification
loss and prototype diversity loss. Experimental evaluations
of ROGPL on several benchmark graph datasets demon-
strates that it has good performance.

Preliminaries
This study focuses on the node classification problem for
a graph. A graph is denoted as G = (V,E,X), where
V = {vi|i = 1, . . . , N} is a set of N nodes in the graph,
and E = {ei,j |i, j = 1, . . . , N. i ̸= j} is a set of edges

connecting pairs of nodes vi and vj . X ∈ RN×s denotes the
feature matrix of nodes, where s is the dimension of node
features. The feature vector of each node vi is indicated by
xi ∈ X . The topological structure of G is represented by
an adjacency matrix A ∈ RN×N , where Ai,j = 1 if the
nodes vi and vj are connected, i.e., ∃ei,j ∈ E, and other-
wise Ai,j = 0. The label matrix of G is Y ∈ RN×C , where
C is the already-known node classes. If a label c is assigned
to a node vi ∈ V , then yi,c = 1, and otherwise, yi,c = 0.

For a typical closed-set node classification problem, a
GNN encoder fθg takes the node features X and adjacency
matrix A as input, aggregates the neighborhood information
and outputs representations. Then, a classifier fθc is used to
classify the nodes into C already-known classes. The GNN
encoder and the classifier are optimized to minimize the ex-
pected risk (Yu et al. 2017) in Eq. (1), assuming that the
testing data Dte and the training data Dtr have the same fea-
ture space and label space, i.e.,

f∗ = argmin
f∈H

E(x,y)∼Dte
I(y ̸= f(θg, θc;x,A)) (1)

where H is the hypothesis space, I(·) is the indicator func-
tion which outputs 1 if the expression holds and 0 other-
wise. This function can be generally optimized using cross-
entropy to distinguish between known classes.

In the open-set node classification problem, given a
graph G = (V,A,X), Dtr = (X,Y ) denotes the training
nodes. The test nodes are denoted by Dte = (Xte, Yte),
where Xte = S ∪ U , Yte = {1, . . . , C, C + 1, . . .}. The
set S is the nodes that belong to seen classes that already
appeared in Dtr and U is the set of nodes that do not be-
long to any seen class (i.e., unknown class nodes). The goal
of open-set node classification is to learn a (C + 1)-class
classifier fθc

such that f(θg, θc;Xte, A) : {Xte, A} → Y ,
Y = {1, . . . , C, unknown}, by minimizing the expected
risk (Yu et al. 2017):

f
∗
= argmin

f∈H
E(x,y)∼Dte

I(y ̸= f(θg, θc;x,A)) (2)

where A is the adjacency matrix for Xte. The predicted
class unknown ∈ Y consists of a group of novel cate-
gories, which may contain multiple classes. An intuitive way
of transforming a close-set classifier into an open-set classi-
fier is thresholding (Hendrycks and Gimpel 2017).

In the problem of Open-set node classification with IND
noise and OOD noise, given a graph G = (V,A,X),
Dtr = (X,Y = S) = {xi, yi}Ni=1 is the training set and
Dte = (Xte, Yte = S ∪ U) is the test set. In Dtr, we as-
sume that the instance-label pair (xi, yi) , 1 ≤ i ≤ N , con-
sists of three types. Let y∗i denote the ground-truth label of
xi. A clean sample is a node whose assigned label matches
the ground-truth label, i.e., yi = y∗i . An IND noise sample
is a node whose assigned label does not match the ground-
truth label, but the node matches one of the classes in S,
i.e.yi ̸= y∗i , y

∗
i ∈ S. An OOD noise sample is a node whose

assigned label does not match the ground-truth label and any
known class label neither, i.e.yi ̸= y∗i , y

∗
i /∈ S. Moreover,

under the strict setting of open-set classification, it is as-
sumed that the ground-truth label of OOD noise y∗i /∈ U ,
i.e., there is no overlap between the classes of OOD noise
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and the unknown classes in the test set. Due to the mem-
orization effect (Arpit et al. 2017), noisy data can severely
impair the performance of network training. Therefore, it is
desirable to develop noise-robust methods for open-set node
classification, which can handle complex and diverse noises.
The ultimate goal is to learn a noise-robust open-set node
classifier that can minimize the expected risk in Eq. (2).

Methodology
For solving the problem of open-set graph learning with
complex IND and OOD noise, we propose a new framework
ROGPL, which consists of two main steps: denoising via la-
bel propagation and open-set prototype learning via regions.
As shown in Fig. 1, in the latent representation space, we
first corrects noisy labels through soft pseudo-label propaga-
tion and removes low-confidence samples, to solve the intra-
class variety problem caused by noise. Then we learn open-
set prototypes for each known class via non-overlapped re-
gions and remains both interior and border prototypes to
remedy the inter-class confusion problem. The two modules
are iteratively updated under the constraints of both classifi-
cation loss and prototype diversity loss.

Denoising via Label Propagation
Inspired by label propagation algorithms for semi-
supervised learning(Grandvalet and Bengio 2004; Iscen
et al. 2018; Chandra and Kokkinos 2016), which seek to
transfer labels from supervised examples to neighboring un-
supervised examples according to their similarity in feature
space, we leverage neighbour consistency to modify the su-
pervision of each sample and to correct noise. First, we build
a k-nearest neighbor graph GN upon Z, where Z ∈ RN×K

is the latent representation given by an encoder network fθ
by taking the nodes feature X , i.e.zi = fθ(xi). K indi-
cates the dimension of the representation vectors and is de-
termined by the network fθ.

In graph GN , the affinity matrix W ∈ RN×N is encoded
by the similarities between vertices, which is obtained by:

Wij =

{
[z⊤i zj ]

β
+, if i ̸= j ∧ xj ∈ Nk(xi),

0, otherwise.
(3)

where Nk(xi) is a similarity-based neighborhood set, i.e.the
set of k nearest neighbors of xi in X , and β is a parame-
ter for diffusion on region manifolds(Chandra and Kokkinos
2016; Iscen et al. 2017)which we simply set as β in our ex-
periments.

Suppose we have clean nodes along with some noisy
nodes, label propagation spreads the label information of
each node to the other nodes based on the connectivity in the
graph GN . To weaken the influence of noisy labels, we set
ỹi = yi to the one-hot label vector of xi if xi is selected as
a clean sample by Eq.(5), otherwise we use category predic-
tion which is a C-dimensional vector representing the be-
longingness of xi to the C known classes, i.e.ỹi = p̂i, as
shown in Eq. (8). The propagation process is repeated un-
til a global equilibrium state is achieved, and each example
is assigned to the class from which it has received the most
information.

Formally, for graph GN = (W,X), D is the degree ma-
trix ( a diagonal matrix with entries Dii =

∑
j Wij), label

propagation (Iscen et al. 2019) can be computed by mini-
mizing

J(Ȳ ) =
N∑
i=1

∥ȳi− ỹi∥+α
N∑

i,j=1

Wij∥
1√
Dii

ȳi−
1√
Djj

ȳj∥2

(4)
where α is a regularization parameter to balance the fitting
constraint (the first term) and the smoothing term (the sec-
ond term). The fitting constraint encourages the classifica-
tion of each node to their assigned label, and the smooth-
ing term encourages the outputs of nearby points in the
graph to be similar (Iscen et al. 2019). The obtained Ȳ =
[ȳ1, . . . , ȳN ] ∈ RN×C is the refined soft pseudo-labels for
X after label propagation, further we transform Ȳ into hard
pseudo-labels by taking the largest prediction score to guide
the training.

Finally, we use a sufficiently high threshold η ∈ [0, 1] to
select a reliable subset of nodes as the clean dataset:

gi =


1, if Ȳ (t)

iyi
>

1

C
,

I[max
c

Ȳ
(t)
ic > η], otherwise.

(5)

where I(·) is the indicator function which outputs 1 if the ex-
pression holds and 0 otherwise. t denotes the number of iter-
ation rounds. gi is a binary indicator representing the conser-
vation of node vi ∈ V when gi = 1 and the removal of node
vi when gi = 0. Thus, the clean node set Vcln = {vi∥∀vi ∈
V ∧ gi = 1} = V \{vi∥∀vi ∈ V ∧ gv = 0}.

Open-Set Prototype Learning via Regions
Overview. With the filtered training data (clean node
set Vcln), different from the conventional classification
paradigm which directly feeds node features into a GNN to
predict the class label, we aim at learning multiple represen-
tative prototypes for each category, and predicting class label
by calculate the similarity between the node and prototypes.
Upon the latent representation Z, in the latent representation
space, we learn the prototypes. The prototype pool can be
represented as P = {P1, P2, ..., PC} where C is the number
of known classes. Pc = {pc,1, pc,2, · · · , pc,Kc

} ∈ RKc×D

denotes the prototypes of category c and Kc indicates the
number of prototypes of category c. Given a node xi, after
obtaining the high-level feature representation zi, we com-
pare it with all prototypes via calculating cosine similarity:

s
(i)
c,k =

zi · pc,k
∥zi∥∥pc,k∥

(6)

After obtain similarity with all prototypes,we regard the
class-wise largest similarity score to obtain the scores of xi

belonging to class c, i.e.,

s(i)c = max
k

(s
(i)
c,1, . . . , s

(i)
c,k, . . . , s

(i)
c,Kc

) (7)

And the vector of score of belonging between xi and each
class is
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p̂i = [s
(i)
1 , s

(i)
2 , . . . , s

(i)
C ] (8)

The final classification prediction of xi is

ŷi = argmax
c

p̂i,c = argmax
c

s(i)c (9)

Open-Set Prototype Learning. The open-set node classifi-
cation is different with the closed set classification problem,
in which the class boundaries of known classes require to
be tight and clear. Traditional prototype (Yang et al. 2018)
learning normally use typical interior prototypes (such as the
mean vectors of node representation in the same class) to
represent the class. However, we argue that border proto-
types are also crucial for classification, especially for open-
set scenarios, since they provide more detailed information
for preserving discrimination between classes and the infor-
mation of class boundaries. We believe the combination of
interior prototypes and border prototypes can well relieve
the intra-class variety problem caused by the noise and inter-
class confusion problem, and obtain tight and clear bound-
aries for known class, reserve more space for unknown
classes.

Since the original training data containing IND and OOD
noises, to avoid the ambiguity problem caused by noise
data, we optimize the prototype learning based on the clean
nodes Vcln and the refined label annotations Ȳ . We first di-
vide the latent space into regions by clustering the clean
nodes where any clustering algorithm could be used, and
we use K-means for its simplicity. With the obtained clus-
ters, under the guidance of label matrix Ȳ , we use homo-
geneous clusters to update the interior prototypes and use
non-homogeneous clusters to obtain border prototypes.

To obtain the most representative interior prototype for
each class, we make interior prototypes as trainable weights
of a feed forward network fϕ and initialized with He initial-
ization(Liu et al. 2022). For brevity, we denote the interior
prototypes by matrix

PI = [P I
1 , . . . , P

I
C ] ∈ RC×D (10)

P I
c is the interior prototype for class c. We update the inte-

rior prototype network fϕ and representation learning net-
work fθ iteratively. Since a rapidly changing of prototypes
may disorganize the representativeness of the learned pro-
totypes and make the training process unstable, we utilize a
small learning rate to dynamically and smoothly update the
prototypes through back-propagation:

P I
c,(t) = P I

c,(t−1) − φ
∂L
∂P I

c

(11)

where P I
c,(t) and P I

c,(t−1) are the interior prototype of
class c at epoch t and epoch t− 1 respectively. L is the total
loss shown as Eq. (15). φ is the learning rate which is set
as small numbers. Note that here we only use the samples
in the homogeneous clusters to update the corresponding in-
terior prototypes, i.e.we select the regions containing nodes
belonging to a single class, and use these nodes to update the
interior representative prototype for the corresponding class.

Towards border prototypes, the idea is to analyze those
regions which contain nodes belonging to different classes.

We obtain border prototypes by computing the mean vec-
tor of nodes with the same class label in non-homogeneous
clusters. For example, suppose a cluster Rk insists of sam-
ples of two classes, i.e.Mk = V̄ k

1 ∪ V̄ k
2 ∪ . . .∪ V̄ k

C , where V̄ k
c

consists of a couple of nodes from class c, and there exists
m,n ∈ {1, . . . , C} such that V̄ k

m ̸= ∅ ∧ V̄ k
n ̸= ∅, then we

can obtain border prototypes of class m and n by:

P k
m =

1

∥V̄ k
m∥

∑
vi∈V̄ k

m

zi, P k
n =

1

∥V̄ k
n ∥

∑
vi∈V̄ k

n

zi (12)

It is the same for clusters that contain nodes from several
different classes.

We utilize cross-entropy loss to train the encoder network
fθ and prototype network fϕ on clean nodes Vcln, under the
supervision of refined class label Ȳ :

Lcls = − 1

N

N∑
i=1

ȳi log
exp(s

(i)
ȳi
/T )∑C

c=1 exp (s
(i)
c /T )

(13)

where T is a temperature hyperparameter that we introduced
to make the results more differentiated (Agarwala et al.
2020).

With the adoption of both interior and border prototypes,
the diversity of prototypes within a class can be well mined.
To further relieve the inter-class confusion problem, we hope
the prototypes of different categories also away from each
other. Thus, we enhance the diversity of the prototypes of
known classes by adopting the orthogonal constraint to keep
the orthogonality of interior prototypes by using the diver-
sity loss:

Ldiv = ∥PIP
⊤
I − I∥2F (14)

where ∥ · ∥F is the Frobenius-norm and I is the identity ma-
trix of any desired dimension. The overall loss function of
ROGPL is:

L = Lcls + λLdiv (15)
where λ is the loss hyper-parameter.

So far, we obtain interior prototype and border prototypes
for each known class, and we predict the class label of clean
nodes through Eq. (7) and (9). To make a hard prediction,
we adopt a probability threshold τ , such that a testing point
xi is deemed as an unknown class sample if maxc p̂i,c < τ .

Experiments
We design our experiments to evaluate ROGPL, focusing
on the following aspects: open-set classification comparison,
robustness analysis, and ablation study. Codes will be avail-
able online.

Experimental Setup
Dataset and Metrics. To evaluate the performance of the
proposed framework for robust open-set node classification,
We conducted experiments on three main benchmark graph
datasets (Wu, Pan, and Zhu 2020; Zhu et al. 2022), namely
Cora1, Citeseer2 (Yang, Cohen, and Salakhudinov 2016),

1https://graphsandnetworks.com/the-cora-dataset/
2https://networkrepository.com/citeseer.php
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and Coauthor-CS3 (Zhou et al. 2023), which are widely used
citation network datasets. The statistics of the datasets are
presented in the Appendix. In terms of the metrics, following
the study of Wu et al. (Wu et al. 2021), we adopt macro-F1
and AUROC to measure the performance.

Implementation Details. In the experiments, we adopt
GCN (Kipf and Welling 2016) as backbone neural network
for the encoder fθ, configured with two hidden layers with
a dimension of 128. The prototype network fϕ configured
with a linear layer with a dimension of C + 1. ROGPL is
implemented with PyTorch and the networks are optimized
using adaptive moment estimation with a learning rate of
10−3. The balance parameters λ is set to 10−2. The thresh-
old η were selected by a grid search in the range from 0 to
1 with a step of 10−1. The number of nearest neighbors k
were selected by a grid search in the range from 30 to 35
with a step of 1.

For each experiment, the baselines and the proposed
method were applied on the same training, validation, and
testing datasets. All the experiments were conducted on a
workstation equipped with an Intel(R) Xeon(R) Gold 6226R
CPU and an Nvidia A100 GPU.

Test Settings. To evaluate the performance of open-
set node classification, for each dataset, the data of several
classes were held out as the unknown classes for testing and
the remaining classes were considered as the known classes.
70% of the known class nodes were sampled for training,
10% for validation, and 20% for testing.

To assess the performance of the proposed ROGPL

framework on graph data with different noises, we tested
it with mixed IND and OOD noise. In the training set, we
randomly selected 5%/25%/50% of the known class sam-
ples to be IND noise, and randomly replaced their ground-
truth labels with wrong known class labels. Then, we used
the nodes from neither the known classes of the training set
nor the unknown classes of the test set as OOD noise, and
randomly assigned known class labels to them. The sam-
ples with right known class labels (clean data), the known
class samples with incorrect labels (IND noise) and the far-
away unknown class samples with wrong known class la-
bels (OOD noise) constitute the final training set. The test
set includes the known class samples and the unknown class
samples, where the unknown classes are different from the
classes of OOD noise. The setting of inductive learning was
adopted for all the experiments, where no information about
the unknown class in the test set (such as the feature xi or
other side information of unknown classes) is utilized during
training or evaluation.

Baselines. We compare ROGPL with 10 baselines, which
are from three categories.
• 1) Closed-set classification methods: GCN soft and

GCN sig. They are GCNs (Kipf and Welling 2016) with a
softmax layer or a multiple 1-vs-rest of sigmoids layer as
output layer.

• 2) Open-set classification methods: GCN soft τ ,
GCN sig τ , NWR τ (Tang, Yang, and Li 2022),

3https://docs.dgl.ai/en/0.8.x/generated/dgl.data.Coauthor-
CSDataset.html

Openmax (Bendale and Boult 2016), OpenWGL (Wu,
Pan, and Zhu 2020) and G2Pxy (Zhang et al. 2023b).
Specifically, GCN soft τ , GCN sig τ and NWR τ are
GCN soft, GCN sig and the original NWR (Tang, Yang,
and Li 2022) methods by added a threshold chosen
from {0.1, 0.2, . . . , 0.9} to perform open-set recognition.
Openmax (Bendale and Boult 2016) is an open-set
recognition model based on “activation vectors” (i.e.
penultimate layer of the network). OpenWGL (Wu, Pan,
and Zhu 2020) and G2Pxy (Zhang et al. 2023b) are
two open-set node classification methods for graph data,
which has no robust learning ability.

• 3) Robust open-set classification methods: NGC (Wu et al.
2021) and PNP (Sun et al. 2022). NGC (Wu et al. 2021) is
an open-world noisy data learning method for image clas-
sification which employs geometric structure and model
predictive confidence to collect clean sample. PNP τ (Sun
et al. 2022) is a robust classifier learning method for image
data with IND and OOD noise, where data augmentation
is used to help the identification of noisy samples. To per-
form open-set recognition, we adopt a threshold chosen
from {0.1, 0.2, . . . , 0.9} to PNP.

Note that the graph data are first embedded by a GCN
before being feed into the models that cannot handle graph
data. A detailed introduction can be found in the Appendix.

Open-Set Node Classification with Complex Noisy
Graph Data
Considering that real-world scenarios are complex and noisy
data vary across different tasks, we assessed the proposed
model for open-set classification with IND noise and two
types of OOD data: near OOD data and far OOD data. Here,
OOD data include OOD noise in the training set and out-of-
distribution samples of unknown classes that occur during
testing.

Open-Set Classification with IND Noise and Near OOD
Data. In this experiment, for each dataset, following the
setting of OpenWGL (Wu, Pan, and Zhu 2020), the data of
the last class were held out as the unknown class for testing,
and the data of the second last class which were re-assigned
with random known class labels were set as the OOD noise
data and injected into the training set. The remaining classes
were considered as known classes, while the known class
samples in training set were re-assigned with wrong known
class labels with a rate of 5%, 25% and 50% (i.e.IND noise
rate), respectively.

Table 1 lists the macro-F1 and AUROC scores for open-
set node classification with near OOD noise and differ-
ent proportions of IND noise. It is observed that ROGPL

generally obtain the best performance on the benchmarks.
This shows that ROGPL can better distinguish between a
known class and an unknown class, even though there is a
large amount of complex and diverse noises during train-
ing. Specifically, ROGPL achieves an average of 6.23% im-
provement over the second-best method (PNP) in terms of
F1 score and an average of 6.62% improvement in terms of
AUROC on the three datasets.
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Methods GCN soft GCN sig GCN soft τ GCN sig τ NWR τ Openmax OpenWGL G2Pxy NGC PNP ROGPL
C

or
a

5% F1 63.73 64.12 70.53 57.80 69.41 60.40 73.03 72.00 59.69 70.26 78.36
AUROC fail fail 82.82 81.40 75.05 67.26 79.36 78.30 78.20 82.04 91.00

25% F1 64.31 63.78 70.69 66.91 68.98 59.82 70.58 69.92 52.13 64.78 77.59
AUROC fail fail 77.92 79.94 81.69 87.61 77.90 77.36 80.22 84.87 91.59

50% F1 60.96 59.73 62.53 62.93 61.93 53.50 63.59 57.52 62.70 66.29 76.90
AUROC fail fail 79.46 78.52 78.73 80.88 85.40 63.68 83.64 83.54 90.47

C
ite

se
er

5% F1 39.03 37.74 59.13 59.93 52.28 33.23 59.87 52.40 59.44 59.99 62.24
AUROC fail fail 85.67 85.56 76.13 55.01 86.08 67.75 84.05 85.70 87.84

25% F1 38.30 38.02 23.04 57.79 48.51 36.70 57.42 53.53 55.42 59.83 63.89
AUROC fail fail 84.50 82.26 72.59 75.68 82.34 53.97 80.46 84.03 88.84

50% F1 30.39 31.71 35.41 35.54 35.65 24.83 40.46 41.92 56.39 51.81 57.08
AUROC fail fail 64.20 50.74 61.22 67.89 79.54 38.03 77.43 80.40 85.64

C
oa

ut
ho

r-
C

S 5% F1 75.44 76.50 76.63 71.70 75.43 62.68 74.09 83.45 77.61 83.56 81.68
AUROC fail fail 83.14 86.61 89.57 81.65 87.39 82.95 85.57 85.55 93.25

25% F1 74.58 75.19 81.92 73.38 65.64 66.38 72.98 67.21 69.18 79.37 83.32
AUROC fail fail 87.77 88.35 88.69 80.62 86.35 86.03 85.11 85.47 94.06

50% F1 72.93 60.77 68.87 52.63 78.66 59.97 54.70 72.96 63.06 68.40 79.29
AUROC fail fail 75.02 83.97 87.58 81.48 85.13 72.87 84.27 84.85 93.31

Table 1: Comparison of open-set node classification in test F1-score and AUROC (%) on three datasets, where IND noise (5%/
25%/ 50%) and near OOD noise is injected into training set.

Furthermore, we examined the detailed classification ac-
curacy in terms of known classes and unknown classes.
We found that to gain the ability of unknown class detec-
tion, compared to the closed-set classifier, there is a slight
decrease in the performance of known class classification,
i.e., from 86.33% (GCN soft) to 75.48% (ROGPL) on av-
erage, while the unknown class detection accuracy is in-
creased from 0% to a remarkable 83.78% on average. More-
over, compared to other open-set node classification meth-
ods, such as G2Pxy, ROGPL achieves an average improve-
ment of 11.9%, 13.29% and 9.94% in accuracy of known
classification, unknown detection and overall classification,
respectively. The average improvement in F1 score is 9.94%.
Details are provided in the Appendix.

Open-Set Node Classification with IND Noise and Far
OOD Data. To investigate the effect of rough OOD noise,
we used OOD samples that are from different dataset as the
source of OOD noise. Specifically, we randomly selected
samples of the first two classes from Pubmed (Hu et al.
2020) and mixed them with data from Cora, Citeseer and
Coauthor-CS to create the training set with far OOD noise,
where the OOD noise rate is set to 5% or 25%. Each node
from Pubmed was randomly assigned to a known class la-
bel, and edges between the node and its k-nearest neighbors
were added, where k is a random integer in the range from 1
to 5. We also added some samples from the remaining cate-
gories in the Pubmed dataset to the test set in corresponding
proportion, to evaluate the performance of ROGPL on the
samples from far open-set. The other settings are the same
as the experiment of near OOD data, and the IND noise rate
is set as 5%.

The results of open-set node classification with far OOD
noise are presented in Table 2. The results show that ROGPL

generally outperforms the baselines, achieving an average

improved of 2.84% in F1 and an average improvement
of 5.33% in AUROC, compared to the global second-best
method PNP. The detailed classification accuracy in terms
of known classes and unknown classes with far OOD noise
are given in the Appendix.

Robustness Analysis under Different Noise Rate
In this section, we evaluate the robustness of ROGPL for
different levels of IND and OOD noise for the open-set node
classification task. We first examine how ROGPL reacts to
different IND noise rate. We kept the OOD noise rate con-
stant and used the same setting as the experiment of Table
1, while we varied the IND noise rate from 0%, 5%, 25%,
50% to 75%. Fig. 2(a) and Fig. 2(b) show the results on
the Cora and Citeseer datasets, respectively. We observe that
ROGPL maintains a relatively stable performance when the
noise rate is within a certain range, for example no more
than 50%. However, once the IND noise exceeds a certain
threshold, ROGPL’s performance drops sharply.

Additionally, we investigate the performance of ROGPL

in terms of different OOD noise rate, by keeping the IND
noise rate constant as 5%, while varying the far OOD noise
rate from 0%, 5%, 25%, 50% to 75% . The results on Cora
and Citeseer are shown in Fig.2(c) and Fig. 2(d)respectively.
It can be observed that ROGPL maintains a surprisingly sta-
ble performance even with large amounts of far OOD noise
in the training data, which demonstrates the strong robust-
ness of ROGPL against OOD noise.

Ablation Study
We compare variants of ROGPL in an ablation study to eval-
uate the effect of its main modules and settings:
• ROGPL¬GN : a variant of ROGPL without building k-

nearest neighbor graph GN , and original graph G is used
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Methods
5% far OOD noise 25% far OOD noise

Cora Citeseer Coauthor-CS Cora Citeseer Coauthor-CS
F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

GCN soft 64.67 fail 39.04 fail 60.36 fail 63.12 fail 39.04 fail 77.08 fail
GCN sig 64.11 fail 41.33 fail 69.32 fail 63.44 fail 40.78 fail 65.94 fail
GCN soft τ 71.81 74.61 58.57 82.35 65.81 78.37 70.38 75.13 56.09 81.61 60.48 72.37
GCN sig τ 62.65 77.54 54.60 84.58 54.23 86.73 69.23 76.38 57.41 81.81 57.75 84.31
NWR τ 71.94 76.58 48.35 75.06 79.46 87.65 68.79 80.67 48.08 71.67 54.77 83.76
Openmax 28.37 79.06 26.64 81.17 66.90 82.10 31.41 84.40 15.55 79.03 67.23 85.07
OpenWGL 71.83 76.76 58.51 84.78 76.38 87.24 67.87 74.50 57.28 82.75 75.71 85.10
G2Pxy 69.24 80.67 43.26 62.53 66.98 69.57 66.54 75.26 41.67 60.95 70.45 68.34
NGC 57.58 78.57 52.30 78.07 66.96 84.47 59.86 76.88 55.41 81.22 64.84 83.96
PNP 72.21 79.51 60.22 83.93 77.50 87.42 72.19 77.47 57.58 81.94 81.34 84.23
ROGPL 77.62 87.89 60.90 84.50 83.11 92.34 76.31 86.48 58.08 85.49 82.06 89.78

Table 2: Comparison of open-set node classification in test F1-score and AUROC (%) on three datasets, where IND noise (5%)
and far OOD noise (5% / 25%) from the Pubmed dataset is injected into the training set.
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Figure 2: The performance of ROGPL with respect to different IND noise rate and OOD noise rate on Cora and Citeseer
datasets.

Methods Cora Citeseer Coauthor-CS
F1 AUROC F1 AUROC F1 AUROC

ROGPL¬GN 74.87 89.90 61.79 86.94 81.08 91.10
ROGPL¬denoise 77.24 86.56 61.24 86.99 81.03 87.86
ROGPL¬Ldiv 73.67 89.85 60.35 86.73 79.88 90.32
ROGPL¬region 76.54 84.11 61.63 87.49 80.89 86.45
ROGPL 78.36 91.00 62.24 87.84 81.68 93.25

Table 3: Ablation study of robust open-set node classifica-
tion in test F1 score and AUROC (%) on three datasets,
where IND noise (5%) and near OOD noise is injected into
the training set.

in the label propagation stage.
• ROGPL¬denoise: a variant of ROGPL without the label

propagation based denoising module.
• ROGPL¬region: a variant of ROGPL without clustering,

i.e.the interior prototype of each class is updated by the
clean nodes from all classes, and there is no border pro-
totypes.

• ROGPL¬Ldiv: a variant of ROGPL with loss Ldiv re-
moved. We only utilize classification loss Lcls to train
the encoder network fθ and prototype network fϕ.

The performance of the proposed method and its four
variants are presented in Table 3. The results demonstrate
that both label propagation based denoising module and
region-based prototype learning module are important and
building knn graph GN is necessary. The large gap of perfor-
mance between ROGPL and ROGPL¬region verifies the
contribution of open-set prototypes on open-set node classi-
fication.

Conclusion
This paper introduced a novel prototype learning based ro-
bust open-set node classification method to learn an open-
set classifier from graphs with mixed IND and OOD noisy
nodes. By correcting noisy labels through similarity-based
label propagation and removing low-confidence samples,
the proposed method relieve the intra-class variety caused
by noise. Further, by learning open-set prototypes via non-
overlapped regions and remaining both interior and border
prototypes, the method can remedy the inter-class confusion
problem, and save more space for open-set classes. To the
best of our knowledge, the proposed ROGPL is the first ro-
bust open-set node classification method for graph data with
complex noise. Experimental evaluations on several bench-
mark graph datasets demonstrates its good performance.
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