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Abstract

Building click-through rate (CTR) and conversion rate (CVR)
prediction models for cross-border e-commerce search re-
quires modeling the correlations among multi-domains. Ex-
isting multi-domain methods would suffer severely from poor
scalability and low efficiency when number of domains in-
creases. To this end, we propose a Domain-Aware Multi-
view mOdel (DAMO), which is domain-number-invariant,
to effectively leverage cross-domain relations from a multi-
view perspective. Specifically, instead of working in the orig-
inal feature space defined by different domains, DAMO maps
everything to a new low-rank multi-view space. To achieve
this, DAMO firstly extracts multi-domain features in an ex-
plicit feature-interactive manner. These features are parsed
to a multi-view extractor to obtain view-invariant and view-
specific features. Then a multi-view predictor inputs these
two sets of features and outputs view-based predictions. To
enforce view-awareness in the predictor, we further pro-
pose a lightweight view-attention estimator to dynamically
learn the optimal view-specific weights w.r.t. a view-guided
loss. Extensive experiments on public and industrial datasets
show that compared with state-of-the-art models, our DAMO
achieves better performance with lower storage and compu-
tational costs. In addition, deploying DAMO to a large-scale
cross-border e-commence platform leads to 1.21%, 1.76%,
and 1.66% improvements over the existing CGC-based model
in the online AB-testing experiment in terms of CTR, CVR,
and Gross Merchandises Value, respectively.

Introduction
Click-through rate (CTR) and conversion rate (CVR) pre-
diction are two important tasks for e-commerce search, at-
tracting increasing attention from both academia and indus-
try in recent years (Cheng et al. 2016; Zhou et al. 2018;
Tang et al. 2020). Cross-border scenarios, in particular,
bring more challenges when building effective yet efficient
CTR/CVR models. According to our statistics on a cross-
border e-commerce platform which is active in more than
230 countries and available in 18 languages, the overlap rate
among the top-1k exposed, clicked, and purchased products
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Figure 1: Statistical analysis on a large-scale cross-border e-
commerce platform. (a) The proportion of user behavior data
within two weeks among different countries. (b) Normalized
singular values of multi-domain feature representations.

in Russia, Spain, the USA, and Brazil is only 31.8%, 17.1%,
and even 5.1%, respectively. Statistics show that consumers
from different countries naturally exhibit distinctive shop-
ping preferences, leading to cruel multi-domain problems
in e-commerce data. These problems, such as domain im-
balance (refer to Fig 1(a)) and domain-specific modeling,
become more severe in real-world applications where hun-
dreds of countries can be involved.

Multi-domain learning based methods (Zhu et al. 2022;
Liu et al. 2018) are popular choices in terms of address-
ing the above-mentioned problems. Typically, multi-domain
features are extracted and further decomposed into domain-
specific and domain-invariant cues (Ma et al. 2018a; Sheng
et al. 2021). Though providing satisfactory performance in
experiments, existing methods suffer from poor scalability
and low efficiency with an increasing number of domains
due to their domain-number-variant design. Furthermore,
the domain-specific parameters of some domains with lim-
ited data may also face the inadequate training problem. An
engineering trick can mitigate this by working on data clus-
ters rather than the original separated multi-domain data.
However, their enhanced efficiency often accompanies a re-
duction in performance capabilities as these methods may
disrupt domain correlations within multi-domain data.

In this work, we propose a Domain-Aware Multi-view
mOdel (DAMO) to address the scalability and efficiency
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problem in cross-border e-commerce search. Our main idea
is inspired by the low-rank property in multi-domain e-
commerce data, reflecting the fact that multi-domain data
can be well reconstructed by only a few bases in a multi-
view feature space. This low-rank property is validated
by our observation in Fig 1(b). Specifically, we randomly
sample 0.1 million samples from the top-5 countries (i.e.,
France(FR), Spain(ES), Brazil(BR), the United States(US),
and Korea(KR)) of the platform. From the normalized sin-
gular values of feature representations, we notice that these
multi-domain data are approximately low-rank. Therefore,
we turn to low-rank multi-view space such that our model
is domain-number-invariant, resulting in a more efficient
representation without sacrificing the overall performance.
More specifically, DAMO firstly extracts multi-domain fea-
tures in an explicit feature-interactive manner. Next, we in-
troduce a multi-view extractor to map the multi-domain fea-
tures to view-invariant and view-specific spaces. Then a
multi-view predictor inputs these two sets of features and
outputs view-based predictions.

To impose the informativeness of multi-view bases, we in-
troduce a lightweight view-attention estimator. This estima-
tor aims to learn view-specific weights w.r.t. a view-guided
loss that guides the models to learn differentiated views. In
addition, it aids in an effective fusion of multi-view predic-
tions, compared to conventional manual processes.

Our main contribution can be summarized as follows:

• A novel DAMO model that exploits the low-rank prop-
erty of multi-domain data by decomposing multi-domain
features into view-invariant and view-specific spaces.

• A lightweight view-attention estimator to enforce view-
awareness and effective fusion of multi-view predictions.

• SOTA performances with much lower computational
costs on public datasets as well as a large-scale cross-
border e-commerce platform.

Related Work
Multi-domain Learning
Multi-domain learning (MDL) can leverage multi-domain
data to address the inherent data imbalance within each do-
main and improve performance. Roughly speaking, existing
multi-domain CTR/CVR models can be divided into three
categories. Data sharing. This kind of method (Jiang et al.
2022) usually uses the correlated samples from other do-
mains and assigns them with pseudo labels for training a
model in one domain. Recently, outputs from an MMOE-
based deep model across different domains have been com-
bined to exploit the correlation in the label space (Li et al.
2020). These methods show promising results for domains
with limited labels. However, they may alter the original la-
bel distribution and adversely affect model performance in
domains with abundant labels. Domain adaptation. This
kind of method (Sheng et al. 2021; Jiang et al. 2022) aims
to align the representation and distribution of data across
diverse domains using domain-specific parameters, thereby
reducing the diversity of multi-domain data. However, when
the number of domains increases, especially in the case of a

large number of domains, these methods may encounter the
efficiency problem. Parameter differentiation. To capture
both diversity and commonality in multi-domain data, some
researchers proposed using shared and customized network
structures as a means of learning and understanding these
nuances (Jiang et al. 2022; Zhang et al. 2022a; Zou et al.
2022). Recently, some multi-task learning models (Ma et al.
2018a; Tang et al. 2020; Ding et al. 2021) have also been ap-
plied to deal with multi-domain data. However, when deal-
ing with some domains with limited data, domain-specific
structures in these methods may encounter optimization dif-
ficulties. To address this problem, Zhang et al. (Zhang et al.
2022a) proposed a meta-learning-based method to dynam-
ically generate parameters by leveraging scenario knowl-
edge. However, this method relies heavily on a large amount
of training data to achieve model convergence and gener-
alization, which would impose a significant cost. Moreover,
the data imbalance problem in multi-domain data can reduce
the effectiveness of this method.

Multi-view Learning
Multi-view learning (MVL) has gained significant attention
and achieved practical success by exploiting complementary
information from multiple features or modalities in multi-
view data. It has also been applied to boost CTR/CVR pre-
diction in the e-commerce scenario (Elkahky, Song, and
He 2015; Tai et al. 2020; Wu et al. 2022). For example,
Elkahky et al. (Elkahky, Song, and He 2015) extended a
deep learning approach for content-based recommendation
by jointly learning features of items from different domains
and user features within a multi-view deep learning model.
Tai et al. (Tai et al. 2020) proposed a recommendation model
wherein items were represented from user and entity views.
Li et al. (Li et al. 2022) modeled user multi-view pref-
erences from knowledge, semantic, and consuming views
when building the conversational recommender system. In
our work, inspired by the low-rank property of e-commerce
multi-domain data, we transform the original multi-domain
features into multi-view features. Unlike existing methods,
we use an implicit and data-learned view space for feature
representation. The view weights of samples are learned via
sparse coding with a learned compacted view dictionary on
multi-domain data. These weights can be used to fuse multi-
view prediction results optimally.

Proposed Method: DAMO
We first formulate the conventional multi-domain
CTR/CVR prediction task and point out the undesir-
able strong correlation between model size and the number
of domains. Then we describe DAMO in detail, including
three proposed components and the objective function. The
overall framework is shown in Fig 2.

Preliminary
Suppose D = {D(1),D(2), · · · ,D(n)} is a multi-domain
dataset collected from n domains. The dataset for domain
i is represented by D(i) = {(x(i)

1 , y
(i)
1 ), · · · , (x(i)

mi , y
(i)
mi)},

wheremi is the number of samples in domain i, x(i)
j ∈ Rd×1
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is the feature representation of the j-th sample in domain i,
and y(i)j ∈ {0, 1} is the associated click/conversion label.

Multi-domain CTR/CVR Prediction
Normally, a conventional multi-domain CTR/CVR predic-
tion task is formulated by the following problem:

min
Θ

n∑
i=1

mi∑
j=1

L
(
y
(i)
j , ŷ

(i)
j

)
,

s.t. ŷ
(i)
j = F

(
x
(i)
j ; Θ

)
, ∀i, j,

(1)

where ŷ(i)j is the predicted CTR/CVR result for x(i)
j under

the model F(·) parameterized by Θ, and L(·) is a loss func-
tion (e.g., the cross-entropy loss function).

Different domains likely share some domain-invariant in-
formation, while each domain holds distinct information.
To exploit both the shared and domain-specific information
within multi-domain data, most existing deep models incor-
porate both shared and domain-specific parameters (Tang
et al. 2020) by solving the following problem:

min
ΘC ,Θ

(i)
R |ni=1

n∑
i=1

mi∑
j=1

L
(
y
(i)
j , ŷ

(i)
j

)
,

s.t. ŷ
(i)
j = F

(
x
(i)
j ; ΘC ,Θ

(i)
R

)
, ∀i, j,

(2)

where ΘC and Θ
(i)
R are the shared and i-th domain-specific

parameters, respectively. Consequently, there is a hard cor-
relation between model parameters and the number of do-
mains (i.e., the number of domain-specific parameters Θ

(i)
R

increases linearly with the number of domains n), which
leads to the scalability and efficiency problem.

Architecture Overview
To tackle the aforementioned problems, we propose DAMO
for multi-domain CTR/CVR prediction from a multi-view
perspective. As shown in Fig 2, we develop a correlated
multi-view extractor to obtain projection (view-invariant)
and view-specific features, and devise a domain-aware
multi-view predictor to generate view-based prediction
results; finally, a lightweight view-attention estimator is
adopted to dynamically learn the optimal view-specific
weights w.r.t. a view-guided loss to impose the informative-
ness of different views. More details are described below.

Correlated Multi-view Extractor As shown in Fig 2, the
raw input features in E-commerce describe user, item, search
query, and context information (Wang et al. 2015). They can
be classified into three types: sparse, dense, and sequence
features. Normally, the sparse and sequence features can be
transformed into dense embedding features in the bottom
feature network. To better exploit the correlation between
all domain information and domain-specific information, we
decompose these features into three parts: the global fea-
tures x(i)

jG
, the local features x(i)

jL
and others x(i)

jO
. The global

features describe all domains, while the local features only
describe one or a few domains. Take CTR for example, the

CTR about an item on the whole e-commerce platform is a
global feature, while that on a particular country site of the
platform belongs to a local feature.

Effectively modeling correlation among global and local
features is crucial for multi-domain CTR/CVR prediction
in cross-border e-commerce scenarios. Unfortunately, due
to the ignoring of some important local and global similar-
ity/dissimilarity information, the conventional simple con-
catenating of different features together cannot make full use
of multi-domain data (Dai et al. 2021). To address this issue,
we propose to explicitly model global-local feature interac-
tions by performing the outer product of these two vectors.
Furthermore, we adopt a fully connected layer (FC) with a
Rectified Linear Unit (ReLU) activation function to perform
dimension reduction after feature interaction, to reduce the
computation cost. Finally, we concatenate all features to-
gether, so an elaborated multi-domain feature representation
x̄ ∈ Rd0×1 can be obtained as follows:

x̄ = xL ⊕ FC(xL ⊗ xG)⊕ xG ⊕ xO, (3)

where ⊕ and ⊗ are the concatenation and outer product op-
erators, xG, xL and xO are the global features, the local
features, and the other features, respectively. Here we omit
some subscripts and superscripts of x to ease the explana-
tion. Similarly, we denote xR as the embedding of the do-
main ID of a sample.

Inspired by the great success of signal decomposition and
subspace learning (Mallat 1989; Li et al. 2015), we pro-
pose a correlated multi-view extractor to learn two types of
derived features (i.e., shared projection features x

(t)
p |Tt=1 ∈

Rd1×1 and view-specific features x(v)
s |Vv=1 ∈ Rd1×1) from x̄

to enrich feature representation. The shared projection fea-
tures are used to explicitly represent the sample from multi-
view, while the view-specific features are used to keep some
important view-specific information. Based on a learnable
meta-weight matrix Wb ∈ Rd1×d0 , we randomly initial-
ize T projection matrices W

(t)
p |Tt=1 ∈ Rd1×d1 and the as-

sociated biases b
(t)
p |Tt=1 ∈ Rd1×1. Then an affine trans-

formation operation is applied to x̄ to generate x
(t)
p |Tt=1.

These shared projection features are visible to all view sub-
networks, which are used in CTR/CVR prediction. Mean-
while, the view-specific features are extracted with V indi-
vidual fully connected layer. Thus, the t-th projection feature
x
(t)
p and the v-th view-specific feature are defined as below:

x(t)
p = σ

(
B
((

W(t)
p Wb + αWb

)
x̄+ b(t)

p

))
, (4)

x(v)
s = FC(v) (x̄) , (5)

where α is a learnable scalar, σ(·) is an activation function
(e.g., the ReLU function), and B(·) is batch normalization.

Domain-aware Multi-view Predictor With the shared
projection features and the view-specific features, we con-
vert the conventional multi-domain CTR/CVR prediction
task into a multi-view CTR/CVR prediction task and pro-
pose a domain-aware multi-view predictor. The predictor
module is described below in detail.
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Figure 2: The architecture of DAMO can be divided into two parts, i.e., the feature network on the left and the task network on
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Extractor. The task network attributes in a Domain aware Multi view Predictor and a Lightweight View Attention Estimator.

To jointly use both the shared projection features
and view-specific features, we first employ a view-based
domain-aware gating network to generate the view-level fu-
sion feature x

(v)
f |Vv=1 ∈ Rd1×1 as follows:

x
(v)
f = [x(v)

s ,x(1)
p , · · · ,x(T )

p ]× g1(xR)
(v),

s.t. g1(xR)
(v) = S(B(W(v)

g1 xR)),
(6)

where W
(v)
g1 ∈ R(1+T )×d2 , d2 is the dimension of xR and

S(·) is the softmax function. Since xR is the embedding of
the domain ID of the sample, we call g1(·)(v) as a domain-
aware gating network.

Afterward, each view sub-network independently makes
a CTR/CVR prediction (i.e., ŷ(v)|Vv=1) using a two layers
multilayer perceptron (MLP) as below:

ŷ(v) =MLP (v)(x
(v)
f ). (7)

Since the domain information has been encoded in x
(v)
f , the

multi-view predictor in Eq(7) is domain-aware. Meanwhile,
we can minimize the loss ℓ

(
y, ŷ(v)

)
to enforce all multi-

view predictors giving estimates as accurate as possible.
To avoid the imbalanced learning of a gating network in

the training stage (Shazeer et al. 2017) and to enhance the
prediction accuracy, we use a domain-aware view gating net-
work (i.e., g2(·)) to fuse all prediction results as follows,

ŷ = [ŷ(1), ŷ(2), · · · , ŷ(V )]× g2(xR),

s.t. g2(xR) = S(B(Wg2xR)),
(8)

where Wg2 ∈ RV×d2 is the learnable parameters of g2(·).
So, we can minimize the weighted multi-view prediction

loss ℓ (y, ŷ) to make full use of the underlying correlation
between different views.

Lightweight View-Attention Estimator Considering the
big gap across domains, it is unwise to assign equal weight
to each view-guided loss ℓ

(
y, ŷ(v)

)
. Differentiated weights

need to be introduced to enforce view-awareness and ben-
efit effective fusion of multi-view predictions. Particularly,
we devise a lightweight view-attention estimator to calcu-
late view-specific weights, to adaptively and optimally fuse
all view-guided losses. The whole estimator consists of two
stages, i.e., view data coding and view weight learning.

In the coding stage, we apply the deep dictionary learn-
ing (DL) method (Rodrı́guez-Domı́nguez and Dalmau 2020)
to learn two over-complete dictionaries, i.e., domain dictio-
nary DR and sample dictionary Dx; leveraging the dictio-
naries, we can calculate the corresponding domain coding
zR and feature coding zx from the domain embedding xR

and the elaborated multi-domain feature representation x̄,
respectively. The DL model can be formulated as follows:

min
D,Z

1

2
∥DZ−X∥22 + α1ψ1(Z) + α2ψ2(D) (9)

where X is a set of training samples (e.g., xR), Z is the
coding of X related to dictionary D; ψ1 and ψ2 denote two
regularization terms on Z and D; α1 and α2 are two reg-
ularization parameters. Note that, in most DL methods, the
dictionary is learned by two alternative steps, i.e., fix D and
perform sparse coding to compute Z, and update D with
fixed Z. To reduce the computation cost, we apply a dimen-
sion reduction processing with a fully connected layer on
x̄ before dictionary learning. After dictionary learning pro-
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Figure 3: Accuracy comparison under different sampled industrial sub-datasets from top-K domains with varying K.

cessing, we have

xR ≈ DRzR, FC(x̄) ≈ Dxzx. (10)

Afterward, we concatenate zR and zx to generate the fol-
lowing sample representation to learn a view dictionary:

(zR ⊕ zx) = Dvzv, (11)

wherein Dv is the learned view dictionary and zv is the view
coding (representation coefficient vector). Note that Dv is an
undercomplete dictionary, which is different from DR and
Dx. Besides, we try to enforce that each column vector dv in
Dv represents a view sub-network, and the sparse coding zv
will be further utilized to generate the view-specific weight
vector β of all views by the softmax function S:

β = S(zv). (12)

Particularly, to make sparse coding result consistent with
that of the CTR/CVR prediction result, we generate an addi-
tional evaluation loss ℓ(y, ŷd) by a FC layer FC as below:

min ℓ(y, ŷd), (13)
s.t. ŷd = FC(zv). (14)

Objective Function
We learn the proposed DAMO by minimizing the overall
loss function as below:

LDAMO = ℓ (y, ŷ)+λ1

V∑
v=1

(
βv × ℓ

(
y, ŷ(v)

))
+λ2ℓ (y, ŷd) ,

(15)
wherein λ1 and λ2 are two hyperparameters. βv is the v-th
element of view-specific weight vector β obtained in Eq 12.
In Eq 15, the first two terms are used to ensure that all
view sub-networks can give out relatively accurate predic-
tion results, while the last one is used to guide training the
lightweight view-attention estimator. ℓ(·) can be formulated
as the cross-entropy loss or other task-related functions.

Experiments
In this section, we will introduce our experiments on one
publicly available dataset Ali-CCP (Ma et al. 2018b) and one
industrial dataset. More importantly, we further report the
online performance of DAMO on a real-world e-commerce
platform. Results demonstrate that DAMO is superior to ex-
isting methods in terms of both efficacy and scalability.

Dataset and Experimental Setup
Datasets The industrial dataset is a billion-level indus-
trial dataset collected from 238 countries, where the train-
ing and testing sets are created by user click and purchase
logs from a specific 14-day period and the subsequent day,
respectively. As described before, data originating from ev-
ery country can be regarded as constituting a distinct do-
main. We introduce two settings on these domains during
training where the Setting 1 focus on the top 50 of them
w.r.t. their data sizes, instead of working on all 238 domains,
to facilitate testing and comparison. Furthermore, we uni-
formly random sample 1% of data out of these top domains.
And Setting 2 works on the 5 clusters generated by perform-
ing k-means on all 238 domains. In contrast, Ali-CCP (Al-
ibaba Click and Conversion Prediction) is a public dataset
collected from real-world click/purchase logs of the recom-
mendation system in Taobao 1. We follow the same data split
as (Xi et al. 2021). In both datasets, the majority of down-
sampling (He and Garcia 2009) is applied to deal with data-
imbalance problems of negative and positive samples. Their
overall statistics can be found in the appendix.

Baselines We compare our DAMO with the existing
SOTA methods, including MMoE (Ma et al. 2018a),
CGC (Tang et al. 2020), STAR (Sheng et al. 2021),
M2M (Zhang et al. 2022a) and MSSM (Ding et al. 2021).
See more details about these methods in the appendix.

Implementation Details All experiments are conducted
on Tesla A100×60 with Tensorflow framework and Adam
optimizer. As suggested in (Zhang et al. 2022b), we set
the number of epochs to 1 in all methods to prevent over-
fitting. All methods, including both DAMO and baselines,
treat CTR and CVR as two independent tasks. Thus results
of CTR and CVR are from two individual models for each
method. More details about the network architecture and hy-
perparameter settings can be found in the appendix.

Evaluation Metrics AUC and GAUC (Zhou et al. 2018)
are popular evaluation metrics in e-commerce literature.
Specifically, the former evaluates both intra-user and inter-
user orders by ranking all the items with predicted CTR.
And the latter focuses more on intra-user order by averag-
ing AUC over users, which proves to be more relevant to
online performance (Zhou et al. 2018) (see more details in
the appendix). In this work, we mainly report the averaged
results of five metrics, including CTR AUC, CVR AUC,

1https://tianchi.aliyun.com/dataset/408
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Method AUC GAUC

CTR CVR CTCVR CTR CTCVR

MMoE 0.7233 0.7354 0.8009 0.6607 0.6599
CGC 0.7237 0.7461 0.8166 0.6607 0.6639
STAR 0.6680 0.6970 0.7516 0.6566 0.6472
M2M 0.7336 0.8191 0.8746 0.6655 0.6657
MSSM 0.6960 0.6375 0.7165 0.6431 0.6360

DAMO 0.7350 0.8233 0.8794 0.6669 0.6714

Table 1: Average performance of different methods on
top5/10/20/30/40/50 domains on the industrial dataset 2.

CTCVR AUC, CTR GAUC, and CTCVR GAUC, over
three runs to eliminate the fluctuations caused by distributed
training strategy. Their standard deviations (STD) are also
reported when necessary.

Offline Performance
Accuracy and efficiency under Setting 1 of the indus-
trial dataset: We report the overall accuracy of all meth-
ods under setting 1 of the industrial dataset in Fig. 3. Un-
surprisingly, DAMO outperforms existing methods with a
noticeable margin in terms of the best performance under all
five evaluation metrics (refer to Tab. 1). Moreover, the su-
periority of DAMO is consistent among all settings where
all methods are required to work on top-k domains and
k ∈ {5, 10, 20, 30, 50}. While most baseline methods’ per-
formances decline with the increasing number of domains,
DAMO maintains high performance with minimum fluctua-
tion under all evaluation metrics (see Fig. 3).

Besides high performance, DAMO is noticeably less
computational-intense. We report the overall computational
cost of all methods in terms of FLOPs and parameters in
Fig. 4. Unlike most of the methods whose computational
cost increases w.r.t. number of domains (e.g.MSSM, CGC,
STAR), that of DAMO remains invariant. Moreover, DAMO
almost always has the minimum FLOPs and parameters,
e.g. 6.28B FLOPs and 3.19M parameters, among all meth-
ods. Interestingly, though M2M is the second-best in terms
of accuracy, we observe that it requires three times the com-
putational resources compared to DAMO.

In conclusion, we can see that DAMO is capable of beat-
ing the SOTA methods with a consistent yet lowest compu-
tation cost. Our experiments under setting 1 of the industrial
dataset clearly validate the advantage of DAMO in terms of
efficacy, efficiency, and scalability.

Accuracy under Setting 2 of the industrial dataset: We
further report the overall performances of all methods under
setting 2 of the industrial dataset. Please note that the overall
data size under setting 2 is much larger than that of setting
1, which proves the scalability of DAMO in another dimen-
sion. Although clustering enables other methods to predict
CTR/CVR with an acceptable efficiency, it is not an optimal

2The best and second-best results in tables are highlighted in
boldface and underlined, respectively.
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Figure 4: FLOPs and parameters of different methods on top
5/10/20/30/40/50 domains of sampled industrial data.

solution due to disrupting domain correlations. As can be
found in Tab. 2, our DAMO outperforms five baselines un-
der all evaluation metrics, demonstrating that DAMO is still
desired under a limited number of domains (Here we treat
one cluster as one domain). In addition, we also observe the
lower standard deviation of DAMO compared to other base-
lines, reflecting the stability of DAMO.

We also introduce two variations of DAMO, namely
DAMO-clusterID and DAMO-countryID. Compared to our
final DAMO, we observe that removing either country or
cluster ID leads to inferior performances. This is understand-
able as the former inevitably would lose domain information
in the original space during clustering. While the latter may
encounter cold start issues from the ID embeddings of some
data-limited countries.

Together with our previous results under setting 1, DAMO
is undoubtedly the optimal choice in various aspects, includ-
ing reliability and cost-effectiveness.

Accuracy on Ali-CCP Ali-CCP contains three domains
only. GAUC is statistically meaningless in Ali-CCP as there
is only one sample for each user in this dataset. We report
the overall performance on Ali-CCP in Tab. 4. Again, our
DAMO surpasses all baselines under all three evaluation
metrics. We would like to further highlight that the perfor-
mance gap on the extremely sparse domain (i.e., the second
domain) is more significant than that of other domains. We
refer the readers to the appendix for more of the full table.

Though M2M performs well on the industrial dataset, it
behaves poorly on Ali-CCP. Overall, DAMO gives the best
performance under various datasets, showcasing its superi-
ority in terms of generalizability.

Ablation Study
Finally, we perform ablation studies on DAMO3. We intro-
duce three variations of DAMO: 1) w/o Correlated Multi-
view Extractor (CME), which is replaced by shared and
specific experts in CGC; 2) Domain-aware Multi-view
Predictor (DMP), replaced by a gating network followed by
MLP (i.e., the views number is 1); and 3) w/o Lightweight
View-attention Estimator (LVE) with βv = 0.2, ∀v.

As can be found in Tab. 3, removing any of the three com-
ponents of DAMO leads to performance drops, demonstrat-
ing the effectiveness of all components. Interestingly, these

3More analysis such as hyperparameter sensitivity experiments
and model interpretability can be found in the appendix.
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Method CTR AUC CVR AUC CTCVR AUC CTR GAUC CTCVR GAUC

MMoE 0.7691 ± 1.4e-4 0.8537 ± 9.6e-4 0.9164 ± 8.3e-4 0.6752 ± 4.3e-4 0.6997 ± 5.9e-4
CGC 0.7689 ± 1.2e-5 0.8538 ± 1.3e-3 0.9157 ± 7.2e-4 0.6744 ± 4.9e-5 0.6992 ± 6.0e-4
STAR 0.7689 ± 2.4e-4 0.8524 ± 8.7e-4 0.9163 ± 7.9e-4 0.6751 ± 2.0e-4 0.6985 ± 9.3e-4
M2M 0.7692 ± 9.9e-5 0.8533 ± 1.2e-4 0.9160 ± 6.5e-5 0.6749 ± 3.3e-4 0.6997 ± 5.8e-4
MSSM 0.7687 ± 1.1e-4 0.8530 ± 1.4e-3 0.9145 ± 1.2e-3 0.6745 ± 5.8e-5 0.7011 ± 2.9e-4

DAMO-clusterID 0.7694 ± 4.1e-4 0.8540 ± 1.2e-3 0.9166 ± 1.0e-3 0.6753 ± 2.8e-5 0.7011 ± 4.1e-4
DAMO-countryID 0.7692 ± 1.3e-5 0.8540 ± 4.3e-5 0.9160 ± 3.9e-4 0.6756 ± 3.5e-4 0.7013 ± 2.5e-4
DAMO 0.7698 ± 1.1e-4 0.8543 ± 4.2e-5 0.9174 ± 2.6e-4 0.6757 ± 3.9e-6 0.7023 ± 3.9e-4

Table 2: Offline result on the industrial dataset. Note that due to a large amount of users and samples in our dataset, an improve-
ment of 0.05% in AUC and GAUC in the offline evaluation is significant enough to bring online gains for the business.

Model CTR AUC CVR AUC CTCVR AUC CTR GAUC CTCVR GAUC

all 0.7698 ± 1.1e-4 0.8543 ± 4.2e-5 0.9174 ± 2.6e-4 0.6757 ± 3.9e-6 0.7023 ± 3.9e-4
w/o CME 0.7692 ± 4.3e-5 0.8539 ± 1.1e-3 0.9167 ± 6.6e-4 0.6749 ± 1.6e-4 0.7006 ± 1.1e-3
w/o DMP 0.7690 ± 2.1e-4 0.8541 ± 1.5e-3 0.9164 ± 1.6e-3 0.6747 ± 1.0e-3 0.6994 ± 9.3e-4
w/o LVE 0.7697 ± 3.5e-4 0.8536 ± 6.9e-4 0.9155 ± 7.3e-4 0.6755 ± 2.4e-4 0.7011 ± 7.7e-4

Table 3: Performance on the ablation study.

Method CTR AUC CVR AUC CTCVR AUC

MMoE 0.6092 0.6222 0.6145
CGC 0.6103 0.6258 0.6159
STAR 0.6108 0.6220 0.5987
M2M 0.6076 0.6193 0.6078
MSSM 0.6097 0.5923 0.5812

DAMO 0.6129 0.6287 0.6170

Table 4: Offline result on Ali-CCP.

Metric CTR CVR GMV

Overall +1.21% +1.76% +1.66%

Table 5: Improvement over base model in online A/B testing.

three components contribute to various aspects of DAMO.
For instance, the absence of the CME weakens the sharing
ability, leading to a significant performance decline com-
pared to DAMO on CTR-related metrics. In contrast, LVE
is more important to CVR as removing LVE brings worse
performance on CVR-related metrics. This suggests that the
LVE guides differentiated views through constraint coeffi-
cients, thereby enhancing differentiation ability. Note that
although the contribution of LVE to CTR-related metrics
is not as noticeable, it contributes to stable results (with a
small standard deviation). Lastly, DMP seems to be favored
in general as removing it produces the worst results across
multiple metrics. This is reasonable because DMP describes
the common and differentiated knowledge across views, and
the collaboration and complementarity of multiple views are
key factors of model stability.

Online A/B Test

We further deploy our DAMO on one of the largest e-
commerce platforms. Compared to the offline setting, online
tests use real-time, real-world user behavior data, covering
the actual interaction of users. It can more realistically re-
flect the performance of methods in real applications.

Specifically, we conduct live online experiments in an
A/B testing framework for two weeks. For the control group,
4.0% of users are randomly selected and presented with
search results generated by the previous version of the on-
line ranking model, which is a highly optimized deep model
for CTR/CVR prediction. For the experiment group, 4.0%
of users are randomly selected and presented with search re-
sults generated by the new version of the ranking model,
which replaces the CTR/CVR prediction results with the
help of DAMO. The metrics we evaluate online are online
CTR, CVR, and Gross Merchandises Value(GMV). For se-
curity reasons, we only report the relative improvement of
DAMO in Tab. 5. Clearly, DAMO improves CTR, CVR, and
GMV by 1.21%, 1.76%, and 1.66%, respectively, showcas-
ing DAMO’s strong advantages in real-world applications.

Conclusion
This paper proposes a novel CTR/CVR prediction model
namely DAMO to address the scalability and efficiency
problem in cross-border e-commerce search scenarios.
DAMO exploits the domain correlation from a multi-view
perspective. By decoupling the strong correlation between
model parameters and the number of domains, DAMO sig-
nificantly reduces resource consumption. Experiment results
on both industrial and public datasets indicate that DAMO
outperforms existing models in terms of both CTR/CVR
prediction accuracy and computational efficiency.
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