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Abstract

Motivated by recent work in computational social choice, we
extend the metric distortion framework to clustering problems.
Given a set of n agents located in an underlying metric space,
our goal is to partition them into k clusters, optimizing some
social cost objective. The metric space is defined by a distance
function d between the agent locations. Information about
d is available only implicitly via n rankings, through which
each agent ranks all other agents in terms of their distance
from her. Still, even though no cardinal information (i.e., the
exact distance values) is available, we would like to evaluate
clustering algorithms in terms of social cost objectives that are
defined using d. This is done using the notion of distortion,
which measures how far from optimality a clustering can be,
taking into account all underlying metrics that are consistent
with the ordinal information available.
Unfortunately, the most important clustering objectives (e.g.,
those used in the well-known k-median and k-center prob-
lems) do not admit algorithms with finite distortion. To
sidestep this disappointing fact, we follow two alternative
approaches: We first explore whether resource augmentation
can be beneficial. We consider algorithms that use more than
k clusters but compare their social cost to that of the optimal
k-clusterings. We show that using exponentially (in terms of
k) many clusters, we can get low (constant or logarithmic) dis-
tortion for the k-center and k-median objectives. Interestingly,
such an exponential blowup is shown to be necessary. More
importantly, we explore whether limited cardinal information
can be used to obtain better results. Somewhat surprisingly, for
k-median and k-center, we show that a number of queries that
is polynomial in k and only logarithmic in n (i.e., only sublin-
ear in the number of agents for the most relevant scenarios in
practice) is enough to get constant distortion.

1 Introduction
The typical computational social choice problem consists of
optimizing a function over alternatives, each with a different
associated cost or value. A classic example is given by repre-
sentative election. Each voter has a different representation
score for every candidate, which we assume to correspond to
the distance in some underlying metric. Ideally, the represen-
tation minimizes the sum of distances of each voter to their
closest representative. In the full information setting, this
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corresponds to solving the classic k-median problem. But
this example already illustrates the difficulty of implementing
any voting mechanism: Even if the representation scores are
assumed to be distances, they might be unknown even to the
participating voters. However, we may readily know if a voter
prefers alternative a over alternative b.

Such examples have given rise to ordinal algorithms. An
ordinal algorithm mainly allows for comparisons between
distances in the underlying metric. That is, given three points
a, b, c, we are freely given information whether d(a, b) ≤
d(a, c), but we are not given the exact numerical values of
d(a, b) and d(a, c). The objective is to solve a given problem
relying primarily on the ordinal information, while using as
few (ideally zero) distance queries as possible. The goodness
of such an algorithm is measured in terms of the quality of the
computed solution C compared to the quality of the optimal
solution OPT that is given full information, commonly known
as the metric distortion.

Finding the median is arguably the most important problem
in this field. Given a set of points X and a distance function
d, the median m is defined to be the point minimizing the
sum of distances. Following a long line of work (Anshelevich
et al. 2021; Anshelevich, Filos-Ratsikas, and Voudouris 2022;
Feldman, Fiat, and Golomb 2016; Goel, Krishnaswamy, and
Munagala 2017; Kempe 2020; Munagala and Wang 2019),
there now exists a deterministic algorithm with optimal met-
ric distortion 3 (Gkatzelis, Halpern, and Shah 2020), which
is also optimal (Anshelevich, Bhardwaj, and Postl 2015; An-
shelevich et al. 2018). Using randomization, Charikar et al.
(2023) recently achieved an important breakthrough, achiev-
ing a metric distortion of 2.753. The best known lower bound
is at least 2.1126 (Charikar and Ramakrishnan 2022).

Extensions to more general clustering objectives such as
(k, z)-clustering and facility location are comparatively much
harder, see Anshelevich and Zhu (2017); Caragiannis, Shah,
and Voudouris (2022). In facility location, we ask for a set of
centers C such that∑

x∈X

min
c∈C

d(x, c) + f · |C|

is minimized, where f is the cost of opening a center. For
(k, z)-clustering, we instead consider the objective

z

√∑
x∈X

min
c∈C

d(x, c)z,
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i.e., the algorithm does not incur a cost for opening the cen-
ters, but instead has a budget of at most k centers that can
be placed. Special cases include k-median where z = 1 and
k-center which corresponds to z →∞.1

Unfortunately, there are strong impossibility results for
purely ordinal algorithms. Even for 2-median, it is not pos-
sible to obtain an algorithm with bounded metric distortion
(Anshelevich and Zhu 2017). Therefore, research has begun
to design algorithms that are given more power than purely
ordinal information. Indeed, there has been some recent suc-
cess in providing guarantees using only a constant number of
queries per point, see Amanatidis et al. (2022a,b). For cluster-
ing, recent work by Pulyassary (2022) has show that using at
most polylog(n) distance queries per point, or n · polylog(n)
queries overall, it is possible to achieve a constant factor
approximation. The same work also showed that k queries
per point, or O(nk) queries overall are sufficient to achieve a
constant factor approximation for k-median. Thus, we ask:

Question 1.1. What is the minimum number of queries nec-
essary for an algorithm to achieve constant metric distortion
for k-median, k-center, and facility location?

While distance queries are a natural way of lending more
power to the algorithm designer, obtaining the distances may
be expensive as mentioned above. This leads to the question
whether other models exist that allow the algorithm designer
to bound the metric distortion. A very natural way of doing
so for clustering algorithms is by allowing the algorithm
to return a (α, β)-bicriteria approximation. Such algorithms
bound the clustering cost by at most α times the cost of an
optimal k clustering, while using β many centers. We ask:

Question 1.2. What is the minimum value of β such that a
bicriteria clustering algorithm using only ordinal information
has constant metric distortion?

Our Results
In this paper we make substantial progress towards answer-
ing both questions. In the low-query setting, we give two
deterministic polynomial time algorithms for k-center that,
using at most O(k2) overall distance evaluations, obtain a
2-distortion and, using at most O(k) overall distance evalua-
tions, obtain a 4-distortion. We also show that the latter result
is optimal in terms of the number of necessary queries, while
the former is optimal for any polynomial time algorithm. For
(k, z)-clustering, we obtain a randomized polynomial time
algorithm that uses at most poly(k, log n) overall distance
queries and achieves constant metric distortion. Note that
all of these bounds are sublinear in the input size, that is
assuming k ≪ n, we make o(1) queries per point.

Finally, for facility location, there exists a simple adapta-
tion of the seminal Meyerson algorithm (Meyerson 2001) that
achieves a constant distortion using exactly one query per
point or n queries overall, see also Section 4.1 of Pulyassary

1Sometimes the z
√ operation is omitted, as is the case for k-

means corresponds to (k, 2)-clustering. An α-approximation to
z

√∑
x∈X minc∈C d(x, c)z implies an O(αz)-approximation to∑

x∈X minc∈C d(x, c)z .

(2022). We show that no algorithm can achieve a constant fac-
tor approximation using less than Ω(n) queries, effectively
closing the problem.

In the zero-query setting, we first show that there exists
a (2, 2k−1)-bicriteria algorithm for k-center. Moreover, this
algorithm is optimal in the sense that any algorithm achieving
finite distortion must use Ω(2k) centers. For (k, z)-clustering,
we obtain two algorithms that solve all (k, z)-clustering ob-
jectives. The first succeeds with constant probability and
achieves constant distortion with (O(log n)k−1+o(1)) many
centers. The second requires (O(log n)k+o(1)) and achieves
O(1) distortion both in expectation and with high probability.
We complement this result by showing that, for any constant
factor distortion to k-median, Ω((2log

∗ n)k−1+2k log n) cen-
ters are necessary even with a constant probability of success.
For the special case of 2-median, our bounds are optimal.

Related Work
Ordinal Preferences and Distortion The first paper to con-
sider optimization problems using ordinal information was
probably Procaccia and Rosenschein (2006). Subsequently,
two main directions have been established. Continuing to
work with the model introduced by Procaccia and Rosen-
schein, one line focuses mainly on maximizing welfare sub-
ject to normalization assumptions, but without assuming any
metric properties, see Amanatidis et al. (2021, 2022a,b); Cara-
giannis and Procaccia (2011); Filos-Ratsikas, Micha, and
Voudouris (2020). The other line of work studies problem
without the normalization assumptions, but assuming that the
preferences are metric, i.e., they satisfy the triangle inequality.
Beyond clustering papers covered in the introduction, several
other distortion problems have been studied (Borodin et al.
2019; Cheng, Dughmi, and Kempe 2017, 2018; Pierczynski
and Skowron 2019). While rare, it is also possible to achieve
some results without making either a normalization or metric
assumptions, see Abramowitz and Anshelevich (2018).

Clustering and Facility Location (k, z)-clustering is
APX-hard in general metrics (Cohen-Addad, C. S., and Lee
2021), though it is possible to obtain very accurate algorithms
when making assumptions on either the metric (Friggstad,
Rezapour, and Salavatipour 2019; Cohen-Addad, Feldmann,
and Saulpic 2021) or the input (Angelidakis, Makarychev,
and Makarychev 2017; Awasthi, Blum, and Sheffet 2010;
Cohen-Addad and Schwiegelshohn 2017). For k-center, Gon-
zalez (1985) gave an optimal 2-approximation algorithm. For
k-median, k-means and facility location, following a long
line of research (Jain and Vazirani 2001; Jain, Mahdian, and
Saberi 2002; Arya et al. 2004; Li and Svensson 2016; Cohen-
Addad et al. 2022, 2023), the current state of the art is a
2.613 approximation for k-median (Gowda et al. 2023), a 9
approximation for k-means (Ahmadian et al. 2020), and a
1.488 approximation for facility location (Li 2013). For gen-
eral (k, z)-clustering, there are few claimed bounds, though
most of the proofs for k-median and k-means go through
while losing a exp(z) approximation factor. Explicit results
can be found in Cohen-Addad, Klein, and Mathieu (2019);
Cohen-Addad, Saulpic, and Schwiegelshohn (2021).
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2 Preliminaries
Let (X, d) be a metric space where X is a set of n points
and d : X × X → R≥0 is a metric. The distance between
any two points x, y ∈ X can be accessed by a query of the
form d(x, y). We assume that such a query is associated with
a cost. An algorithm is given a budget and each query that
the algorithm makes consumes one unit of its budget. While
querying the exact distance between two points is costly,
our model assumes that, for every point, ordinal information
about its relative distance to the other points is freely avail-
able. More specifically, each point x ∈ X provides a ranking
πx : [n] → X that is consistent with d in the sense that
d(x, πx(i)) ≤ d(x, πx(j)) for every i, j ∈ [n], i < j. That is,
points that are closer to x appear higher in x’s ranking. An
ordinal preference profile P is then just the collection of the
points’ rankings, i.e., P = {πx}x∈X . We write P(d) for the
set of profiles where each point’s ranking is consistent with
the distances d.

It is often convenient to restrict the ranking of a point to a
certain subset of X . Let S ⊆ X and m = |S|. The restriction
of πx to S is a function πx,S : [m] → S such that, for any
two y, y′ ∈ S, y is ranked higher in πx,S than y′ if and only
if y is ranked higher in πx than y′.

The ordinal preference profile provides a very rough sketch
of the underlying distance metric d. However, the relative
distances expressed by the profile can enable an algorithm
to allocate its budget in a very economic way. Consider the
following operation: For a set of points S ⊆ X and a point
x ∈ X , we define the distance of x to S to be d(x, S) =
miny∈S d(x, y).

Given the ordinal information, the point z =
argminy∈S d(x, y) can readily be identified as x’s high-
est ranked point among S. Hence, an algorithm can deter-
mine the distance of x to S with a single query d(x, z).
Clearly, the same observation can be made about finding
z = argmaxy∈S d(x, y) and the distance d(x, z).

We intend to study the loss in outcome optimality if we
restrict an algorithm A to the ordinal information and a fixed
query budget. We consider a variety of clustering problems
where the goal is to find a solution that minimizes a given
cost function ϕ. We denote byM the set of all metric spaces.
For a metric space (X, d) ∈ M and a profile P ∈ P(d),
let A(P, d) be the solution (set of centers) computed by al-
gorithm A, and let C∗(d) be a solution (set of centers) of
minimal cost. We say that an algorithmA achieves distortion
D with constant (respectively high) probability, if

sup
(X,d)∈M
P∈P(d)

ϕ(A(P, d))
ϕ(C∗(d))

≤ D

with probability at least 2/3 (respectively probability at least
1− 1/n). The expected distortion of A is given by the ratio

sup
(X,d)∈M
P∈P(d)

E[ϕ(A(P, d))]
ϕ(C∗(d))

.

We now state the definition of the (k, z)-clustering prob-
lem in the ordinal setting and introduce a few standard terms
that are commonly used in the context of clustering problems.

Definition 2.1. In the ordinal (k, z)-clustering problem, we
are given positive integers k, z and a set X of n points that
form a metric space (X, d) under distances d. Each point x ∈
X reports a ranking πx that is consistent with the distances
d. Let P = {πx}x∈X . For a subset S ⊆ X of the points, we
denote the cost of a given solution C ⊆ X by

ϕC(S, d) = z

√∑
x∈S

d(x,C)z.

The goal is to find a set C of k points such that the cost
function ϕC(X, d) is minimized. For compactness, we drop
the dependence on d and denote by ϕOPT(S) the cost of the
optimal solution on an arbitrary set of points S ⊆ X .

Given a solution C to an ordinal (k, z)-clustering instance,
we typically call the elements of C centers. C naturally in-
duces a partition of X into k clusters {Ac}c∈C where, for
each c ∈ C, Ac = {x ∈ X : πx,C(1) = c}. We refer to the
collection of these clusters as a clustering of X .

Finally, we define sampling probabilities for all (k, z)-
clustering objectives.
Definition 2.2. Let z be a positive integer, and let C ⊆ X
be a set of centers. The sampling probability of point c ∈ X
conditioned on having already selected a set of centers C is

pz(c) := P[c is added to C | C] =
d(c, C)z∑

x∈X d(x,C)z
,

and denote the induced distribution by D++
z .

3 Algorithms for k-Center
We present three algorithms for solving the ordinal k-center
((k,∞)-clustering) problem. Our algorithms are based on
a greedy procedure by Gonzalez (1985), which is known
to yield a 2-approximation of the k-center problem. This
procedure simply chooses an arbitrary center to begin with
and then, in k−1 iterations, chooses the center that is farthest
away from the already chosen centers (farthest-first traversal).

2-Distortion Algorithm The farthest-first traversal method
lends itself well to be adapted to the ordinal setting. Clearly,
given a set of clusters, the farthest point from these clusters
can be determined with one distance query per cluster. For
completeness, we give a pseudocode implementation of the
procedure in the full version of our paper. This immediately
gives rise to the following result.
Theorem 3.1. There exists a deterministic 2-distortion algo-
rithm for k-center that makes k2−k

2 distance queries.
For the zero-query regime, we extend the farthest-first

traversal method such that, in every iteration, the farthest
point in every cluster is chosen. Since the algorithm and its
analysis are straightforward adaptions of Gonzalez (1985),
we merely state the result and give the details in the full
version.
Theorem 3.2. There exists a deterministic algorithm that,
using only ordinal preferences, returns a set of centers C
of size |C| = 2k−1, such that maxx∈X d(x,C) ≤ 2ϕOPT,
where ϕOPT is the cost of an optimal k-center clustering.
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4-Distortion Algorithm with O(k) Queries
To achieve a constant distortion via a linear (in k) number of
queries, the idea is to perform a 1

2 -approximate farthest-first
traversal. Such a farthest-first traversal is robust with respect
to the distortion, losing only a factor of 2. Surprisingly, using
ordinal information, we can execute a 1

2 -approximate farthest-
first-traversal with an optimal query bound. At a very high
level, we keep track of (center,farthest point) pairs for all
clusters throughout the algorithm. However, we do not query
all the pairs. Instead we keep a track of an independent set of
pairs to query which helps us bound the number of new pairs
created, while ensuring that the distance of the unqueried
pairs are at most twice the queried distances. We give the
complete analysis here and the pseudocode in the full version.

Theorem 3.3. There exists a deterministic 4-distortion al-
gorithm to the optimal k-center clustering that makes 2k
queries.

Throughout the algorithm’s run, let C be the solution set
and let Q ⊆ C be the so-called query set. Both C and Q will
change over time, so we denote Ci as the solution and Qi as
the query set after the i-th iteration, for clarity of exposition.
Moreover, for y ∈ Ci, let Sy,i be the set of points such that,
for each of these points, y is the closest center among Ci, and
let zi = argmax

x∈Sy,i

d(y, x). Note that we query the distance

d(y, zi), if y belongs to the query set Qi.
In iteration i ∈ {0} ∪ [k− 1] of the algorithm, we perform

the following steps:

1. Select the cluster Sy,i, for y ∈ Qi such that d(y, zi) is
maximized and add zi to Ci, forming Ci+1.

2. Remove y from Qi and let Ri+1 := Ci+1 \Qi (i.e. Ri+1

always consists at least of y and zi).
3. Add centers from Ri+1 to Qi to obtain Qi+1 as follows:

Let u ∈ Ri+1.

• If there exists a center p ∈ Qi such that d(p, q) ≥
d(w, q), where w = argmax

x∈Su,i+1

d(u, x) and q =

argmax
x∈Sp,i+1

d(p, x), do not add u to Qi.

• If no such p exists, add u to Qi.

Once all u’s have been discarded, we have obtained our
new set Qi+1. All distances between centers in Qi+1 and
the respective furthest points are queried. Note that we
only have to query novel pairs, i.e. already queried pairs
do not require a new query.

We now prove several claims about the algorithm. The
first two bound the number of queries. The final two claims
yield the desired bound on the distortion: In particular, we
show that we select, at each iteration, a point that is no closer
than half the distance of the furthest point and that such
an approximate farthest-first traversal also yields a constant
distortion to the optimal k-center solution.

Invariant 3.4. If y ∈ Qi and zi = argmax
x∈Sy,i

d(y, x) /∈ Ci+1,

then argmax
x∈Sy,i

d(y, x) = argmax
x∈Sy,i+1

d(y, x).

Proof. We prove this by induction, the base case of which
is trivial as initially we only have an arbitrary center and its
most distant point in S0 and Q0.

Let {w} = Ci+1 \Ci and let u be the center of the cluster
containing w in Ci. Consider any y ∈ Qi. If y was added to
Qi before u, then we know d(zi, w) > d(y, zi), hence zi =
zi+1. If y was added to Qi after u, then d(zi, w) > d(u,w).
But since d(y, zi) ≤ d(u,w), we have d(y, zi) < d(zi, w)
which also implies zi = zi+1.

Lemma 3.5. The total number of queries is at most 2k.

Proof. By Invariant 3.4, the only way a point can be removed
from Qi is if it was added to Ci+1. Therefore, the number
of queries made that lead to a deletion are exactly k. The
remaining number of queries are upper bounded by at most
k, and the claim follows.

This shows that the total number of queries made by the
algorithm are bounded by O(k). We now turn to the distor-
tion factor. The following lemma shows that the algorithm
executes a 1

2 -farthest first traversal.
Lemma 3.6. Let {z} = Ci+1 \Ci and let z ∈ Sy,i. Then for
any u ∈ Ci and w ∈ Su,i, we have d(y, z) ≥ 1

2 · d(u,w).

Proof. We selected argmax
y∈Qi

d(y, zi). Hence it suffices to

compare d(y, zi) with d(u,w) for u /∈ Qi. Since u /∈ Qi,
we know that there exists some y′ ∈ Qi s.t. d(z′i, w) ≤
d(y′, z′i) ≤ d(y, zi). By the triangle inequality. d(y′, z′i) ≥
d(y′, w)− d(z′i, w) ≥ d(u,w)− d(z′i, w). Rearranging, we
have
d(u,w) ≤ d(y′, z′i) + d(z′i, w) ≤ 2d(y′, z′i) ≤ 2d(y, zi),

which concludes the proof.

Finally, we show that an approximate farthest-first traversal
yields a constant distortion to the optimal k-center solution.
Lemma 3.7. Suppose we iteratively select points such that,
in every iteration, d(z, Ci) ≥ α · argmax

x∈X
d(x,Ci), for α ∈

(0, 1]. Then, Ck−1 yields a 2
α - distortion to the optimal k-

center clustering:

max
x∈X

min
u∈Ck−1

d(x, u) ≤ 2

α
· ϕOPT,

where ϕOPT is the cost of an optimal k-center clustering.

Proof. Let C∗ = {A1, . . . Ak} be the optimal clustering. If
Ck−1 ∩ Aj is non-empty, for all Aj ∈ C∗, the distortion is
2 due to the triangle inequality. Otherwise, we let i be the
first iteration where we added a second point x2 from some
cluster Aj to Ai and let x1 be the first point from Aj added
to C. Then for any u

d(u,Ci) ≤
1

α
· d(x2, Ci) ≤

1

α
· d(x2, x1) ≤

2

α
· ϕOPT,

which concludes the proof.

Combining Lemmas 3.6, 3.7, and 3.5 then yields the the-
orem. Achieving a strictly smaller than 4-distortion with a
strictly subquadratic number of queries (or proving that it is
impossible) is an interesting open problem.
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4 Algorithms for (k, z)-Clustering
In this section, we present our algorithms for solving the
(k, z)-clustering problems. The first makes use of no queries
and obtains a bi-criteria distortion guarantee, seeking to trade
off distortion with the number of selected centers.

Zero-Query Bi-Criteria Algorithm
The algorithm is based on distance sampling. The seminal
k-means++ by Arthur and Vassilvitskii (2007) iteratively
selects points proportionate to the squared Euclidean distance
of the current set of centers. In this paper, we consider a
generalization to (k, z)-clustering, where we sample points
proportionate to their cost. In both cases, the expected cost of
the computed solution is with a factor of O(log k) of that of
an optimal k-means clustering2 and this bound is tight even in
the Euclidean plane. Improvements to this basic algorithm are
abundant in literature. Indeed, 2k rounds are already enough
to achieve a O(1) bicriteria approximation, see Makarychev,
Reddy, and Shan (2020) and Wei (2016). Alternatively, one
may sample multiple points in each round. This tends to yield
a worse tradeoff between samples and cost, but combined
with other algorithms, may yield a constant approximation
(Bahmani et al. 2012; Choo et al. 2020; Lattanzi and Sohler
2019; Rozhon 2020; Grunau et al. 2023).

When adapting this procedure to the ordinal setting, the
first challenge to overcome is that we do not know pairwise
distances. The key idea behind our algorithm is to use ordinal
information to approximate the sampling probabilities. We
do this by over-sampling, i.e., we pick O(log n) points for
each point that the (k, z)++ algorithm picks. The main results
of this section are the following two:

Theorem 4.1. For the (2, z) clustering instance, Algorithm
1 returns O(log n) centers achieving a O(1) distortion with
constant probability.

In the full version of the paper, we show that this is optimal.

Theorem 4.2. There exists a randomized algorithm achieving
a O(1)-distortion for all (k, z) clustering objectives simul-
taneously using O(log n)k+o(1) centers, both on expectation
and with high probability.

Now, we present the algorithm for Theorem 4.1 and pro-
vide some intuition as to why it works. A similar reasoning
can be extended to obtain the algorithm for Theorem 4.2.
Theorem 4.1 and Theorem 4.2 are formally proven in the full
version of the paper. The algorithm for Theorem 4.2 involves
repeating Algorithm 1 to amplify success probability, and
augmenting Theorem 3.3’s k-center algorithm to bound the
worst case.

For the algorithm, we define some new notation. For any
set of points S ∈ X and any point c /∈ S, we define a
partition of Sc into disjoint sets {Sc,0, Sc,1, . . . , Sc,ℓ} where
ℓ = ⌊log |S|⌋. We construct the partition recursively starting
from Sc,ℓ . Define Sc,ℓ to be the singleton set containing
just the farthest point in S from c. Next, for each 1 < j <

2The distribution has been analyzed repeatedly for the k-means
problem. Similar statements for (k, z) clustering are folklore, and
we provide complete proofs for these problems in the full version.

Algorithm 1: (k, z)-clustering without queries
Input: Point set X , ordinal information

P = {πp}p∈A and k ∈ N
1 Initialize the set of centers C = ∅
2 Sample a point c uniformly at random from X
3 Let C = {c}
4 for i = 2 to k − 1 do
5 Initialize Ci ← ∅ for each point c in C do
6 Define

S = {x ∈ X : πx(c) ≤ πx(c
′) ∀c′ ∈ C} ,

i.e., S is the set of points that belong to the
cluster with center c, and let ℓ = ⌊log |S|⌋

7 Sample 7 log k points uniformly randomly
from each of the sets {Sc,1, Sc,2, . . . , Sc,ℓ}
(defined above) and add them to Ci

C ← C ∪ Ci

8 return C

ℓ, define Sc,j to be the farthest 2ℓ−j points from the set
S\{Sc,j+1∪Sc,j+2 · · ·∪Sc,ℓ}. Lastly, let Sc,1 = S\{Sc,2∪
Sc,3 · · · ∪ Sc,ℓ}.
Analysis: We now highlight a key property of Algorithm
1 that shows us why it gives us a O(1) distortion for the
2-median instance with constant probability. The following
lemma show that, Algorithm 1, in a sense, performs better
than the (k, z)++ algorithm in each iteration. Formally, for
each point c ∈ X , we show that the probability that Algo-
rithm 1 picks the point in an iteration is at least the probability
that the (k, z)++ algorithm picks the point.
Lemma 4.3. Let C be the set of centers before at the be-
ginning of line 3 of Algorithm 1 in the ith iteration. For any
point c ∈ X after line 8 of Algorithm 1, we have

PAlg 1[c ∈ Ci|C] ≥ pz(c).

The proof of the lemma is deferred to the full version.
Though Lemma 4.3 gives us an idea as to why Algorithm 1
indeed does well, it is important to note that statement, by
itself, does not imply the bounds in Theorem 4.1 and The-
orem 4.2. Specifically, Lemma 4.3 does not imply that we
perform better than the (k, z)++ algorithm. The reason is
that Algorithm 1 samples points from different rings indepen-
dently as opposed to the (k, z)++ algorithm. The analysis in
Makarychev, Reddy, and Shan (2020) and Bhattacharya et al.
(2020) points at the fickle nature of k-means++ algorithm
and how slightly perturbing it leads to a worse performance.
To get around this, we use over-sampling without making the
asymptotic bicriteria approximation worse.

O(1)-Distortion Algorithm with O(k4log5n) Queries
We design an algorithm that achieves a constant distortion
to the cardinal objective with just a few cardinal queries.
Formally, we show the following result:
Theorem 4.4. There exists a randomized algorithm achieving
an expected O(1)-distortion to the optimal (k, z)-clustering
using O(k4 log5 n) queries.
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Our exposition mainly focuses on the k-median objective,
for which z = 1, however, the proofs almost seamlessly go
through for other (k, z) clustering objectives. Due to space
constraints, we give a full proof and pseudocode for the algo-
rithm in the full version of the paper and only highlight the
key ideas here. To this end, given a current set of centers C,
we define an estimated cost for each of the rings in question,
i.e.,

ϕ̂C(Si,j) = |Si,j | · min
x∈Si,j−1

d(x, ci).

Note that to compute the above-estimated cost, we just
need one query per ring (in each round). Indeed, we sim-
ply need to query the distance between point ci and the
topmost point in ci’s preference list that belongs to Si,j−1.
Since there are T rounds, the resulting number of queries
is
∑

t∈[T ] t · log(|X|) ≤ T 2 log n. Now, we emulate the k-
median++ algorithm by sampling a center c belonging to ring
Srj with probability equal to

p̂(c) :=
1

|Srj |
· ϕ̂C(Srj)∑

i,j ϕ̂C(Si,j)
.

It is not hard to see that the above is non-negative and sum-
ming across all i, j we obtain 1, thereby making the above a
valid distribution, which, from now on, we will call D. Before
discussing the main algorithm in its full details, let us recall
that, in the plain k-median++ algorithm, given a current set
of centers C, each new center c is sampled (adaptively) with
probability

p(c) :=
d(c, C)∑

x∈X d(x,C)
.

This probability is proportional to how much they con-
tribute to the current overall cost. Recall that we name the
k-median++ induced distribution as D++ (since z = 1 in this
case). The following lemma relates the standard k-median++
distribution D++ and the emulating distribution D.
Lemma 4.5. Let C be the set of centers already chosen. For
any point c ∈ Xsampled according to distribution D

PD[c ∈ Ci|C] ≥ 1

2
· pz(c).

Algorithm. From this point onwards, our goal will be to
show that Algorithm 6 (whose formal description is deferred
to the full version of the paper) achieves an O(1) distortion,
as long as the number of rounds T is large enough. The high
level idea is not to use a potential function that allows us
to bound the cost of hit and not hit clusters, as is done in
most k-means++ analyses. Instead, we show that the cost
decreases by a constant factor for a sufficient number of
samples, similar to Rozhon (2020).

Unfortunately, unlike these works, we cannot guarantee an
upper bound on the cost when running a sampling algorithm
with the guarantee provided by Claim 4.5. Indeed, there is a
non-zero probability that we hit the same clusters over and
over again, which can lead to an arbitrarily high distortion.

We sidestep these issues with a careful initialization. For
this we use the k-center solution resulting from Section 3. A
sufficiently good k-center solution is within a factor O(n)

of the cost of a (k, z) clustering. Moreover, our k-center
algorithms are deterministic, which modifies our previous
low probability event of having unbounded distortion to a
low probability event of having O(n) distortion.

Analysis. The proof proceeds as follows: First, let us con-
sider the current set of centers C (initialized to C0, the k-
center clustering output by the algorithm used to prove Theo-
rem 3.3). Then, we consider the optimal clustering collection
C∗ = {A1, . . . , Ak}, and the union of uncovered clusters U ,
i.e., clusters not hit by C. We show that the probability that a
given optimal cluster remains uncovered after a fresh center
is sampled is inversely exponentially related to its cost (nor-
malized by the total cost). This is crucial because it helps us
in showing that the cost of uncovered points has to drop by at
least a constant factor at each new iteration of the algorithm,
which is the second step of our proof strategy. Lastly, we
recall that the initial clustering was a constant distortion to
the optimal k-center one, which means an O(n)-distortion
to the optimal k-median clustering. This, combined with the
earlier considerations, leads to a constant distortion provided
T ∈ O(k log n).

5 Lower Bounds
In this section, we finally present our lower bounds. The lower
bounds for k-center are simple and optimal, and thus given
here. The lower bounds for k-median are significantly more
complicated, but use a similar construction as the k-center
lower bound. We conclude this section by presenting a lower
bound for the facility location problem. The details for the
latter two results are deferred to the full version of the paper.

Theorem 5.1. For any fixed α, every bicriteria algorithm
A for k-center that has distortion at most α with at least
constant probability must return a solution of size at least
Ω(2k). Moreover, any algorithm that has distortion at most
α with at least constant probability must make at least Ω(k)
queries.

We remark that the distortion bound α has no influence
on the number of queries or the number of centers. That is,
our lower bounds hold for arbitrary values of α. This prop-
erty together with the observation that the cost of all (k, z)-
clustering objectives are within a poly(n) factor implies that
the same bounds indeed hold for any (k, z)-clustering.

Proof. The hard instance is the same for the low query and
zero query setting. We start with an analysis for the latter.

The hard instance: Our hard instance consists of 2k−1

points. We begin by describing the ordinal information and
the underlying metric. Consider a complete binary tree T
of depth k − 1. For any two nodes p, q, we say that a is the
common ancestor of p and q if a is the minimum depth node
in the shortest path between p and q in T .

The interpretation of this tree is that the leaves are the
points and for any interior node a, the value d(a) stored in a
denotes the distances between all points p, q that have a as
the common ancestor. Thus, we now require the following
invariant to ensure that the tree encodes a metric.
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Invariant 5.2. If the subtree rooted at a contains the interior
node b, then d(a) ≥ d(b).

We now specify the ordinal preferences, which we fix
before determining the values d(a) of the interior nodes. Let
p, q, o be three leaves and let a(p, q), a(p, o), and a(q, o) be
common ancestors of these pairs of nodes, respectively.

• If the depth of a(p, q) is larger than the depth of a(p, o)
and a(q, o) then the preference list of p determines q to
be closer to p than to o.

• If the depth of a(p, q) and a(p, o) is equal then the relative
ordering of q and o in the preference list of p is arbitrary
(w.l.o.g., it may be chosen lexicographically).

We now describe a hard input distribution that satisfies the
invariant and is consistent with the ordinal preferences. Select
a random path Q between the root of T and an arbitrary node
r at depth k−1. All nodes a along that path receive the value
d(a) = D. All remaining nodes receive the value d(a) = 1.

Analysis: Note that, for any two trees sampled from the
distribution, the values assigned to the interior nodes satisfy
Invariant 5.2 and thereby induce a metric on the set of leaf
nodes. Since the ordinal preferences are independent from
these values, the two trees cannot be distinguished using the
ordinal information.

We now determine an optimal k-center solution C. For
every interior node a in Q, the children of a form subtrees
T (a, small) and T (a, large). The root b of T (a, small) satis-
fies d(b) = 1 and the root c of T (a, large) satisfies d(c) = D.
For the largest depth interior node a in Q, we introduce the
convention that T (a, large) contains the leaf r (i.e., the end
point of Q). C now places exactly one center on an arbitrary
leaf of T (a, small) and one center on r. The cost of C is
therefore 1. Now consider any other solution C ′. If C ′ does
not place a center on r, then the cost of C ′ is D. Otherwise,
there must exist some a ∈ Q for which T (a, small) does not
receive a center. Hence, the points in T (a, small) must be
served by some center contained in T (a, large) or by a point
not contained in the subtree rooted at a. In both cases, the
cost of these points is D.

To conclude, it now suffices to analyze the performance
of the best deterministic algorithm placing K centers against
this hard input distribution. Since the algorithm does not
make any queries and cannot determine Q based on the ordi-
nal information, its choice of centers is fixed. There are 2k−1

many different nodes at depth k − 1. Hence, the probability
that K includes the leaf node r is K/2k−1. Conversely, if
K /∈ Ω(2k) then the probability that K does not include r is
at least constant, which leads to a distortion of D.

Finally, we remark on some generalizations of this lower
bound. For the low query regime, an algorithm needs to
find the entire path Q or, equivalently, identify the leaf r.
If it decides to not do so then with probability at least 1

2 it
will have unbounded distortion of D. Again, consider the
performance of the best deterministic algorithm against the
input distribution. Given that T is a binary tree, at least one
query queries is required to reduce the search space for Q
(equivalently, for r) by a factor of 1

2 in expectation. Hence,

if the algorithm does not make Ω(k) queries, its distortion is
unbounded.

Next, we give a different lower bound for any bicriteria al-
gorithm for k-median. Specifically, we show that any bicrite-
ria algorithm for k-median requires Ω(2k log n) centers. For
2-median, this becomes Ω(log n), which stands in contrast
with 2-center, where we can obtain a true 2-distortion using
only ordinal information (see Theorem 3.2). We also show
that there exists a slow growing function g(n) increasing in
n for every fixed k such that any bicriteria algorithm requires
g(n)k many queries. Moreover, g(n) may be lower bounded
by 2log

∗ n, though somewhat higher bounds are likely possi-
ble using our construction. We conjecture that the true lower
bound is (log n)k.

Theorem 5.3. For any fixed α, every bicriteria algorithm
A for k-median that has distortion less than α with at least
constant probability must return a solution of size at least
Ω
(

logn
logα · 2

k
)

. Moreover, any algorithm achieving a con-
stant factor approximation for k-median must make at least
Ω(k + log log n) queries.

Theorem 5.4. For any fixed α and every fixed k, every bicri-
teria algorithm A for k-median that has distortion less than
α with at least constant probability must return a solution
of size at least Ω

((
2log

∗ n
)k−1

)
. The number of queries to

achieve a constant distortion is at least Ω(k · 2log∗ n).

Finally, we return to the facility location problem. We are
interested in lower-bounding the number of queries necessary
to achieve any given distortion. Using no queries, it is not
possible to obtain bounds on the distortion (Anshelevich and
Zhu 2021) beyond the trivial O(n) bound. Our lower bound
essentially shows that Ω(n) queries are necessary to achieve
constant distortion, making the adaptation of Meyerson’s
algorithm optimal.

Theorem 5.5. For any fixed α, every algorithmA for facility
location that has distortion less than α with at least constant
probability must make Ω

(
n
α

)
distance queries.

6 Conclusion and Open Problems
We gave optimal algorithm for computing bicriteria approxi-
mations for k center both in terms of the number of distance
queries as well as number of additional centers in the purely
ordinal setting. Additionally, we gave optimal lower bounds
for facility location and substantially improved low query
and purely ordinal bicriteria algorithms for k-median.

Aside from closing the small remaining gaps left in our
analysis, several interesting open problems present them-
selves. First, our bicriteria algorithm simultaenously achieves
small distortion for all (k, z) clustering. Another popular
way to interpolate between k-median and k-center is ordered
clustering Byrka, Sornat, and Spoerhase (2018); Chakrabarty
and Swamy (2018). Is it possible to achieve low distortion
algorithms for this problem as well?

Furthermore, there exist many other clustering objectives,
such as graph clustering. Which distortion/query tradeoffs
are possible for sparsest cut and metric max cut?
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Bhattacharya, A.; Eube, J.; Röglin, H.; and Schmidt, M. 2020.
Noisy, Greedy and Not so Greedy k-Means++. In Proceed-
ings of the 28th Annual European Symposium on Algorithms
(ESA), 18:1–18:21.
Borodin, A.; Lev, O.; Shah, N.; and Strangway, T. 2019.
Primarily about Primaries. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), 1804–1811.
Byrka, J.; Sornat, K.; and Spoerhase, J. 2018. Constant-
Factor Approximation for Ordered k-Median. In Proceedings
of the 50th Annual ACM Symposium on Theory of Computing
(STOC), 620–631.
Caragiannis, I.; and Procaccia, A. D. 2011. Voting Almost
Maximizes Social Welfare Despite Limited Communication.
Artificial Intelligence, 175(9-10): 1655–1671.
Caragiannis, I.; Shah, N.; and Voudouris, A. A. 2022. The
Metric Distortion of Multiwinner Voting. In Proceedings of
the 36th AAAI Conference on Artificial Intelligence (AAAI),
4900–4907.
Chakrabarty, D.; and Swamy, C. 2018. Interpolating be-
tween k-Median and k-Center: Approximation Algorithms
for Ordered k-Median. In Proceedings of the 45th Interna-
tional Colloquium on Automata, Languages, and Program-
ming (ICALP), 29:1–29:14.
Charikar, M.; and Ramakrishnan, P. 2022. Metric Distortion
Bounds for Randomized Social Choice. In Proceedings of the
33rd ACM-SIAM Symposium on Discrete Algorithms (SODA),
2986–3004.
Charikar, M.; Ramakrishnan, P.; Wang, K.; and Wu, H.
2023. Breaking the Metric Voting Distortion Barrier. CoRR,
abs/2306.17838.
Cheng, Y.; Dughmi, S.; and Kempe, D. 2017. Of the People:
Voting Is More Effective with Representative Candidates. In
Proceedings of the 18th ACM Conference on Economics and
Computation (EC), 305–322.
Cheng, Y.; Dughmi, S.; and Kempe, D. 2018. On the Dis-
tortion of Voting With Multiple Representative Candidates.
In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 973–980.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9562



Choo, D.; Grunau, C.; Portmann, J.; and Rozhon, V. 2020. k-
Means++: Few More Steps Yield Constant Approximation. In
Proceedings of the 37th International Conference on Machine
Learning, (ICML), 1909–1917.
Cohen-Addad, V.; C. S., K.; and Lee, E. 2021. On Approx-
imability of Clustering Problems Without Candidate Centers.
In Proceedings of the 32nd ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2635–2648.
Cohen-Addad, V.; Feldmann, A. E.; and Saulpic, D. 2021.
Near-linear Time Approximation Schemes for Clustering in
Doubling Metrics. Journal of the ACM, 68(6): 44:1–44:34.
Cohen-Addad, V.; Grandoni, F.; Lee, E.; and Schwiegelshohn,
C. 2023. Breaching the 2 LMP Approximation Barrier for
Facility Location with Applications to k-Median. In Pro-
ceedings of the 34th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 940–986.
Cohen-Addad, V.; Gupta, A.; Hu, L.; Oh, H.; and Saulpic, D.
2022. An Improved Local Search Algorithm for k-Median. In
Proceedings of the 33rd ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1556–1612.
Cohen-Addad, V.; Klein, P. N.; and Mathieu, C. 2019. Local
Search Yields Approximation Schemes for k-Means and k-
Median in Euclidean and Minor-Free Metrics. SIAM Journal
on Computing, 48(2): 644–667.
Cohen-Addad, V.; Saulpic, D.; and Schwiegelshohn, C. 2021.
Improved Coresets and Sublinear Algorithms for Power
Means in Euclidean Spaces. In Proceedings of the 34th An-
nual Conference on Neural Information Processing Systems
(NeurIPS), 21085–21098.
Cohen-Addad, V.; and Schwiegelshohn, C. 2017. On the
Local Structure of Stable Clustering Instances. In Proceed-
ings of the 58th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), 49–60.
Feldman, M.; Fiat, A.; and Golomb, I. 2016. On Voting
and Facility Location. In Proceedings of the 17th ACM
Conference on Economics and Computation (EC), 269–286.
Filos-Ratsikas, A.; Micha, E.; and Voudouris, A. A. 2020.
The Distortion of Distributed Voting. Artificial Intelligence,
286: 103343.
Friggstad, Z.; Rezapour, M.; and Salavatipour, M. R. 2019.
Local Search Yields a PTAS for k-Means in Doubling Met-
rics. SIAM Journal on Computing, 48(2): 452–480.
Gkatzelis, V.; Halpern, D.; and Shah, N. 2020. Resolving the
Optimal Metric Distortion Conjecture. In Proceedings of the
61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1427–1438.
Goel, A.; Krishnaswamy, A. K.; and Munagala, K. 2017.
Metric Distortion of Social Choice Rules: Lower Bounds
and Fairness Properties. In Proceedings of the 18th ACM
Conference on Economics and Computation (EC), 287–304.
Gonzalez, T. F. 1985. Clustering to Minimize the Maximum
Intercluster Distance. Theoretical Computer Science, 38:
293–306.
Gowda, K. N.; Pensyl, T. W.; Srinivasan, A.; and Trinh, K.
2023. Improved Bi-point Rounding Algorithms and a Golden
Barrier for k-Median. In Proceedings of the 34th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 987–1011.

Grunau, C.; Özüdogru, A. A.; Rozhon, V.; and Tetek, J. 2023.
A Nearly Tight Analysis of Greedy k-means++. In Pro-
ceedings of the 34th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1012–1070.
Jain, K.; Mahdian, M.; and Saberi, A. 2002. A New Greedy
Approach for Facility Location Problems. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing
(STOC), 731–740.
Jain, K.; and Vazirani, V. V. 2001. Approximation Algorithms
for Metric Facility Location and k-Median Problems using
the Primal-Dual Schema and Lagrangian Relaxation. Journal
of the ACM, 48(2): 274–296.
Kempe, D. 2020. An Analysis Framework for Metric Vot-
ing based on LP Duality. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), 2079–2086.
Lattanzi, S.; and Sohler, C. 2019. A Better k-means++ Algo-
rithm via Local Search. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), 3662–3671.
Li, S. 2013. A 1.488 Approximation Algorithm for the Unca-
pacitated Facility Location Problem. Information and Com-
putation, 222: 45–58.
Li, S.; and Svensson, O. 2016. Approximating k-Median via
Pseudo-Approximation. SIAM Journal on Computing, 45(2):
530–547.
Makarychev, K.; Reddy, A.; and Shan, L. 2020. Improved
Guarantees for k-means++ and k-means++ Parallel. In Pro-
ceedings of the 33rd Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS).
Meyerson, A. 2001. Online Facility Location. In Proceedings
of the 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), 426–431.
Munagala, K.; and Wang, K. 2019. Improved Metric Distor-
tion for Deterministic Social Choice Rules. In Proceedings
of the 20th ACM Conference on Economics and Computation
(EC), 245–262.
Pierczynski, G.; and Skowron, P. 2019. Approval-Based Elec-
tions and Distortion of Voting Rules. In Proceedings of the
28th International Joint Conference on Artificial Intelligence
(IJCAI), 543–549.
Procaccia, A. D.; and Rosenschein, J. S. 2006. The Distortion
of Cardinal Preferences in Voting. In Proceedings of the 10th
International Workshop on Cooperative Information Agents
(CIA), 317–331.
Pulyassary, H. 2022. Algorithm Design for Ordinal Settings.
Master’s thesis, University of Waterloo.
Rozhon, V. 2020. Simple and Sharp Analysis of k-means||. In
Proceedings of the 37th International Conference on Machine
Learning (ICML), 8266–8275.
Wei, D. 2016. A Constant-Factor Bi-Criteria Approximation
Guarantee for k-means++. In Proceedings of the 29th An-
nual Conference on Neural Information Processing Systems
(NeurIPS), 604–612.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9563


