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Abstract

Researchers building behavioral models, such as behavioral
game theorists, use experimental data to evaluate predictive
models of human behavior. However, there is little agreement
about which loss function should be used in evaluations, with
error rate, negative log-likelihood, cross-entropy, Brier score,
and squared L2 error all being common choices. We attempt
to offer a principled answer to the question of which loss
functions should be used for this task, formalizing axioms
that we argue loss functions should satisfy. We construct a
family of loss functions, which we dub “diagonal bounded
Bregman divergences”, that satisfy all of these axioms. These
rule out many loss functions used in practice, but notably
include squared L2 error; we thus recommend its use for
evaluating behavioral models.

1 Introduction
Theoretical models of decision-making are often poor descrip-
tions of behavior in practice. As a prime example, classic
economic models such as Nash equilibrium fail to describe
salient aspects of human behavior: people often choose dom-
inated actions (Goeree and Holt 2001) and fail to account
for others’ strategic decision making (Kneeland 2015). In re-
sponse to such failures, fields such as behavioral game theory
aim to develop interpretable models that can predict human
responses to strategic situations. Such models are helpful to
cognitive scientists, for learning how humans think when con-
fronted with economic or strategic choices; to designers of
economic systems, for tuning these systems to perform better
in practice; and to designers of cooperative AI agents, for
enabling these agents to effectively coordinate their behavior
with humans (Hu et al. 2020; Carroll et al. 2019).

However, evaluating the quality of such a model on a
dataset requires a loss function. Researchers working in be-
havioral game theory have made a wide variety of different
choices about precisely which loss function to use for such
evaluations, with error rate, negative log-likelihood, cross-
entropy, and (at least two notions of) mean-squared error all
being common choices. Clearly, the choice is a substantive
one, as different losses will disagree about the quality of a
prediction. Which loss function should they use?
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In this paper, we attempt to answer this question with a
first-principles argument. Though we are motivated by behav-
ioral game theory—and so it is the basis of our examples—
our argument depends only on four key characteristics of this
field. First, there is some mapping of interest from settings
to distributions over finite sets of discrete outcomes (e.g.,
the distribution of human decisions in strategic situations).
Second, it is possible to collect multiple samples from this
mapping for any given setting (e.g., by running an experi-
ment with multiple participants). Third, a researcher seeks
a predictive model of this mapping, which can predict the
distribution of unseen data. Fourth, this model must also be
interpretable, having few parameters whose values can be
inspected and understood, and so it cannot generally repre-
sent the true mapping perfectly. Our arguments can therefore
be extended to other domains that share these characteristics;
we give several examples at the end of this paper.

From these characteristics, we argue that loss functions
should satisfy five key axioms. The first two, which we call
alignment axioms, ensure that the loss function induces a cor-
rect preference ordering over predictions. These axioms, sam-
ple Pareto-alignment and distributional Pareto-alignment,
ensure that the loss function penalizes predictions that are
clearly worse (on a given dataset or in expectation over re-
alizations of this data, respectively). The other three, inter-
pretability axioms, relate the numerical value of the loss to
a prediction’s quality. Empirical distribution sufficiency re-
quires that the loss be invariant to the number or order of the
observations; counterfactual Pareto-regularity ensures that
the loss appropriately respects changes in the data, and zero
minimum gives the loss an interpretable optimum.

We show that it is possible to satisfy all of these axioms: we
identify an entire family of loss functions that do so, which we
dub “diagonal bounded Bregman divergences”. Exactly one
widely used loss function, the squared L2 error between the
predicted and empirical distributions, belongs to this set; we
show how each of the other common loss functions violates
at least one axiom. In particular, the entire class of scoring
rules,1 a class of loss functions with celebrated alignment

1The term “scoring rule” has multiple definitions in the litera-
ture. We use a standard definition (e.g., Savage 1971; Gneiting and
Raftery 2007) that a scoring rule computes a loss separately for each
observation, then takes the mean of these losses (Definition 2.1).
Other authors (e.g., Abernethy and Frongillo 2012) use the term to
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properties, all fail our interpretability axioms, making them
suitable for training models but not evaluating them.

The statistician’s view: the likelihood principle. It might
seem that the problem of choosing a loss function is a straight-
forward application of statistical inference: given a dataset
and a model class that induces a set of probability distri-
butions, we seek to understand how well each distribution
describes the data. Then, the standard statistics textbook argu-
ment is that we should use the likelihood of the data to eval-
uate each of these predicted distributions. This argument is
known as the “likelihood principle” (e.g., Berger and Wolpert
1988): if the data was generated by one of the predicted
distributions, then likelihood is a sufficient statistic for this
distribution. The catch is that this argument relies on the as-
sumption that the model class is “well-specified”, containing
a model that outputs the true generating distribution. This is
not usually the case when evaluating interpretable models,
which typically approximate behavior rather than to predict it
perfectly. We elaborate further on the problem of evaluating
misspecified models when presenting our alignment axioms.

The forecaster’s view: scoring rules. Another closely re-
lated problem is that of evaluating probabilistic forecasts of
future events. Work in this field generally uses scoring rules
(e.g., Gneiting and Raftery 2007), a class of loss functions
that evaluate predictions independently on each observation.
Axiomatic characterizations from this literature agree that
losses should be proper— the expected loss should be mini-
mized by the true distribution, an axiom that we refer to in our
analysis as “distributionally proper” —but diverge beyond
this point: negative log-likelihood is the only proper scoring
rule that satisfies a locality axiom (McCarthy 1956), and two
different neutrality axioms characterize Brier score (Selten
1998) and the spherical score (Jose 2009). Our work differs
in that we propose axioms that address critical problems that
arise when evaluating behavioral models, without being con-
cerned that we are left with an entire class of loss functions.

Some authors have proposed stronger alternatives to pro-
priety. Instead of simply requiring that the correct prediction
minimize the expected loss, others have considered lower-
bounding the loss of incorrect predictions (Friedman 1983;
Nau 1985; Haghtalab, Musco, and Waggoner 2019), maximiz-
ing the loss of a naive prediction (Li et al. 2022), or ensuring
that it also receives a lower loss in finite samples with high
probability (Haghtalab, Musco, and Waggoner 2019). These
axioms focus on identifying correct predictions, while we
focus on comparing and evaluating incorrect predictions.

The field of property elicitation extends the definition of
propriety in a different way, aiming to construct loss functions
whose expectations are minimized at other summary statistics
of a distribution; propriety is the special case of eliciting the
mean. Of particular interest here is work on eliciting multiple
properties (Lambert, Pennock, and Shoham 2008; Fissler
and Ziegel 2019), as their “accuracy rewarding” and “order
sensitivity” axioms are similar to our alignment axioms. We
discuss this relationship further in Section 3.

Evaluating model classes. Our axioms are concerned with

refer to any arbitrary loss function. Of course, our results on scoring
rules only apply to the former, more restrictive definition.

evaluating individual predictions. Fudenberg et al. (2022)
tackle the related problem of evaluating a model class, con-
sidering the cross-validation performance of a training algo-
rithm that selects a model from this class. They formalize
a completeness metric, which transforms an existing loss,
giving a score of 100% to an algorithm with the best possible
cross-validation performance and 0% to a baseline algorithm.
Their work complements ours: their completeness measure
can be applied to any loss function, but they do not claim how
this loss should behave on individual datasets. We thus recom-
mend that researchers evaluating a model class should apply
completeness to a loss that satisfies our alignment axioms.

2 Setup and Existing Losses
We now give a formal description of the problem. We start by
making a simplification. While researchers generally collect
data and evaluate models on many different settings (e.g.,
games) at once, reporting a model’s aggregate performance
across these settings, we focus on evaluation in a single set-
ting. However, this simplified analysis is useful: any loss that
behaves appropriately on an arbitrary number of settings must
behave appropriately in the special case of a single setting,
so all of the loss functions we disqualify are also unsuitable
for multiple settings. We discuss the multiple-setting case
in detail in the appendix, where we provide straightforward
extensions of our axioms and results.

We model a single scenario as follows. Let A = {1, . . . , d}
be a fixed set of choices available to the decision maker being
modelled (e.g., actions available to experiment participants),
and let ∆(A) be the set of distributions over these choices,
i.e., the (d− 1)-dimensional simplex. We assume that there
exists a fixed but unknown true distribution p ∈ ∆(A) of
behavior, where the randomness in p captures both differ-
ences between individuals and randomness in their behavior.
An analyst can collect a dataset consisting of n independent,
identical draws from p, which we denote y ∼ pn, represent-
ing actions taken by distinct actors (for example, different
participants in a psychology experiment). We denote the set
of all such datasets by D(A) =

⋃∞
n=1 A

n.
The analyst is equipped with a model class, which in-

duces a set of predicted distributions F ⊆ ∆(A). As this
model class is interpretable (e.g., a parametric model with
few parameters), this inequality can generally be strict, and
F does not generally include the true distribution p. Their
goal is then to choose a model from this class that is good
at predicting the distribution of behavior on unseen data.2
To make their choice, the analyst relies on a loss function
L : ∆(A)×D(A) → R representing preferences over these
predictions: that is, L(f, y) < L(g, y) if and only if f is a
better description of the data than g. Note that our analysis
can easily be modified to handle objective functions that are
expressed in a “positive” sense: for example, it is equivalent
to maximize accuracy or minimize error rate.

We pause to define some additional notation. For any
dataset y ∈ D(A), let n(y) denote the number of obser-
vations in y (or simply n, when y is clear from context), and

2We use the terms “model” and “prediction” interchangeably, as
the model is only used to predict behavior in a single scenario.
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let p̄(y) ∈ ∆(A) be its empirical distribution: that is, for
all a ∈ A, p̄(y)a =

∑n(y)
i=1 1{yi=a}/n(y). Lastly, for any action

a ∈ A, let ea ∈ ∆(A) denote a point mass distribution on a.
While behavioral game theorists broadly take this approach

of evaluating their models with some loss function, they
largely disagree about precisely which loss function to use;
in fact, it is not uncommon for a single paper to use multiple
different losses while analyzing different experiments. To
illustrate this disagreement, we give seven examples of losses
that are common in the literature.

First, one common choice is the error rate (Fudenberg
and Liang 2019; García-Pola, Iriberri, and Kovářík 2020). It
is especially common when F consists only of deterministic
predictions, which assign probability to one action.

LErr(f, y) =
∑d

a=1 p̄(y)a(1− fa),

It is similar to mean absolute error (MAE) (Camerer, Ho,
and Chong 2004; Levin and Zhang 2019).

LMAE(f, y) = ∥f − p̄(y)∥1 =
∑d

a=1 |fa − p̄(y)a|.
These two losses are attractive because of their clearly de-
fined scale, with a loss of 0 being achieved by a prediction
that never makes mistakes (error rate) or matches the data
perfectly (MAE), and a maximum loss of 1 or 2, respectively,
by a prediction that is never correct.

Next, several common losses are based on the likelihood
of the data, given the prediction. Perhaps the most common
choice of loss in all of behavioral game theory is negative
log-likelihood (NLL) (McKelvey and Palfrey 1992; Stahl
and Wilson 1995; Wright and Leyton-Brown 2017).

LNLL(f, y) = −n
∑d

a=1 p̄(y)a log(fa).

Cross-entropy (Kolumbus and Noti 2019) differs from NLL
by a factor of n, and KL divergence further subtracts the
entropy of the dataset.

LCE(f, y) =
1
nLNLL(f, a),

LKL(f, y) = −
∑d

a=1 p̄(y)a log(
fa

p̄(y)a
).

All three of these options are rooted in statistics: they make
up the core of many statistical hypothesis tests, and all three
of them agree with the likelihood principle.

Two more losses originate from regression problems and
forecasting. One is the Brier score, frequently referred to as
mean-squared error or mean-squared deviation (Camerer, Ho,
and Chong 2004; Golman, Bhatia, and Kane 2019).

LBrier(f, y) =
1
n

∑n
i=1 ∥f − eyi∥22.

A small modification is the squared L2 error, which is often
also called MSE or MSD (Camerer, Ho, and Chong 2003;
Selten and Chmura 2008).

LL2(f, y) = ∥f − p̄(y)∥22 =
∑d

a=1(fa − p̄(y)a)
2.

Both are natural options for researchers familiar with regres-
sion problems, where it is typical to optimize a least-squares
objective. They also have roots in forecasting, as the Brier
score was originally introduced for evaluating weather fore-
casts (Brier 1950). We avoid the common but ambiguous
term “mean-squared error” to avoid confusion.

Finally, a unifying definition that ties together many losses
is the concept of a scoring rule.

Definition 2.1. (Gneiting and Raftery 2007, page 2.) A scor-
ing rule is a function S : ∆(A) × A → R that maps a
prediction f ∈ ∆(A) and a single outcome a ∈ A to a
score S(f, a). By averaging these scores over the dataset,
every scoring rule S induces a loss function LS(f, y) =
1
n

∑n
i=1 S(f, yi) =

∑
a∈A p̄(y)aS(f, a).

Scoring rules are popular due to their simple functional
form, which evaluates the prediction independently on each
observation. Their alignment properties are also the subject of
several celebrated results (Savage 1971; Gneiting and Raftery
2007), which we describe in detail in Section 5. Error rate,
negative log-likelihood, cross-entropy, and Brier score are
scoring rules; MAE, KL, and squared L2 are not.

3 Formalizing an Ideal Loss Function
Each loss function from the previous section captures the
quality of a prediction on a dataset with a single number,
inducing preferences over these predictions. Of course, these
loss functions will not always agree with each other about
how to order different predictions. Is each loss an equally
acceptable choice? To answer this question, we turn to an
axiomatic analysis, formalizing axioms that a loss function in
a behavioral setting ought to obey. We aim to identify axioms
that are as weak as possible, only disqualifying loss functions
that exhibit clearly objectionable behavior.

Our axioms can be grouped according to two distinct roles
that a loss function serves in describing the quality of a pre-
diction. First, loss functions are used to compare models
within a fixed experimental setting. This occurs both during
training, when a modeller aims to minimize expected loss on
future data; and when evaluating models on a given dataset,
comparing losses to see which model achieves the best per-
formance. Our alignment axioms address this case, requir-
ing that the loss correctly orders predictions in cases where
quality disparities are unambiguous; both are extensions of
already standard propriety axioms. Second, loss functions are
used to understand model performance more broadly; studies
report losses and these values are interpreted as conveying
information about how well a given model captured human
behavior. Our interpretability axioms ensure that the loss
can indeed be understood in this way, having a well-defined
reference point and changing coherently as the data varies.

Alignment axioms. Our first alignment axiom pertains to
the training process. While training a predictive model, a
modeller’s goal is to select a prediction that has low expected
test loss over new, unseen data. Thus, if one model better fits
the data than another, it should receive a lower expected loss.

What do we mean by “better”? Reasonable people disagree
about many comparisons between models, but some are unar-
guable. For instance, a perfect prediction—one that exactly
matches the data generating process—is better than an imper-
fect one. A standard axiom known as Propriety captures this
intuition, requiring that a perfect prediction minimizes the ex-
pected loss. To distinguish it from a Sample Propriety axiom
that will follow, we refer to it as Distributional Propriety.
Axiom (Distributional Propriety (DP)). For all predictions
f ∈ ∆(A) and all n ≥ 1, p ∈ ∆(A), f ̸= p =⇒
Ey∼pn L(p, y) < Ey∼pn L(f, y).
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Unfortunately, Distributional Propriety is insufficient for
interpretable models: there is often no model in a given class
that is able to output an arbitrary distribution. We thus impose
a stronger requirement that implies Distributional Propriety:
that we should prefer one (potentially imperfect) prediction to
another whenever the first is an unambiguously better fit. We
formalize this idea with the notion of a Pareto improvement,
which we will use extensively in what follows.
Definition 3.1 (Pareto improvement). Let p, q, r ∈ ∆(A) be
three distributions. We say that q is a Pareto improvement
over p with respect to r, denoted by q ≻r p, if for all a ∈ A,
either pa ≤ qa ≤ ra or pa ≥ qa ≥ ra, and furthermore this
inequality between pa and qa is strict for at least one a.

In other words, q is a Pareto improvement over p if q is
at least as close to r as p in every dimension, and strictly
closer to r in some dimension. Then, if one prediction is a
Pareto improvement over another with respect to the true
distribution—i.e., its predicted probabilities are uniformly
closer to the truth—it should receive a lower expected loss.
Axiom (Distributional Pareto-Alignment (DPA)). For all pre-
dictions f, g ∈ ∆(A), n ≥ 1, and p ∈ ∆(A), f ≻p g =⇒
Ey∼pn L(f, y) < Ey∼pn L(g, y).

A similar axiom was proposed by Lambert, Pennock, and
Shoham (2008) under the name “accuracy-rewarding”, and
by Fissler and Ziegel (2019) under the name “order sensitive”.
There is only one difference: in their settings, a prediction
is a vector in Rd, containing independent predictions for
d different summary statistics of the dataset. Because our
predictions lie on the simplex, they are not independent in
this way: e.g., predicting that one action has a probability of
1 constrains the predictions for all other actions to be 0.

Next, we consider the situation where two models’ predic-
tions are compared to each other on a fixed dataset. This, too,
is a fundamental step in behavioral modelling: to evaluate a
proposed model, one must compare its predictions to other
existing models on some dataset to understand whether their
proposal better captures human behavior. Here, if one model
fits the data better than another, it should receive a lower loss.

As with DP, it is standard to insist that the loss must be
minimized when the empirical distribution is reported.
Axiom (Sample Propriety (SP)). For all predictions f ∈
∆(A) and sampled datasets y ∈ D(A), f ̸= p̄(y) =⇒
L(p̄(y), y) < L(f, y).

As above, though, Sample Propriety is insufficient for
interpretable models. In this case, it is necessary to prefer
predictions that are clearly closer to the empirical distribu-
tion, accurately reflecting improvements even away from the
optimum. We capture this intuition with a second alignment
axiom, which we refer to as Sample Pareto-Alignment.
Axiom (Sample Pareto-Alignment (SPA)). For all predictions
f, g ∈ ∆(A) and sampled datasets y ∈ D(A), f ≻p̄(y)

g =⇒ L(f, y) < L(g, y).

In the same way as DPA implies DP, SPA implies SP.
Interpretability axioms. Our alignment axioms constrain

how the loss may vary as the prediction varies. Our next ax-
ioms constrain how the loss may vary as the data varies. Such

constraints are important for ensuring that loss represents an
understandable measurement of a prediction’s quality.

Because it is possible to evaluate a model on multiple ob-
servations, one simple way that the data could be changed
is simply by observing the same empirical distribution with
a different set of observations. This could happen if an ex-
perimenter made the same observations in a different order,
or collected twice as many observations. Since each observa-
tion is independent (e.g., representing an independent trial
with a distinct participant), we argue that the loss should be
unaffected by such changes to the data.
Axiom (Empirical Distribution Sufficiency (EDS)). For all
datasets y, y′ ∈ D(A) and predictions f ∈ ∆(A), p̄(y) =
p̄(y′) =⇒ L(f, y) = L(f, y′).

This implies a weaker axiom of exchangeability—that
permuting the observations does not affect the loss—which
is a standard assumption in statistics (e.g., Easton 1989).

What if the dataset varies in a more substantial way? For
example, one might replicate an experiment with another
group of participants, producing a new set of observations for
the same setting, or run slight variations to an experiment to
assess their impact on the quality of a model (Goeree and Holt
2001). In both cases, it would be undesirable if the change
in the data could cause the prediction to clearly decrease in
quality, but be awarded a better loss.

As with varying predictions, there are many ways in which
datasets could vary for which reasonable people could dis-
agree about whether the same prediction ought to receive a
higher or lower loss. However, we can again leverage the
insight that Pareto improvements are unambiguously better:
holding a prediction fixed, if the empirical probabilities of
the data are brought closer to the predictions for at least some
actions and further in none, it is clear that this dataset is better
described by the prediction. In such cases, we require that
the loss must also improve.
Axiom (Counterfactual Pareto-Regularity (CPR)). Let f ∈
∆(A) be a fixed prediction. Suppose that y, y′ ∈ D(A)
are two datasets of equal size, where n(y) = n(y′). Then
p̄(y) ≻f p̄(y′) =⇒ L(f, y) < L(f, y′).

Note that this axiom leverages the discrete outcome space,
as it does not obviously generalize to arbitrary distributions.

Up to this point, all of the axioms have only described
equalities or inequalities between certain pairs of losses.
None have constrained the precise numerical values of the
losses: indeed, if L satisfies all of these axioms, then any pos-
itive affine transformation aL+b (with a > 0) does too. This
leaves users with a choice of how to set these two degrees
of freedom. We propose to use this freedom to constrain the
minimum loss, requiring that a perfect prediction achieves
a loss of zero (which must be the loss function’s minimum,
by SP). This makes the loss easier to interpret: when the ana-
lyst has multiple observations in the same setting, it removes
the possibility for irreducible error, where even a perfect
prediction could get a positive loss.
Axiom (Zero-Minimum (ZM)). For all y ∈ D(A),
L(p̄(y), y) = 0.

ZM is admittedly the most subjective of our axioms: for
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example, on some problems, it might be reasonable to anchor
the loss to a different baseline, such as a uniform random
prediction. However, its addition is inconsequential when
analyzing existing loss functions: in Section 5, we show that
each commonly used loss that violates ZM also violates CPR.

4 Diagonal Bounded Bregman Divergences
With these desiderata in mind, the obvious question is: are
there loss functions that satisfy all of our axioms? In this sec-
tion, we provide a positive answer. We first appeal to existing
results to show that even asking for a subset of the axioms
gives these loss functions considerable structure: Bregman
divergences are essentially the only losses that satisfy SP, DP,
EDS, and ZM. Narrowing down this class further, we identify
a family of losses, which we coin diagonal bounded Bregman
divergences, that each satisfy our whole set of axioms (SPA,
DPA, CPR, EDS, and ZM).

Let us now make these claims more precise. We first de-
fine a Bregman divergence. Let R denote the extended real
numbers R∪{±∞}, and adopt the convention that 0 ·∞ = 0.
Definition 4.1. Let B : C → R be a closed and proper
strictly convex function on a convex set C ⊆ Rk. Then a
subgradient of B is a function dB : C → R

k
such that

B(x)−B(x0) ≥ dB(x0)
T (x− x0)

for all x0, x ∈ C. If B is also differentiable, it has a unique
subgradient ∇B on the interior of C.

Definition 4.2. Given a closed and proper strictly convex
function B : C → R and subgradient dB of B, the Bregman
divergence ∇(B,dB) : C × C → R≥0 of B and dB is

∇(B,dB)(p, q) = B(p)−B(q)− dB(q)T (p− q).

We now leverage existing work from the field of prop-
erty elicitation. Abernethy and Frongillo (2012) show that
essentially all loss functions satisfying DP are equivalent
to Bregman divergences between a summary statistic of the
dataset and the prediction, up to a translation by a function
of the data. This immediately yields the following result.
Theorem 4.3 (Corollary of Theorem 11 of Abernethy and
Frongillo (2012), informal). For any n, under mild technical
conditions, a loss function L that satisfies DP must be of the
form L(f, y) = ∇(B,dB)(ρ(y), f) + c(y) for some closed
and proper strictly convex function B, subgradient dB of B,
translation c : An → R, and summary statistic ρ : An →
∆(A), where Ey∼pn ρ(y) = p for all p.

We extend this result, showing that the SP and ZM axioms
additionally determine c and ρ, and that the EDS axiom
removes the dependence on n. In other words, essentially
every loss function satisfying DP, SP, ZM, and EDS is a
Bregman divergence between the empirical distribution and
the prediction.
Theorem 4.4 (Informal). Under mild technical conditions, a
loss function L satisfies SP and DP if and only if L(f, y) =
∇(B(n),dB(n))(p̄(y), f)+ c(y) for some family of closed and
proper strictly convex functions B with subgradients dB and
some translation c. Additionally, L satisfies ZM if and only

if c(y) = 0 for all y, and L further satisfies EDS if and only
if there is some convex function B and subgradient dB such
that B(n) = B and dB(n) = dB for all n.

We defer a formal statement and proof of Theorem 4.4
to the appendix, as describing the technical conditions on
L takes care. The proof obtains L satisfying DP from The-
orem 11 of Abernethy and Frongillo (2012), then applies
standard facts about Bregman divergences to show that the
additional axioms constrain ρ, c, and B as described. The
reverse direction follows from standard observations from
convex analysis.

However, not all Bregman divergences satisfy our re-
maining axioms SPA, DPA, and CPR. For example, taking
B(f) =

∑d
a=1 fa log fa recovers the KL divergence; we will

show in Section 5 that this does not satisfy SPA. Our main
result is that all of our axioms are satisfied by the restricted
set of diagonal bounded Bregman divergences.
Definition 4.5 (Diagonal bounded Bregman divergence
(DBBD)). Let b : [0, 1] → R be a continuously differentiable
convex function where b′ is bounded on [0, 1]. Let Bb(x) =∑

i b(xi) for x ∈ [0, 1]d. Then, a diagonal bounded Bregman
divergence is a loss function L : ∆(A)×D(A) → R, where
L(f, y) = ∇(Bb,∇Bb)(p̄(y), f).

Theorem 4.6. If L is a DBBD, then L satisfies SPA, DPA,
EDS, CPR, and ZM.

We again defer the proof to the appendix. Briefly, EDS is
trivial; ZM follows from Theorem 4.4; SPA, DPA, and CPR
leverage the diagonal structure and convexity of Bb.

5 Evaluating Existing Loss Functions
We now revisit the loss functions introduced in Section 2. It is
straightforward to see that squared L2 error is a DBBD (with
b(x) = x2) and so it satisfies all of the axioms. Each other
loss function violates at least one axiom (Table 1). We give
an example for each loss below, showing that each axiom
violation leads to undesirable results under reasonable condi-
tions. We also demonstrate many of these axiom violations
on real behavioral data in the appendix.

Error rate. Error rate violates every axiom except EDS.
We show that error rate violates both SP and ZM with the
following example.
Example 5.1. Consider a game in which a player can choose
between two actions, “defect” and “cooperate”. Suppose
that in the true distribution of human play, two-thirds of play-
ers defect: p = (2/3, 1/3). In an experiment with 10 distinct
participants, an analyst finds that 6 chose to defect, while
the remaining 4 chose to cooperate, yielding an empirical
distribution of p̄(y) = (0.6, 0.4). Letting (f, 1 − f) be a
prediction in this setting, the error rate on this dataset is

LErr(f, y) = 1− 0.6f − 0.4(1− f) = 0.6− 0.2f.

This expression is minimized by the prediction f = 1, which
has an error rate of 0.4. In particular, this prediction achieves
a lower error rate than reporting the empirical distribution,
which has an error rate of LErr(p̄(y), y) = 0.48.
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Axiom Erro
r rat

e

MAE
NLL

Cross-
entro

py

KL diverg
ence

Brie
r sco

re

Square
d L2 err

or

Sample Pareto-Alignment (SPA) – ✓ – – – ✓ ✓
Sample Propriety (SP) – ✓ ✓ ✓ ✓ ✓ ✓

Distributional Pareto-Alignment (DPA) – – – – – ✓ ✓
Distributional Propriety (DP) – – ✓ ✓ ✓ ✓ ✓

Empirical Distribution Sufficiency (EDS) ✓ ✓ – ✓ ✓ ✓ ✓
Counterfactual Pareto-Regularity (CPR) – ✓ – – – – ✓

Zero Minimum (ZM) – ✓ – – ✓ – ✓

Table 1: Existing losses and their status under the axioms.

This example illustrates a general problem: for any dataset,
the error rate is minimized by predicting the mode, giving
more credit to predictions that overestimate the probability
of the most likely action.

Mean absolute error. MAE satisfies both SPA and ZM,
but does not satisfy DPA or DP. In some cases, a model that
predicts the true population distribution gets worse expected
MAE on unseen data than an incorrect prediction.

Example 5.2. Suppose, as in Example 5.1, that the true dis-
tribution is p = (2/3, 1/3). However, now suppose that the
dataset is not yet available; all that is known is that it consists
of 10 independent observations sampled from p. Then, the ex-
pected loss of predicting (f, 1− f) is 2Ey∼p10 |f − p̄(y)D|,
where 10p̄(y)D, the number of participants that defect, is a
Binomial random variable with parameters n = 10, p = 2/3.
This expected loss is minimized by predicting the median of
p̄(y)D, which is 0.7. In particular, this prediction receives an
expected loss of 0.235, which is lower than the expected loss
of 0.243 achieved by predicting the true distribution.

This example, too, generalizes: in any setting with two ac-
tions, the expected loss is minimized by reporting the median
of the empirical probability distribution, which is generally
not equal to p. In other words, if a model is designed to mini-
mize expected loss, MAE fails to elicit the true distribution.

Negative log-likelihood. NLL is the only loss that violates
EDS, which we show in the following example.

Example 5.3. A second experimenter attempts to repro-
duce the results from Example 5.1. They first fit a model
to the existing dataset y, which has an empirical distribution
of p̄(y) = (0.6, 0.4). Their model fits perfectly, returning
the exact empirical distribution and getting a negative log-
likelihood of LNLL(p̄(y), y) = 2.9. They then collect their
own dataset y′, re-running the experiment with a different set
of 20 participants; they find that 12 defect and 8 cooperate,
resulting in the same empirical distribution. Although their
model still fits the data perfectly, they are surprised to see
that it now receives a higher loss of LNLL(p̄(y

′), y′) = 5.8.

In general, negative log-likelihood scales linearly with the
number of observations in the dataset, as it takes a sum over
the observations rather than an average.

Cross-entropy and Brier score. We group the next two
losses together as they suffer from the same key issue: they
violate both CPR and ZM.
Example 5.4. Undeterred, our experimenter from Exam-
ple 5.3 considers different loss functions. Using Brier score
and cross-entropy to evaluate their perfect model on the orig-
inal dataset, they obtain losses of

LBrier(p̄(y), y) = 0.48; LCE(p̄(y), y) = 0.29.

They collect a third dataset y′′; these 10 participants are
quite different, with 9 defecting and only one cooperating.
They are surprised to find that, despite failing to predict this
new dataset perfectly, their model receives lower losses of

LBrier(p̄(y), y
′′) = 0.36; LCE(p̄(y), y

′′) = 0.24.

The first dataset in this example demonstrates violations of
ZM: there is no indication that the model has made a perfect
prediction, leaving it unclear to the experimenter whether
there is room for improvement. In general, the both losses
have a non-zero minimum as long as the dataset has two
distinct observations. The second dataset shows violations of
CPR: it intuitively appears that the model is now better, even
though it no longer outputs the correct distribution.

KL divergence. The KL divergence is a translated version
of cross-entropy that satisfies ZM, but not SPA, DPA, or CPR.
The key issue is that KL divergence gives infinite losses at the
boundary. That is, when a model predicts that an action has
zero probability of being selected, but the action is observed
in the data, that model will have an infinite KL divergence.
This leads to situations such as the following.
Example 5.5. Now, suppose that there are three actions,
with a true distribution of p = (0.001, 0.199, 0.8), and that
among 100 participants we observe y = (1, 19, 80), yielding
an empirical distribution of p̄(y) = (0.01, 0.19, 0.80). Con-
sider comparing two predictions on this dataset: the very
coarse prediction of f = (0, 1, 0) and the far more precise
f ′ = (0, 0.2, 0.8). Although f ′ is a better prediction, as it is
closer to p̄(y) than f on both the second and third actions,
both receive equal losses of LKL(f, y) = LKL(f

′, y) = ∞.
In general, when every action appears at least once in the

dataset, KL divergence assesses every prediction that places
0 probability on any action as equally bad, and considers all
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of these predictions to be worse than any prediction having
full support. This is a serious problem, as it is common for
every action to be played at least once in sufficiently large
behavioral datasets. This makes it difficult to evaluate classi-
cal economic predictions, such as Nash equilibrium, which
assign 0 probability to many actions. To avoid this issue,
some researchers (e.g., Stahl and Wilson 1994) perturb the
predictions of such models to yield finite losses, but in doing
so introduce an important new parameter and sacrifice the
ability to evaluate the original models.

Scoring rules. Recall that error rate, cross-entropy, nega-
tive log-likelihood, and Brier score each violated the ZM and
CPR axioms. It turns out that these failures are common to
all scoring rules, implying that scoring rules should not be
used to report model performance.
Proposition 5.6. Every scoring rule that satisfies SPA vio-
lates ZM. Moreover, no scoring rule satisfies CPR.

We defer the proof to the appendix. Intuitively, since scor-
ing rules must consider each sample independently, they must
treat every sample as if it were the entire dataset. Then, in
order to satisfy SPA, scoring rules must give positive losses
to every nondeterministic prediction, causing them to violate
the ZM axiom. Moreover, scoring rules are linear in the em-
pirical probabilities p̄(y) (Definition 2.1). Any such linear
function is minimized at one of its boundaries, meaning that
it is not uniquely minimized at p̄(y) = f unless p̄(y) is a unit
vector; hence, all scoring rules violate CPR.

However, scoring rules do not necessarily violate the align-
ment axioms. In fact, for every Bregman divergence, there
is a scoring rule that gives the same difference in losses be-
tween any two predictions on every dataset. For example, this
relationship holds between the Brier score and squared L2
error. To state this fact more generally, we recall a classic
result characterizing the set of scoring rules satisfying DP.
Theorem 5.7. (Gneiting and Raftery 2007, Theorem 1.) A
scoring rule satisfies DP if and only if there exists a strictly
convex function B : ∆(A) → R and subgradient dB such
that, for all f ∈ ∆(A) and a ∈ A,

S(f, a) = −B(f)− dB(f)T (ea − f).

Furthermore, every such scoring rule satisfies SP.
Now, suppose that L(f, y) = ∇(B,dB)(p̄(y), f) is a Breg-

man divergence, and consider the alternative loss L′(f, y) =
L(f, y) + c(y), where c(y) is an arbitrary function that de-
pends only on the data. This additive shift maintains the dif-
ference in losses between any two models on every dataset,
and it is straightforward to show that it does not affect the
status of any of the alignment axioms. In particular, setting
c(y) = −B(p̄(y)) makes L′(f, y) a scoring rule.

What’s more, these scoring rules are computationally eas-
ier to minimize than their corresponding DBBDs. Scoring
rules can be computed without explicitly calculating p̄(y),
making them ideal for large datasets, as the loss can be evalu-
ated without loading the entire dataset into memory at once.
Therefore, we do not recommend against the use of scoring
rules for model training—it may often be a good idea! We
simply argue that researchers should use a corresponding
DBBD when evaluating model performance.

6 Conclusions
Our goal in this paper was to identify suitable loss func-
tions for evaluating behavioral models. We took an axiomatic
approach, developing axioms describing alignment and inter-
pretability properties that such a loss function should satisfy.
We showed that almost all of the loss functions used in the
field of behavioral game theory, including the entire class of
scoring rules, violate at least one of these axioms. However,
it is indeed possible to construct loss functions that satisfy
all of our axioms: we identified a large class—the diagonal
bounded Bregman divergences—that does. Thus, we advo-
cate that behavioral modelling work use one of these loss
functions, with the squared L2 error as a natural incumbent.

Although our motivation comes from behavioral game
theory, recall that our arguments rely only on four character-
istics of the field: the existence of a mapping from settings
to finite, discrete distributions; the ability to obtain multiple
observations for any setting; the goal of finding predictive
models; and the need for these models to be interpretable.
Thus, our work provides guidance not only to behavioral
game theorists, but to other researchers whose fields share
these characteristics. We are aware of examples in behav-
ioral economics (Plonsky et al. 2019; Agrawal, Peterson, and
Griffiths 2020) and further afield in psychology (Busemeyer
and Townsend 1993) and operations research (Hensher and
Ton 2000; Brenner, Wu, and Amin 2022), and believe that
there are yet more potential applications in political science
and ecology. We hope that our axiomatic view can help re-
searchers across these disparate areas evaluate and interpret
the performance of their models.

Limitations and Future Work. All four of the character-
istics played a role in our analysis: finite discrete distribu-
tions allowed us to formalize CPR; multiple observations
motivated EDS and ZM; predictive models motivated DP and
DPA; and interpretable models motivated DPA and SPA. This
makes it clear that DP and DPA are not intended for descrip-
tive modelling work, which focuses only on in-sample fit,
and that DPA and SPA are unnecessary for evaluating high-
capacity uninterpretable models such as deep neural nets,
where propriety is sufficient. The impact of our interpretabil-
ity axioms is also limited, as they are not well motivated
for modelling continuous distributions, such as energy con-
sumption or climate variables, or in cases where only one
sample can be observed, such as forecasting precipitation
types. It would be valuable to extend our results to these
fields by developing suitable analogues of our axioms, lifting
the need for discrete distributions or finding principled ways
to aggregate similar observations.

Is it possible to make a theoretical argument for a single
best loss function? If so, the path forward is to identify ad-
ditional desirable axioms for loss functions in behavioral
research. For example, on “rock-paper-scissors” experiments,
one might insist that loss functions be agnostic to the actions’
identities, ensuring that they do not treat “rock” differently
from “paper” or “scissors”. Making compelling arguments
for new axioms and understanding how they narrow down
the space of permissible losses—indeed, whether any remain
at all—is a valuable direction for future work.
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