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Abstract

We consider spatial voting where candidates are located in
the Euclidean d-dimensional space, and each voter ranks can-
didates based on their distance from the voter’s ideal point.
We explore the case where information about the location of
voters’ ideal points is incomplete: for each dimension, we
are given an interval of possible values. We study the com-
putational complexity of finding the possible and necessary
winners for positional scoring rules. Our results show that
we retain tractable cases of the classic model where voters
have partial-order preferences. Moreover, we show that there
are positional scoring rules under which the possible-winner
problem is intractable for partial orders, but tractable in the
one-dimensional spatial setting. We also consider approval
voting in this setting. We show that for up to two dimensions,
the necessary-winner problem is tractable, while the possible-
winner problem is hard for any number of dimensions.

1 Introduction
In the spatial model of voting (Enelow and Hinich 1984;
Miller 1995), both candidates and voters are associated with
points in the d-dimensional Euclidean space Rd. It is as-
sumed that the locations of candidates and voters correspond
to their “ideal points” and that each voter’s preferences over
the candidates can be inferred from the Euclidean distance
between the candidates’ and the voter’s ideal points. For ex-
ample, the location of a candidate or voter in Rd could reflect
the stance (or opinion) of the candidate or voter regarding d
different issues that are relevant for the election. In the so-
cial choice literature, preferences with this structure are of-
ten referred to as (d-)Euclidean preferences (Bogomolnaia
and Laslier 2007; Elkind, Lackner, and Peters 2022).

We consider a setting where only partial information
about the preferences of voters is available. In such a set-
ting, the exact preference order of a voter is unknown but
assumed to come from a known space of possible prefer-
ence orders. Each combination of possible preference orders
is a possible voting profile that may result in different sets of
winners (given a fixed voting rule). Natural computational
tasks that arise in such scenarios ask about the possible win-
ners (who win in at least one possible profile) and the nec-
essary winners (who win in every possible profile) (Lang
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2020). A prominent manifestation of this idea is the semi-
nal framework of Konczak and Lang (2005), in which voter
preferences are specified as partial orders and a possible pro-
file is obtained by extending each partial order into a total
preference order. A thorough picture of the complexity of
the possible and necessary winner problems has been estab-
lished in a series of studies (Betzler and Dorn 2010; Xia and
Conitzer 2011; Baumeister and Rothe 2012). For example,
under every positional scoring rule in the setting of partial
orders, the necessary winners can be found in polynomial
time, yet it is NP-complete to decide whether a candidate is
a possible winner (assuming a regularity condition), except
for the tractable cases of the plurality and veto rules.

We study the complexity of the computational problems
PW〈d〉 and NW〈d〉, where the goal is to find the possible
and necessary winners, respectively, when we have incom-
plete information about voters’ ideal points in spatial vot-
ing with d dimensions. More precisely, instead of the ideal
points, we are given — for each voter and dimension — an
interval of possible values for the voter’s opinion. Hence,
each voter is associated with a space of possible ideal points.
Different points in this space may induce different prefer-
ence orders over the candidates (whose locations are as-
sumed to be known precisely). We thus get a mechanism
for defining a space of possible total orders that is different1
from the classical partial-order setting (Konczak and Lang
2005). We refer to our setting as partial spatial voting.

We first focus on the class of positional scoring rules
and compare the computational complexity of the possible
and necessary winner problems to the classic model of par-
tial orders. We investigate the following questions: (1) Is
the necessary-winner problem still tractable for all posi-
tional scoring rules? (2) Is the possible-winner problem still
tractable for plurality and veto? (3) Are there positional scor-
ing rules where the possible-winner problem is tractable for
partial spatial voting but not for partial orders? We answer
all three questions positively. For some of our results, we
uncover and exploit an interesting relationship between the
possible-winner problem and scheduling.

We then consider spatial approval voting with incomplete
information. We provide an efficient algorithm for comput-
ing necessary winners in one and two dimensions and prove

1In Section 3, we show that the two settings are incomparable.
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Problem Positional scoring rules Approval voting

NW〈d〉 in P [Theorem 2] in P for d ≤ 2 [Theorem 8]

PW〈1〉 in P for all two-valued rules [Theorems 3 and 5], weighted veto,
and F (k, t) whenever k > t [Theorem 4] NP-complete [Theorem 9]

PW〈d〉 in P for plurality and veto [Theorem 5];
NP-complete for k-approval with d ≥ 2 and k ≥ 3 [Theorem 6] NP-complete [Theorem 9]

Table 1: Complexity results for computing the necessary and possible winners in the studied models of uncertainty.

that computing possible winners is intractable, even for one
dimension. Our results are summarized in Table 1. Omitted
proofs can be found in the full version of this paper (Imber
et al. 2023).

Related work. Spatial voting in one dimension is intu-
itively similar to assuming single-peaked preferences (Black
1948; Arrow 1951). Yet, there are considerable differences,
as single-peaked preferences do not impose any restrictions
on the comparison between candidates on different sides of
the peak. Walsh (2007) showed hardness results for pos-
sible and necessary winner questions under single-peaked
(but not necessarily 1-Euclidean) preferences for STV and
polynomial-time results for Condorcet-consistent rules.

Bogomolnaia and Laslier (2007) showed that every (com-
plete) preference profile can be represented in the spatial
model, by choosing the dimension d to be sufficiently large.
Given a preference profile, it can be efficiently decided
whether the profile can be represented as a one-dimensional
spatial model (Doignon and Falmagne 1994; Knoblauch
2010; Elkind and Faliszewski 2014); for higher dimensions,
the problem becomes intractable (Peters 2017). Jamieson
and Nowak (2011) studied the problem of learning the rank-
ing of candidates in spatial voting using pairwise compar-
isons. They established a bound on the number of possi-
ble rankings; we use this bound in Section 4. Barrot et al.
(2013) and Imber et al. (2022) study the possible-winner and
necessary-winner problems for approval voting in single-
winner and multi-winner elections, respectively, using pref-
erence models similar to partial orders.

The problems considered in this paper also relate to ma-
nipulation and control problems that involve reasoning about
a space of possibilities of profiles. Lu et al. (2019) study
control where a party can select a subset of issues to focus
on. Estornell et al. (2020) study manipulation of spatial vot-
ing where the issues are weighted and a malicious attacker
can change the weights. Wu et al. (2022) study manipulation
where the adversary can change the position of a candidate.

2 Preliminaries
We first introduce the basic concepts and notation that we
use throughout the paper.

Voting profiles. Let C = {c1, . . . , cm} be a set of m ≥ 2
candidates and V = {v1, . . . , vn} a set of voters. A rank-
ing profile R = (R1, . . . , Rn) consists of n linear orders
over C. Each Ri represents the preference order of voter vi.

c3
c2 ⇒ c2 �v c1 �v c3

v

c1

Figure 1: Example of a spatial voting profile with d = 2:
a set C = {c1, c2, c3} of candidates and a single voter v.

In the spatial voting setting (Enelow and Hinich 1984),
each candidate is associated with a d-dimensional vector
corresponding to its positions (opinions) on d issues, de-
noted by ci = 〈ci,1, . . . , ci,d〉 ∈ Rd. For simplicity, we as-
sume that all candidates have distinct positions, that is, there
are no perfect clones.

A spatial voting profile T = (T1, . . . , Tn) consists of
a vector Tj = 〈Tj,1, . . . , Tj,d〉 for each voter vj , repre-
senting the voter’s positions on the d issues. Given a spa-
tial profile T, we can construct a ranking profile RT =
(RT1

, . . . , RTn
) where each voter vj ranks candidates in C

according to their Euclidean distance ||Tj − ci||2 from vj .
The closest candidate is ranked first, and the farthest is
ranked last (position m) in vj’s preferences. We break ties
by a linear order over the candidates, which is given as part
of the input for each voter. An example of a spatial voting
profile and its associated ranking profile is illustrated in Fig-
ure 1. By a slight abuse of terminology, we may identify vot-
ers with their points in Rd, and we use the terms dimension
and issue interchangeably.

Voting rules. A voting rule is a function that maps each
ranking profile to a set of winners. A positional scoring
rule r is a series {~sm}m≥2 of m-dimensional score vec-
tors ~sm = (~sm(1), . . . , ~sm(m)) of natural numbers, where
~sm(1) ≥ · · · ≥ ~sm(m) and ~sm(1) > ~sm(m). We assume
that ~sm(j) is computable in polynomial time in m, and the
scores in each ~sm are mutually co-prime (i.e., their great-
est common divisor is one). Some examples of positional
scoring rules include the plurality rule (1, 0, . . . , 0), the k-
approval rule (1, . . . , 1, 0, . . . , 0) that begins with k ones,
the veto rule (1, . . . , 1, 0), and the k-veto rule that ends with
k zeros. A positional scoring rule is pure if every ~sm+1 can
be obtained from ~sm by inserting a score value at some po-
sition (while satisfying ~sm+1(1) ≥ · · · ≥ ~sm+1(m+ 1)).

Given a ranking profile R = (R1, . . . , Rn) a positional
scoring rule r, the score sr(Ri, c) that the voter vi con-
tributes to the candidate c is ~sm(j), where j is the position of
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c in Ri. The score of c in R is sr(R, c) =
∑n

i=1 sr(Ri, c),
which we also denote as s(R, c) if r is clear from context.
A candidate c is a winner if sr(R, c) ≥ sr(R, c′) for all
candidates c′. The set r(R) contains all winners.

A positional scoring rule r is two-valued if there are only
two values in each ~sm. For such rules, we assume, w.l.o.g.,
that ~sm consists only of zeros and ones, and hence is of the
form ~sm = (1, . . . , 1, 0, . . . , 0). Thus, we can denote any
two-valued rule as k-approval, where k = k(m) may depend
on m. For example, (m− 2)-approval is the same as 2-veto.

For k-approval, we can naturally convert a ranking pro-
file R = (R1, . . . , Rn) to an approval profile A =
(A1, . . . , An), where each Ai ⊆ C consists of the first k
candidates in the order Ri. In other words, Ai denotes the
set of candidates that the voter vi “approves.” The score
s(Ai, c) that the voter vi contributes to the candidate c is one
if c ∈ Ai and zero otherwise. The winners then are the can-
didates with the maximal score s(A, c) =

∑n
i=1 s(Ai, c).

Incomplete profiles. Throughout this paper, we study
problems where voter preferences are incompletely speci-
fied, and we are interested in “possible” and “necessary”
winners. Abstractly speaking, an incomplete voting profile
is simply a setR of ranking profiles. GivenR, a candidate c
is called a possible winner w.r.t. a voting rule r if c is a win-
ner in at least one profile R ∈ R, and a necessary winner
w.r.t. r if c is a winner in every profile R ∈ R. In contrast to
possible winners, necessary winners may not exist.

Incomplete profiles give rise to challenging computational
problems when they are represented in a compact manner.
For example, Konczak and Lang (2005) use a partial order
over the candidates to represent the set of linear extensions,
as we explain next. In the following section, we introduce
another compact representation and compare it to their one.

Partial order profiles. A partial order profile P =
(P1, . . . , Pn) consists of n partial orders (reflexive, anti-
symmetric, transitive relations) on the set C of candidates,
where each Pi represents the incomplete preferences of
voter vi. A ranking completion of P is a ranking profile
R = (R1, . . . , Rn) where each Ri is a completion (i.e., lin-
ear extension) Pi. As said above, a candidate c is a necessary
winner if c is a winner in every ranking completion R of P,
and c is a possible winner if there exists a ranking comple-
tion R of P where c is a winner.

For a positional scoring rule r, the decision problems
PWpo and NWpo (where “po” stands for “partial order”) are
those of determining, given a set C of candidates, a partial
order profile P and a candidate c ∈ C, whether c is a pos-
sible winner and a necessary winner, respectively. A classi-
fication of the complexity of these problems for positional
scoring rules was established in a sequence of publications.

Theorem 1 Betzler and Dorn (2010); Xia and Conitzer
(2011); Baumeister and Rothe (2012). NWpo can be
solved in polynomial time for every positional scoring rule.
PWpo is solvable in polynomial time for plurality and veto;
for all other pure positional scoring rules, PWpo is NP-
complete.

3 The Model of Partial Spatial Voting
We introduce a model of incompleteness for spatial voting.
A partial spatial profile P = (P1, . . . , Pn) consists of a
vector Pj = 〈[`j,1, uj,1], . . . , [`j,d, uj,d]〉 for every voter vj .
Each pair [`j,i, uj,i] represents a closed interval of possible
values for the position of vj on issue i: `j,i is a lower bound,
and uj,i is an upper bound. Note that the positions of the vot-
ers are incompletely specified, but those of the candidates
are known precisely. Let [n] denote {1, . . . , n}. A spatial
voting profile T = (T1, . . . , Tn) is a spatial completion of
P if Tj,i ∈ [`j,i, uj,i] for every voter vj and issue i ∈ [d].
We can then compute a ranking profile RT as before.2

We call a ranking profile R a ranking completion of P if
there exists a spatial completion T such that R = RT. For
k-approval, it will be useful to convert the ranking profile
to an approval profile, as described in Section 2. We call
an approval profile A an approval completion of P if there
exists a spatial profile T such that RT is converted to A.

Again, given a partial spatial profile P, a candidate is a
necessary winner if it is a winner in every ranking comple-
tion R of P, and a possible winner if there exists a ranking
completion R of P where it is a winner. For a positional
scoring rule r and dimension d, we consider the decision
problems where we are given a set C of d-dimensional can-
didates, a partial spatial profile P, and a candidate c ∈ C,
and we need to determine whether c is a possible or a neces-
sary winner. We denote these two problems by PW〈d〉 and
NW〈d〉, respectively. Note that the number of dimensions is
fixed and not part of the input for the problem.

Partial spatial vs. partial order profiles. Before we
move on, we make a note on the expressiveness of partial
spatial voting compared to partial-order profiles. We say that
a partial profile P (in one of the two models) can be ex-
pressed by the other model if there is a partial profile P′ in
the other model with the same set of ranking completions. In
the case of full information, every (complete) profile can be
expressed by a spatial profile with d ≤ min{m,n} dimen-
sions (Bogomolnaia and Laslier 2007).

For every number d of issues, we can easily come up with
partial-order profiles (and even complete ranking profiles)
that cannot be expressed as (partial) spatial profiles, simply
by using the property that in spatial voting all voters must
respect the positions of the candidates, where in partial or-
ders each voter can have a completely different structure. For
example, if d = 1 then preferences will be single-peaked.
Moreover, a partial order can have strictly more ranking
completions than the upper bound of a partial spatial order.
Indeed, while a partial order can have Ω(m!) completions,
Jamieson and Nowak (2011) showed that a partial spatial
voter has O(dm2d) completions (see Lemma 1).

On the other hand, consider an instance with three candi-
dates C = {c1, c2, c3}, one-dimensional positions c1 = 1,
c2 = 2, c3 = 3, and a single voter with P = [1, 3]. The

2We can model the scenario where we do not know anything
about voter vj’s position regarding issue i by setting `j,i = −∞
and uj,i = +∞. Our algorithms can handle this case efficiently
through minor modifications.
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voter has four ranking completions: (c1, c2, c3), (c2, c1, c3),
(c2, c3, c1), and (c3, c2, c1). It is easy to verify that there is
no partial order with this set of ranking completions.

We conclude that complexity results on possible or neces-
sary winners for the partial-order model do not immediately
imply results for the partial spatial model, and vice versa,
since neither of the two models generalizes the other.

4 Computing Necessary Winners
In this section, we show that the necessary-winner problem
can be solved in polynomial time, similarly to NWpo (as
stated in Theorem 1), for every positional scoring rule and
for every fixed number of dimensions.

Theorem 2. Let d ≥ 1 be fixed. NW〈d〉 is solvable in poly-
nomial time for every positional scoring rule.

The remainder of this section is devoted to proving The-
orem 2. To determine whether a candidate c is a necessary
winner for a given partial spatial profile P, we use the same
concept from the algorithm for NWpo given partial orders
(Xia and Conitzer 2011): a candidate c is not a necessary
winner if and only if there exists another candidate c′ and
a ranking completion R where s(R, c′) > s(R, c). To this
end, we iterate over every other candidate c′ and compute
the maximal score difference s(R, c′) − s(R, c) among the
ranking completions R of P. Observe that it suffices to con-
sider each voter vj ∈ V separately and compute the maxi-
mal score difference s(Rj , c

′)−s(Rj , c) among the ranking
completions Rj of Pj , since we can sum these values to ob-
tain the maximal value of s(R, c′)−s(R, c). Then, c is not a
necessary winner if and only if the maximal score difference
is positive for some candidate c′.

The difference between our algorithm and the one for par-
tial orders is in the way we compute the maximal score dif-
ference for each voter. We show that for a partial spatial
voter, we can enumerate all ranking completions in polyno-
mial time and compute the score difference in each ranking.
This is impossible for partial orders, where the number of
ranking completions can be exponential in m.

Next, we prove that we can enumerate the ranking com-
pletions of a single voter in polynomial time. We will use a
geometric concept from the proof of Jamieson and Nowak
(2011) of a polynomial bound on the number of possible
complete rankings of a given vote.

Lemma 1 Jamieson and Nowak 2011. At most O(m2d)
rankings can be constructed from spatial votes over a given
sequence c1, . . . , cm of d-dimensional candidates.

The proof of Lemma 1 relies on the following main idea.
Every pair c, c′ of candidates corresponds to a (d − 1)-
dimensional hyperplane partitioning Rd into two d-faces
(halfspaces): points closer to c, and points closer to c′. The
set of all (at most)

(
m
2

)
= m(m − 1)/2 hyperplanes then

partitions Rd into a set Φ of regions, as illustrated in Fig-
ure 2. There is a one-to-one correspondence between these
regions and the possible rankings: a face ϕ ∈ Φ consists of
exactly those points in Rd where the ranking of candidates
in C according to distance does not change, and no two of
these faces correspond to the same ranking of candidates.

(`1, `2)

(u1, u2)

H2,3

c3

H1,2

H1,3

c1

c2

Figure 2: An illustration of the proof of Lemma 1 for d = 2
and C = {c1, c2, c3}. A voter can be positioned at any point
in the rectangle [`1, u1] × [`2, u2]. Each line Hi,j partitions
R2 into 2 regions: the points closer to ci, and the points
closer to cj . The top-left region — aboveH1,2 and to the left
of H2,3 and H1,3 — corresponds to the possible positions of
the voter where the preference ranking equals c1 � c2 � c3.

Lemma 1 implies that the number of ranking completions
of a partial spatial vote is at most O(m2d). However, the
bound itself is not enough for proving Theorem 2; we need
to explicitly construct (and not just count) all feasible com-
pletions in order to parse them in the computation of the
maximal score difference. Next, we explain how this is done.

Lemma 2. Let C be a set of m d-dimensional candidates
and P = 〈[`1, u1], . . . , [`d, ud]〉 a d-dimensional partial
spatial voter. The set of ranking completions of P can be
enumerated in polynomial time.

Proof. The enumeration algorithm uses the geometric inter-
pretation described above. A pseudocode of the algorithm
is given in the full version of the paper. Given the candi-
dates C, we compute the corresponding set H of at most
m(m − 1)/2 hyperplanes. To represent the arrangement of
these hyperplanes, i.e., of the geometric relation of the (d-
)faces spanned by the hyperplanes, we construct an inci-
dence graph G(H). It consists of a node for each face of
the arrangement, i.e., a node for each point, line(-segment),
plane(-segment), etc., where two or more hyperplanes inter-
sect. Furthermore, two nodes are connected by an edge if the
corresponding faces are incident, i.e., one is contained in the
other. Using an algorithm of Edelsbrunner, O’Rourke, and
Seidel (1986), G(H) can be constructed in O(m2d) time.

We iterate over the nodes in G(H) that correspond to d-
faces of the arrangement. By Lemma 1, there are at most
O(m2d) such nodes. For each node x be such a node. By
considering all (d− 1)-faces incident to x, as well as P, we
represent the intersection of the d-face with P as a set of
O(m2 + d) linear inequalities with d variables. We can then
determine whether the d-face and P intersect, by checking
the feasibility of a linear program with the aforementioned
set of constraints, which can be done in polynomial time. If
there is a feasible solution (i.e., a point in the intersection),
we compute the ranking from that point.

This completes the proof of Theorem 2. Note that the run-
ning time of our algorithm is exponential in d, since we enu-
merate all ranking completions of a voter. We can show that
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for plurality and veto, one can find the necessary winners in
time polynomial in d (and in n andm). We do so by a reduc-
tion to NWpo, which is tractable (Betzler and Dorn 2010).
Hence, the necessary winners can be found in polynomial
time for plurality and veto, even if d is part of the input.

5 Computing Possible Winners
We now turn to the problem of computing possible winners
and show that, for some positional scoring rules, this prob-
lem is closely related to a scheduling problem.

5.1 The Case of a Single Dimension
We start with the one-dimensional case (d = 1) and study
the complexity of PW〈1〉. In this case, every candidate c is
associated with a single real value c. We assume without
loss of generality that c1 < · · · < cm. A partial profile P
consists of a pair Pj = [`j , uj ] for every voter vj .

For partial orders, finding the possible winners is NP-
complete except for plurality and veto (see Theorem 1). In
spatial voting, we are able to provide efficient algorithms for
multiple well-studied classes of scoring rules. We begin our
investigation with two-valued scoring rules, and then prove
tractability for other classes of positional scoring rules.

Two-Valued rules. We begin with two-valued (one/zero)
scoring rules. The simplest and most well-known rules in
this class are plurality and veto.3

We show that PW〈1〉 is tractable for any two-valued rule.
Recall that we denote a two-valued rule as k-approval for
k = k(m). We introduce an alternative definition for par-
tial spatial profiles for k-approval, in the case of a single
dimension. Let P = (P1, . . . , Pn) be a partial spatial profile
where every voter vj is associated with a pair Pj = [`j , uj ].
Since we assume c1 < · · · < cm, the set of candidates that
vj possibly approves in a completion of Pj is a sequence
(cij , cij+1, . . . , cij+t) of consecutive candidates. (We can
find this sequence in polynomial time using Lemma 2.) In
every completion, the candidates that vj approves form a
substring of length k of (cij , cij+1, . . . , cij+t); moreover,
every such substring is the approval set of some comple-
tion. Hence, we can define a partial spatial profile P =
(P1, . . . , Pn) for k-approval as follows. Each voter vj is
associated with a sequence Pj = (c`, c`+1, . . . , cu) of at
least k consecutive candidates. In an approval completion
A = (A1, . . . , An) of P, the set Aj is a substring of length
k of Pj . We then use A to compute the scores of the candi-
dates and select the winners.

With this definition, we solve PW〈1〉 in polynomial time
for k-approval. We use a reduction to scheduling with arrival
times and deadlines, defined as follows.

Definition 1 Non-preemptive multi-machine scheduling
with arrival times and deadlines. We are given a set
M = {M1, . . . ,Mt} of identical machines and a set J =
{J1, . . . , Jn} of n jobs. Each job Jj has an arrival time
aj , a deadline dj , and processing time pj . We assume that

3We later show that for plurality and veto, PW〈d〉 is solvable in
polynomial time for every fixed d ≥ 1. In particular, the tractability
of PW〈1〉 follows from both Theorem 3 and Theorem 5.

aj , dj , pj ∈ N. A feasible schedule is a mapping f : J →
R ×M that maps each Jj ∈ J to a pair f(Jj) = (sj , hj)
such that the following properties hold:

1. Every job is processed between its arrival time and dead-
line: aj ≤ sj ≤ dj − pj for all j ∈ [n].

2. Each machine runs at most one job at any time: if hi =
hj for i, j ∈ [n] with i 6= j and si ≤ sj , then sj ≥ si+pi.

Since the arrival times, deadlines, and processing times
are all integers, we may assume w.l.o.g. that the starting time
of every job in a feasible schedule is also an integer.4 We
now present the algorithm for PW〈1〉.
Theorem 3. PW〈1〉 is solvable in polynomial time under
every two-valued positional scoring rule.

Proof sketch. Let k = k(m). We are given a set C of candi-
dates, a candidate c ∈ C, and a partial spatial profile P. We
start by constructing another partial spatial profile P′ with
the following properties: (i) In P′, each voter either neces-
sarily approves c or never approves c; and (ii) c is a possible
winner in P′ if and only if c is a possible winner in P.

Next, we show a reduction from deciding whether c is a
possible winner in P′ to multi-machine scheduling where
all jobs have the same processing time k. Deciding whether
a feasible schedule exists in this setting is solvable in poly-
nomial time (Vakhania 2012). Let Vc be the set of voters who
necessarily approve c in P′ (and the voters of V \ Vc never
approve c). Note that s(A, c) = |Vc| in every approval com-
pletion A of P′. In the reduction, the number of machines is
|Vc|. For each voter vj ∈ V with Pj = (c`, . . . , cu), define a
job Jj with arrival time `, deadline u+1, and processing time
k. It can be shown that P′ can be constructed in polynomial
time, and that c is a possible winner in P′ w.r.t. k-approval
if and only if there exists a feasible schedule of all jobs.

Beyond two-valued rules. We consider two families of
rules with more than two values. We refer to the first fam-
ily as weighted veto rules. These rules are of the form
~sm = (α, . . . , α, β1, . . . , βk) for α > β1 ≥ · · · ≥ βk
and k < m/2. The condition k < m/2 implies that each
voter assigns the highest score α to more than half of the
candidates. Moreover, for two positive integers k and t, we
denote by F (k, t) the three-valued rule with scoring vector
~sm = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) that begins with k occur-
rences of two and ends with t zeros. For example, the scoring
vector for F (2, 1) is ~sm = (2, 2, 1, . . . , 1, 0).

Theorem 4. PW〈1〉 is solvable in polynomial time under
every weighted veto rule, and under F (k, t) whenever k > t.

5.2 The Case of Multiple Dimensions
For d > 1, we show that the tractable cases of possible win-
ners for the partial orders model, namely plurality and veto,
are also tractable for the spatial model.

Theorem 5. PW〈d〉 is solvable in polynomial time for plu-
rality and veto.

4Otherwise, we can iterate over the jobs, sorted from the small-
est starting time to the largest, and change the starting time si of
job Ji to bsic, without harming the feasibility.
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approves k − 1
c∗

c1

v
c3c2 cd̃· · ·c4

approves k

v′

and c∗

Figure 3: An example of two voters in a completion of the
partial profile P from the proof of Theorem 6. The voter v
represents a job of length k, and approves the k candidates
closest to it among c1, . . . , cd̃. The voter v′ represents a job
of length k − 1 and approves c∗ and the k − 1 candidates
closest to it among c1, . . . , cd̃.

To prove Theorem 5, we reduce PW〈d〉 to PWpo, which is
solvable in polynomial time (Betzler and Dorn 2010), sim-
ilar to the proof of Theorem 2 for the special case of plu-
rality and veto (discussed at the end of Section 4). In fact,
we get again a running time that is polynomial in n, m and
d. Hence, the possible winners can be found in polynomial
time for plurality and veto even if d is part of the input.

For k-approval, the problem becomes intractable for d ≥
2, and every k ≥ 3.

Theorem 6. Let d ≥ 2 and k ≥ 3 be fixed. PW〈d〉 is NP-
complete for k-approval.

Proof sketch. We focus on d = 2, since this is a special case
of any d > 2. We show a reduction from non-preemptive
scheduling with arrival times and deadlines (from Defini-
tion 1) where we have a single machine and every pro-
cessing time satisfies pj ∈ {k, k − 1}. Deciding whether
a feasible schedule exists is strongly NP-complete for every
k > 2 (Elffers and de Weerdt 2014); then, we may assume
that the maximal deadline dmax is polynomial in the number
of jobs n. We also assume that the minimal arrival time is 1.

Let Jk and Jk−1 be the sets of jobs with processing times
k and k− 1, respectively. Each job Jj has an arrival time aj
and a deadline dj . Let d̃ be the smallest multiple of k that
is greater or equal to dmax − 1. In the reduction, illustrated
in Figure 3, the candidates are C =

{
c∗, c1, . . . , cd̃

}
. The

positions are c∗ = 〈0, 3d̃〉 for c∗ and ci = 〈i + 0.5, 0〉 for
every ci. For every job Jj ∈ Jk we introduce a voter who
can approve any substring of length k of (caj

, . . . , cdj−1).
For every job Jj ∈ Jk−1 we introduce a voter who neces-
sarily approves c∗, and can approve any substring of length
k − 1 of (caj

, . . . , cdj−1). We also have (|Jk−1| − 1) · d̃/k
voters without uncertainty such that every candidate among
c1, . . . , cd̃ is approved by exactly |Jk−1|−1 voters. It can be
shown that c∗ is a possible winner of P if and only if there
exists a feasible schedule.

6 Partial Spatial Approval Voting
We now turn our attention to approval voting (AV), where
each voter partitions the set of candidates into “approved”
and “unapproved” candidates and the candidate with the

c1

c2

c3

v

Figure 4: Example of an arrangement for d = 2, candidate
set {c1, c2, c3}, and a voter v. The possible approval sets
of v are ∅, {c1}, {c2}, {c3}, and {c1, c2}, depending on the
actual position of v inside the rectangle. The red points are
all event points from the sweep line algorithm in Theorem 7.

highest number of approvals is selected (Brams and Fish-
burn 1983). In contrast to the positional scoring rule k-
approval, the number of approved candidates is not fixed
under AV. In the spatial framework, it is often assumed that
each voter vj is associated with an approval radius ρj ∈ R
and approves all candidates that are at a distance of at most
ρj from voter vj’s position (e.g., Godziszewski et al. 2021).

More formally, a partial spatial approval profile consists
of a partial spatial profile P and a radius ρj ∈ R for ev-
ery voter vj . Each spatial completion T = (T1, . . . , Tn) of
P gives rise to an approval profile AT = (AT1

, . . . , ATn
),

where ATj
= {c ∈ C : ||Tj − ci||2 ≤ ρj} is the approval

set of voter vj . We call AT an approval completion of T
(keeping in mind that, in contrast to the approval comple-
tions in Section 3, the approval sets can have different sizes).
The definitions of possible and necessary winners and their
respective decision problems remain unchanged.

First, for d ≤ 2 dimensions, we show an upper bound on
the number of different approval completions a single voter
can have, and how to enumerate them in polynomial time.
This is crucial for our results for necessary-winner prob-
lems. The regions in Rd where a voter has the same approval
completion are bounded by (intersections of) d-dimensional
spheres (rather than hyperplanes as in Section 4).

We consider the connection between a partial spatial ap-
proval profile, for a single voter, and an arrangement of d-
spheres (with the d-dimensional rectangle of the voter). In-
stead of assuming the voter has a radius ρ around its position
and approves all candidates inside this sphere, we can equiv-
alently assume that we have a sphere with radius ρ around
each candidate’s position and the voter approves all candi-
dates whose sphere contains the voter’s position. See Fig-
ure 4 for a graphical depiction in two dimensions.

Now, recall that the voter’s possible positions are de-
scribed by a d-dimensional rectangle. Thus, if this rectan-
gle intersects a sphere associated with a candidate c, then
there is a completion where the voter approves c. Moreover,
if there is a point inside the rectangle that is contained in the
spheres of, say, the candidates c1, c2, and c3, and in none
of the other spheres, then there is a completion of the pro-
file where the voter’s approval set is exactly {c1, c2, c3}: the
voter’s approval set is {c1, c2, c3} in exactly the completions
where the position of the voter is in the intersection of the
rectangle of the voter and the three spheres around c1, c2 and
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c3. Thus, the possible completions of the voter’s approval
profile correspond to all (maximal) regions of the arrange-
ment of m d-spheres with radius ρ (each around the posi-
tion of one of the candidates), and the d-dimensional rect-
angle described by 〈[`j,1, uj,1], . . . , [`j,d, uj,d]〉 (where we
only consider those regions that lie inside the rectangle).

Theorem 7. Fix d ≤ 2 and let C be a set of d-dimensional
candidates and P a single d-dimensional partial vote with
radius ρ ∈ R≥0. Then, the set of approval completions of P
can be enumerated in polynomial time.

Proof sketch. We focus on d = 2. To enumerate the regions
of the arrangement as described above, we use a standard
tool in computational geometry called a sweep line algo-
rithm (e.g., see Halperin and Sharir 2017). The idea is to go
over the arrangement from left to right, focusing on event
points where something in the arrangement changes. The
event points are all m leftmost points of the circles corre-
sponding to the candidates and the bottom-left point of the
rectangle corresponding to the voter. Additionally, every in-
tersection point of the circles among themselves and with
the rectangle constitutes an event point. See Figure 4 for an
example. It is easy to verify that the total number of event
points is at most O(m2), and all these points can be com-
puted in polynomial time. The sweep line algorithm consid-
ers the event points from left to right (from lowest to highest
x-coordinate, breaking ties by their y-coordinates) and in-
troduces the regions neighboring the current event point.

We store the regions as a list of (m+ 1)-dimensional vec-
tors. The i’th entry of the vector is 1 if the region lies inside
the sphere of ci, and 0 otherwise. The (m+ 1)st entry is 1 if
the region is inside the rectangle. Given the list of all regions,
we can iterate over those where the last entry is 1 and get the
list of possible approval completions. In the full proof, we
argue why the aforementioned event points exactly corre-
spond to the moments in the sweep procedure where a new
region might be introduced, and describe how we introduce
such a region, i.e., update the data at an event point.

We can use the above result to find the necessary winners
for AV if d ≤ 2, similarly to the proof of Theorem 2. Note
that we run the sweep line algorithm described above once
for each voter vj , using that voters radius ρj .5

Theorem 8. Let d ≤ 2. NW〈d〉 is solvable in polynomial
time for AV.

On the other hand, we show that the possible-winner prob-
lem is hard, even for d = 1, by a reduction from non-
preemptive scheduling with arrival times and deadlines (see
Definition 1) where we have a single machine but arbitrary
job lengths. Deciding whether a feasible schedule exists is
strongly NP-complete (Garey and Johnson 1979). This is the
first negative result we have for partial spatial voting (using
approval or ranked preferences) in the one-dimensional case.

Theorem 9. PW〈d〉 is NP-complete for any d ≥ 1 for AV.

5Note that every two d-spheres intersect in a (d−1)-sphere. For
d ≥ 3, it is thus not clear how to define the corresponding event
points for a sweep plane algorithm in d dimensions.

We now briefly discuss the impact of these results on
approval-based multi-winner elections.

Approval-based committee voting. In approval-based
committee (ABC) voting (Lackner and Skowron 2022), a
committee (i.e., subset of candidates) of a fixed size k needs
to be selected based on approval ballots. Adapting the no-
tions of Imber et al. (2022) to our setting, a set of candi-
dates W is a possible committee if there is a completion
of the partial spatial approval profile where W is selected,
and a necessary committee if W wins in every completion.
We parametrize both problems by the dimension d and the
committee size k. The hardness of possible winners of the
single-winner AV rule (Theorem 9) can be extended to ABC:
we can embed any single-winner instance into an ABC in-
stance by simply adding k − 1 dummy candidates and ap-
propriately many voters (without uncertainty) who ensure
that the dummy candidates are in every winning commit-
tee. Then, solving the possible committee problem in this
ABC instance would also solve the possible-winner prob-
lem for the single-winner instance. Note that this extends to
any ABC voting rule that is equivalent to AV for k = 1.
Conversely, using Theorem 7 and techniques used by Imber
et al. (2022) to find a necessary committee under partial or-
ders, one can show that the necessary committee problem
in our setting is tractable for all ABC scoring rules (a large
class of rules including all Thiele rules) for d ≤ 2.

7 Conclusions
We introduced the framework of partial spatial voting, where
candidates and voters are positioned in a geometrical space,
but voters can have intervals of possible values in each di-
mension/issue. For positional scoring rules, we recovered
the tractable cases of necessary and possible winners in the
model of partial orders, for every fixed number of issues. In
particular, we showed that the possible winners can be found
in polynomial time for the plurality and veto rules, and that
the necessary winners can be found in polynomial time for
every positional scoring rule. We identified cases where the
possible-winner problem is hard for partial orders but not for
partial spatial voting. Specifically, this holds for two-valued
rules other than plurality and veto, such as k-approval and k-
veto for k > 1. We showed that the possible-winner problem
may become intractable when the number of issues increases
to a higher fixed number. For partial spatial approval ballots,
we showed that the possible-winner problem under AV is in-
tractable for all d ≥ 1, and we gave an efficient algorithm
for the necessary-winner problem under AV for d ≤ 2.

It is left for future work to complete the picture of com-
plexity for all positional scoring rules (see Table 1). Espe-
cially interesting is the case of Borda for d = 1. It is also
left to study the complexity of non-positional voting rules,
as done in the case of the necessary and possible winners for
model of partial orders (Xia and Conitzer 2011). It would
also be interesting to study the implications of voter un-
certainty on the strategic considerations of candidates. For
instance, in a model where probabilistic information about
voters’ locations is available, candidates may want to relo-
cate in order to increase their winning probability.
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