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Abstract

Video highlights detection (VHD) is an active research field
in computer vision, aiming to locate the most user-appealing
clips given raw video inputs. However, most VHD meth-
ods are based on the closed world assumption, i.e., a fixed
number of highlight categories is defined in advance and all
training data are available beforehand. Consequently, exist-
ing methods have poor scalability with respect to increas-
ing highlight domains and training data. To address above is-
sues, we propose a novel video highlights detection method
named Global Prototype Encoding (GPE) to learn incremen-
tally for adapting to new domains via parameterized proto-
types. To facilitate this new research direction, we collect
a finely annotated dataset termed LiveFood, including over
5,100 live gourmet videos that consist of four domains: in-
gredients, cooking, presentation, and eating. To the best of
our knowledge, this is the first work to explore video high-
lights detection in the incremental learning setting, opening
up new land to apply VHD for practical scenarios where both
the concerned highlight domains and training data increase
over time. We demonstrate the effectiveness of GPE through
extensive experiments. Notably, GPE surpasses popular do-
main incremental learning methods on LiveFood, achieving
significant mAP improvements on all domains. Concerning
the classic datasets, GPE also yields comparable performance
as previous arts. The code is available at: https://github.com/
ForeverPs/IncrementalVHD GPE.

Introduction
The popularization of portable devices with cameras greatly
promotes the creation and broadcasting of online videos.
These sufficient video data serve as essential prerequisites
for relevant researches, e.g., video summarization (Potapov
et al. 2014; Song et al. 2015; Zhang, Grauman, and Sha
2018; Fajtl et al. 2018; Zhu et al. 2021), video highlights
detection (VHD) (Yang et al. 2015; Xiong et al. 2019; Lei,
Berg, and Bansal 2021; Bhattacharya et al. 2021), and mo-
ment localization (Liu et al. 2018; Zhang et al. 2020; Ro-
driguez et al. 2020), to name a few. Currently, most VHD
methods are developed under the closed world assumption,
which requires both the number of highlight domains and
the size of training data to be fixed in advance. However,
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Figure 1: The LiveFood dataset. The row from top to bottom
illustrates examples of vanilla clips, ingredients, and presen-
tation. More samples are attached in Appendix .

as stated in Rebuffi et al. (2017), natural vision systems are
inherently incremental by consistently receiving new data
from different domains or categories. Taking the gourmet
video as an example, in the beginning, one may be attracted
by the clips of eating foods, but lately, he/she may raise new
interests in cooking and want to checkout the detailed cook-
ing steps in the same video. This indicates that the target set
the model needs to handle is flexible in the open world. Un-
der this practical setting, all existing VHD methods suffer
from the scalability issue: they are unable to predict both the
old and the newly added domains, unless they retrain models
on the complete dataset. Since the training cost on videos is
prohibitive, it is thus imperative to develop new methods to
deal with the above incremental learning issues.

Broadly speaking, there exist two major obstacles that
hinder the development of incremental VHD: a high-quality
VHD dataset with domain annotations and strong models
tailored for this task. Recall existing datasets that are widely
used in VHD research, including SumMe (Gygli et al. 2014),
TVSum (Song et al. 2015), Video2GIF (Gygli, Song, and
Cao 2016), PHD (Garcia del Molino and Gygli 2018), and
QVHighlights (Lei, Berg, and Bansal 2021), all of them
suffer from threefold drawbacks: (1) only the feature rep-
resentations of video frames are accessible instead of the
raw videos, thus restricting the application of more power-
ful end-to-end models; (2) most datasets only have a lim-
ited number of videos with short duration and coarse anno-
tations, which are insufficient for training deep models; (3)
none of them has the video highlight domain or category
labels, thus can not be directly used in incremental learn-
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ing. In order to bridge the gap between VHD and incremen-
tal learning, we first collect a high-quality gourmet dataset
from live videos, namely LiveFood. It contains over 5,100
carefully selected videos with 197 hours in total. Four do-
mains are finely annotated, e.g., ingredients, cooking, pre-
sentation, and eating. These related but distinctive domains
provide a new test bed for incremental video highlights de-
tection (VHD) tasks.

To solve this new task, we propose a competitive model:
Global Prototype Encoding (GPE) to learn new high-
light concepts incrementally while still retaining knowledge
learned in previous video domains/data. Specifically, GPE
first extracts frame-wise features using a CNN, then employs
a transformer encoder to aggregate the temporal context to
each frame feature, obtaining temporal-aware representa-
tions. Furthermore, each frame is classified by two groups of
learnable prototypes: highlight prototypes and vanilla pro-
totypes. With these prototypes, GPE optimizes a distance-
based classification loss under L2 metric and encourages in-
cremental learning by confining the learned prototypes in
new domains to be close to that previously observed. We
systematically compare the GPE with different incremental
learning methods on LiveFood. Experimental results show
that GPE outperforms other methods on highlight detection
accuracy (mAP) with much better training efficiency, us-
ing no complex exemplar selection or complicated replay
schemes, strongly evidencing its effectiveness.

The main contributions of this paper are summarized in
three aspects as follows:

• We introduce a new task named incremental video high-
lights detection, which has important applications in
practical scenarios. A high-quality LiveFood dataset is
collected to facilitate this research. LiveFood comprises
over 5,100 carefully selected gourmet videos in high res-
olution, providing a new test bed for video highlights de-
tection and domain incremental learning tasks.

• We propose an end-to-end model for solving incremen-
tal VHD, i.e., Global Prototype Encoding (GPE). GPE
incrementally identifies highlight/vanilla frames in new
highlight domains via learning extensible and parameter-
ized highlight/vanilla prototypes. GPE achieves superior
performance compared with other incremental learning
methods, improving the detection performance (mAP) by
1.57% on average. The above results suggest that GPE
can serve as a strong baseline for future research.

• We provide comprehensive analyses of LiveFood as well
as the proposed GPE model for deepening the under-
standing of both, as well as giving helpful insight for fu-
ture development. We hope our work can inspire more
researchers to work in incremental VHD, finally pushing
forward the application in practical scenarios.

Related Work
Video Highlights Detection (VHD) is an important task
in video-related problems. This line of research can be
roughly divided into two groups, namely the ranking-based
and regression-based methods. Yao, Mei, and Rui (2016)
employs a ranking model to learn the relationship between

highlights and non-highlights, assigning higher scores to the
positive clips. Saquil et al. (2021) utilizes multiple pair-
wise rankers to capture both the local and global informa-
tion. Badamdorj et al. (2021) assigns higher scores to anno-
tated clips based on dual-modals, i.e., the visual and audio
streams. Based on ranking methods, a lot of works aim to
mitigate the expensive cost of human annotation using un-
supervised techniques or priors, such as Xiong et al. (2019);
Badamdorj et al. (2022). Different from the above methods,
regression-based methods predict the locations of highlights
directly. Zhu et al. (2021) presents anchor-based and anchor-
free approaches to predict the start and end timestamps, as
well as the confidence score of highlights, therefore avoiding
the laborious manual-designed post-processing. Moment-
DETR (Lei, Berg, and Bansal 2021) employs a transformer
decoder to obtain the timestamps of specific clips based on
different queries. Although the existing methods mentioned
above boost the performance of VHD tasks, they substan-
tially neglect the requirements of incremental learning in
VHD, which is critical to the practical applications. In re-
ality, numerous videos and new interests are created rapidly,
thus demanding the VHD model to be capable of efficiently
handling increasing highlight domains and data.

Incremental Learning (IL) is of great concern since the
natural vision systems are inherently incremental. The main
problem to solve in incremental learning is catastrophic
forgetting, manifested as the forgetting of old classes or
domains when learning new concepts. As investigated by
Lange et al. (2022), the primary efforts deal with this issue in
three aspects: using a memory buffer to store the represen-
tative data (Rebuffi et al. 2017; Isele and Cosgun 2018; Rol-
nick et al. 2019; Yan, Xie, and He 2021; Lange and Tuyte-
laars 2021), adopting regularization terms to constrain the
change of model’s weights or outputted logits (Kirkpatrick
et al. 2016; Zenke, Poole, and Ganguli 2017; Schwarz et al.
2018), and performing parameter isolation to dedicate dif-
ferent model parameters for each task (Fernando et al. 2017;
Mallya and Lazebnik 2018; Rosenfeld and Tsotsos 2020).
The memory buffer replays previous samples while learning
new concepts to eliminate forgetting, however, it may lead
to overfitting on the stored sub-set and incur heavy memory
costs. The regularization-based methods penalize the model
if some characteristics are changed during the next train-
ing stage, resulting in the domination of the so-called essen-
tial characters. Parameter isolation grows new branches for
new tasks, raising prohibitive colossal architectures. To mit-
igate the negative effects of existing methods, GPE employs
prototype learning combined with distance measurement to
perform binary classification (highlight vs. vanilla frames).
Prototypes are essentially the most representative features
learned across the whole training data, circumventing both
the issue of overfitting on the sub-set and the unbearable
costs of storing raw data. Besides, we constrain the change
of prototypes between stages, i.e., different domains, which
is an overall refinement instead of minority domination. The
prototypes from previous stages are inherited during training
in the current domains, so as to maintain global consistency
while leaving room for adjustment and improvements.
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Problem Statement
In incremental VHD, the training procedure consists of sev-
eral consequent tasks built on disjoint datasets with dis-
tribution shifts. Assuming that we have T tasks in total,
and this yields a training data stream {T1, T2, ..., TT } where
Ti ∩ Tj = ∅ if i ̸= j. Each training task Tt is represented as
{(xt

i, y
t
i)}

nt
i=1 where xt

i ∈ X denotes the whole frame set of
i-th training video in stage t, yti is its corresponding frame-
wise label, i.e., a binary vector indicating highlight/vanilla
frames, and nt represents the number of accessible train-
ing data pairs. Moreover, we use {D1,D2, ...,DT } to de-
scribe the corresponding domains included in training tasks
{T1, T2, ..., TT }. Note Di ̸= Dj if i ̸= j.

Figure 2: Conducting domain incremental video highlights
detection on LiveFood dataset.

Specifically, in our collected LiveFood dataset, we split
the training videos into four disjoint sub-set, depicted as
{T1, T2, T3, T4}, and the corresponding domains are denoted
as {D1,D2,D3,D4}. Considering that a video may con-
sist of more than one domain, we further constrain that the
domains appearing in Dt−1 is a sub-collection of that in
Dt. Formally, let St denotes all possible combinations of
domains presented in Dt, and Ct is the domain combina-
tions appearing in videos of Tt, we have C1 = S1 and
Ct = St \

⋃t−1
i=1 Si. More concretely, let di denotes a spe-

cific domain label, then if D1 = {d1}, D2 = {d1, d2}, and
D3 = {d1, d2, d3}, we have C1 = {d1}, C2 = {d2, (d1, d2)}
and C3 = {d3, (d1, d3), (d2, d3), (d1, d2, d3)}. In above ex-
ample, C2 = {d2, (d1, d2)} indicates that the videos in T2
can contain the domain of d2 or the mixture of d1 and d2.
Videos that merely contain the domain of d1 are excluded
from T2 since the intention of incremental VHD is to ef-
fectively learn new concepts while remembering what are
already learned in past data. The testing set contains mixed
videos including all domains, and during task Tt, only the
domain appearing in Dt is treated as positive when evalu-
ating the performance.

The LiveFood Dataset
Video Selection. We collect online gourmet videos with
high resolution. As introduced in Xiong et al. (2019), shorter
videos are more likely to contain attractive clips and thus
have more hits, while longer videos are usually boring. Tak-
ing this prior into consideration, we filter out both the ex-
tremely short (less than 30 seconds) which may contain in-

sufficient gourmet content to learn from and long (over 15
minutes) videos which users generally pay less attention to.
After that, all reserved raw videos are viewed by qualified
workers to check whether the content of videos is gourmet-
related or not, eliminating the effects of incorrect category
annotation. Only videos that pass the aforementioned checks
are selected for subsequent annotation tasks, in order to
guarantee the quality of LiveFood. Figure 4 (a) shows the
duration distribution of the videos across all domains.
Highlights Annotation. We define four highlight domains
that are generally presented in collected videos, namely in-
gredients, cooking, presentation, and eating. For each do-
main, a video clip is accepted as a satisfactory highlight if it
meets the criteria in Figure 3. The annotators are required to
glance over the whole video first to locate the coarse posi-
tion of attractive clips. Afterward, the video is annotated at
frame level from the candidate position to verify the exact
start and end timestamps of highlights. Meanwhile, we in-
troduce a strict double-check mechanism (cf. Appendix ) to
further guarantee the quality of annotations. Since selecting
the timestamps of highlights is partly subjective, both ob-
jective and subjective verifications are necessary in quality
control. Concerning the consistent visual feeling of videos,
we restrict the highlights to be longer than three seconds,
and less than two minutes to avoid being tedious.

Figure 3: Basic descriptions of LiveFood domains.

Data Statistics. Figure 4 depicts the statistical results of our
proposed LiveFood, including the distribution of highlights
duration and the relative position of center timestamp with
respect to each video. Besides, in Table 1, we also com-
pare the proposed LiveFood with existing VHD datasets,
such as SumMe (Gygli et al. 2014), YouTubeHighlights
(Sun, Farhadi, and Seitz 2014), Video2GIF (Gygli, Song,
and Cao 2016), PHD (Garcia del Molino and Gygli 2018),
ActivityThumb (Yuan, Ma, and Zhu 2019), and QVHigh-
lights (Lei, Berg, and Bansal 2021) for better illustrating the
differences among them. As demonstrated in Table 1, the
SumMe and YouTubeHighlights only contain a small num-
ber of videos and annotations, which makes them insuffi-
cient for training deep models. The Video2GIF and PHD
are edited by online users and lack strict quality control
mechanisms. Thus the reliability of datasets may be under-
mined. The newly released QVHighlights can not be used
for incremental learning since it does not have domain an-
notations. Besides, the average length of clips in QVHigh-
lights is pretty long: nearly one-fifth of each video is an-
notated as attractive clips, thus causing the selected clips
less discriminative compared to the vanilla clips. Different
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(a) (b) (c)

Figure 4: Statistical results of LiveFood. (a) shows the distribution of video duration. (b) illustrates the distribution of highlight
durations. Most highlight clips are shorter than 15 seconds. (c) shows the relative position of each attractive clip with respect to
corresponding videos. The highlights distribute evenly across whole videos, evidencing the good diversity of LiveFood.

Dataset Year Contents Label Human Total number of Avg. len. (sec) of
domain/class Annotated videos / highlights videos / highlights

SumMe 2014 Open ✗ ✓ 25 / 390 120.0 / -
YouTubeHighlights 2014 Activity ✗ ✗ 712 / - 143.0 / 2.0
Video2GIF 2016 Open ✗ ✗ 80K / 98K 332.0 / 5.2
PHD 2018 Open ✗ ✗ 119K / 228K 440.2 / 5.1
ActivityThumb 2019 Activity ✗ ✗ 4K / 10K 60.7 / 8.7
QVHighlights 2021 Vlog / News ✗ ✓ 10.2K / 10.3K 150 / 24.6
LiveFood (ours) 2023 Gourmet ✓ ✓ 5.1K / 14.3K 136.5 / 6.4

Table 1: Comparison between the proposed LiveFood and existing datasets.

from the above datasets, LiveFood provides gourmet videos
with finely annotated domain labels, making it suitable for
domain-incremental VHD tasks.

Method
GPE aims to tackle forgetting while still improving by learn-
ing new concepts. As analyzed in Section , conventional
incremental learning methods have shortcomings, such as
overfitting on replayed data, limited flexibility, and unbear-
able growing architectures. Distinguished from them, GPE
employs prototypes together with distance measurement to
solve the classification problem. Prototypes are compact and
concentrated features learned on the training data, mitigating
the effects of overfitting on the stored sub-set. In addition, by
using global and dynamic prototypes, we endow the model
with appealing capability for further refinement when fed
with new data (i.e., Mf in Figure 5) or accommodation to
new domain concepts (i.e., Md in Figure 5).
Architecture. Inspired by Carion et al. (2020), GPE em-
ploys the combination of convolution-based and attention-
based models to extract features. Concretely, a ConvNeXt
(Liu et al. 2022) pre-trained on ImageNet (Russakovsky
et al. 2015) is used to extract spatial features of input video
frames. After that, a transformer encoder with multi-heads
is used to perform temporal fusion, generating global repre-
sentations based on the whole video frames. With the trans-
formation of a feedforward network (FFN) which consists
of fully-connected layers, each frame is classified based on

the distance to learnable prototypes. We aim to learn two
groups of trainable prototypes with the same shape, namely
the highlight (positive) and vanilla (negative) prototypes. By
denoting the dimensionality of output feature of transformer
as m and the number of prototypes within each group as k,
both the highlight and vanilla prototypes can be represented
as a matrix with shape k×m. By utilizing L2 distance as the
distance measurement between each feature and prototype,
we obtain the pair-wise distance between features and each
group of prototypes. Formally, we use h, H , and V to repre-
sent the transformer feature, the highlight prototypes and the
vanilla prototypes. gϕ(·) denotes the FFN module. d(·) is the
L2 distance between a feature-prototype pair. The distance
from feature h to H and V are formulated as:

dH = min
i=1:k

d(gϕ(h), Hi) (1)

dV = min
i=1:k

d(gϕ(h), Vi), (2)

where the subscript i represents the i-th prototype. The dis-
tance is mapped to probability PH using the softmax func-
tion which can be understood as the confidence of assigning
feature h to highlights.

PH =
exp(−dH)

exp(−dH) + exp(−dV )
. (3)

Then, we use cross-entropy loss to optimize the model
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Figure 5: The proposed GPE framework. {Ti}Ti=1 indicates a training stream with T tasks. In the right-most part, Mf and Md

represents the fixed and dynamic modes of GPE. Mf defines the number of prototypes in advance and refines them across
different stages. A restriction on the magnitude of change amplitude is imposed during learning (cf. Eq 6). Md dynamically
adds new prototypes into the learning process when dealing with new domains. The change restriction is only applied on
inherited prototypes. This mode is more suitable when learning on a large amount of domains. Each prototype in above figure
is equivalent to a row of V or H (cf. Eq 2).

through gradient back-propagation:

Lcls = − 1

N

N∑
i=1

yi · log(PH)+ (1− yi) · log(1−PH) (4)

where N represents the size of training frames and yi equals
1 if the i-th frame is annotated as highlights otherwise 0.
Learning with incremental domains. We detail the learn-
ing of Mf (cf. Figure 5) in this section, and the dynamic
mode Md can be easily derived by only restricting the
change of inherited prototypes and training newly added
prototypes freely. We use hθ(·) parameterized by θ to indi-
cate the feature extractor jointly constructed by a ConvNeXt
and a transformer encoder. The FFN gϕ(·) is parameterized
by ϕ. Recall the outputted feature is h. Both the vanilla and
highlight prototypes are denoted by π for simplicity. With
the help of these notations, the classification loss built in Eq
4 is abbreviated as Lcls(θ, ϕ, π). We expand the definition
of distance measurement that evaluates the distance between
given two prototypes. For two sets of learned prototypes π(t)

and π(t+1), the distance between them is calculated as:

d(π(t), π(t+1)) =
1

k

k∑
i=1

√√√√ m∑
j=1

(π
(t)
i,j − π

(t+1)
i,j )2 (5)

During the training phase T , the model inherits trained pro-
totypes π(T−1) from the former stage. For the incremental
need, we tackle the catastrophic forgetting issue by restrict-
ing the change of prototypes, guaranteeing the awareness
that the model has learned towards the observed domains.
With the above formulations, we consider the following con-
strained nonlinear optimization problems:

min
θ,ϕ,π

Lcls(θ, ϕ, π)

s.t. d(π(T−1), π) ≤ γ
(6)

where γ is the tolerable change introduced to the observed
prototypes. The optimal result that meets the above restric-
tion is (θ(T ), ϕ(T ), π(T )). Instead of solving the complex
nonlinear problem, we resort to its corresponding empirical
dual formulation. With an auxiliary positive Lagrange mul-
tiplier λ, the optimization objective in Eq 6 is transformed
into the following manner:
S(T ) = (θ(T ), ϕ(T ), π(T ))

= max
λ

min
θ,ϕ,π

L(θ, ϕ, π, λ)

= max
λ

min
θ,ϕ,π

Lcls(θ, ϕ, π) + λ[d(π(T−1), π)− γ]

(7)
where S(T ) indicates the optimal solution in training stage
T . We update the trainable parameters, i.e., θ, ϕ, and π, and
the empirical Lagrangian variable λ alternatively and itera-
tively as following:

θ ← θ − η
∂Lcls(θ, ϕ, π)

∂θ

ϕ← ϕ− η
∂Lcls(θ, ϕ, π)

∂ϕ

π ← π − η
∂L(θ, ϕ, π, λ)

∂π

λ← max{λ+ η[d(π(T−1), π)− γ], 0}

(8)

where η is the learning rate of trainable parameters and
λ is the multiplier in the dual step. The incremental training
and inference pipeline is summarized in Appendix 1.

Experiment
We introduce the details of the evaluation protocol and ex-
perimental results in this section.

Experimental Setup
Data and Evaluation Protocol. LiveFood contains 4928
videos for training and 261 videos for testing. We randomly
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mAP Lb SI oEWC ER∗ DER∗ Ub GPE (Mf) GPE (Md) GPE∗

T1 36.13 36.16 36.13 35.79 36.17 36.15 36.14 36.21 36.17
T2 30.86 31.84 31.82 31.38 33.14 37.38 35.82 36.13 36.62
T3 29.18 30.72 30.51 29.13 32.52 36.90 31.87 32.74 33.15
T4 25.89 28.73 28.67 29.06 30.11 36.30 29.88 30.15 30.27
Avg. 30.52 31.86 31.78 31.34 32.99 36.68 33.43 33.90 34.05

Table 2: Comparison of GPE with existing incremental learning methods on LiveFood. We evaluate their frame-wise mAP
performance. The superscript of * (star) indicates that the method uses memory buffer to boost its memory ability.

Figure 6: The observed highlights across different training stages. The curves in different color indicate the highlight scores,
which are predicted by the corresponding models within several training stages.

split 15% of the 4928 videos for validation. T1, T2, T3 and T4
consist of 3380, 854, 393, and 113 videos, respectively. D1,
D2, D3 and D4 are {presentation}, {presentation, eating},
{presentation, eating, ingredients}, and {presentation, eat-
ing, ingredients, cooking}. We report the mAP on testing set
following previous works (Yao, Mei, and Rui 2016; Xiong
et al. 2019).
Comparable baselines. We employ both regularization-
based methods, such as SI (Zenke, Poole, and Ganguli 2017)
and oEWC (Schwarz et al. 2018), and replay methods, such
as ER (Rolnick et al. 2019) and DER (Yan, Xie, and He
2021), as our comparable baselines. Besides, we also set
the lower bound (Lb) and upper bound (Ub) of incremental
learning. Please refer to Appendix for more details. Other
techniques are introduced during the context.

Main Result
Comparison with existing IL methods. The experimen-
tal results are depicted in Table 2. We highlight the upper
bound results with gray background. Mf and Md repre-
sent the fixed and dynamic mode of GPE. The superscript
of * (star) indicates that the method uses memory buffer
to boost its memory ability. It can be observed from Ta-
ble 2 that the vanilla GPE (Mf) surpasses the lower bound
with an improvement of 2.91% mAP. Compared to the clas-
sic IL methods SI (Zenke, Poole, and Ganguli 2017) and
oEWC (Schwarz et al. 2018), GPE outperforms them by
a remarkable margin, yielding at least 1.57% performance
gain on mAP. Moreover, when equipped with the same re-
play schemes as Yan, Xie, and He (2021), GPE achieves
1.06% and 2.71% mAP gain compared to DER (Yan, Xie,
and He 2021) and ER (Rolnick et al. 2019). The above re-
sults clearly demonstrate the effectiveness of GPE in tack-
ling the incremental VHD task.
Visualization of highlight scores across training stages.
We investigate the effects of observed prototypes across dif-

ferent training stages. In Figure 6, we present the highlight
detection results of GPE in the first and the last training
stage. For comparison, we also provide the prediction of
DER (Yan, Xie, and He 2021). In the curves shown in Figure
6, the blue and orange points indicate the highlight scores of
each frame predicted by GPE, i.e., PH in Eq 3, during the
first task T1 and the final task T4. The green points represent
the predicted scores of DER in T4. It is clear that GPE can
learn new concepts, e.g., cooking, while keeping the memory
of presentation learned in the first stage. This result is in line
with our motivation that a strong incremental VHD model
should be able to cover both the past and new concepts. In
contrast, since DER employs stored data to strengthen mem-
ory, it still has the drawback of being prone to forgetting
due to the limited buffer size. This is demonstrated by its as-
signing much lower scores to the old domain of presentation
when learning cooking.
Scalability of GPE in the dynamic manner. We investigate
the generalization ability of dynamic GPE (Md) in the sce-
nario where the model needs to handle a large number of do-
mains. We consider the R-MNIST dataset containing a series
of rotated digits with different degrees between [0, π), where
each degree represents a domain. For a fair comparison, we
use the identical settings as Buzzega et al. (2020), yielding a
stream with 20 subsequent tasks. Note that no augmentation
techniques are used. In this experiment, GPE is simplified to
be a small network with 2 fully-connected layers followed
by ReLU. The number of prototypes is set to 5 per class.
Therefore each task Tt has 5t prototypes per class by inher-
iting from previous stages and generating 5 new prototypes
for each class. The old prototypes are forbidden to change
too much. λ and γ are 10 and 1e-2. All other experimental
settings follow Buzzega et al. (2020). Results depicted in Ta-
ble 3 demonstrate that the dynamic GPE surpasses most con-
ventional methods, including the regularization-based and
replay methods. Notably, the dynamic GPE achieves 85.42%
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Method SI oEWC ER GEM FDR GSS HAL DER GPE (Md) GPE (Md)
Buffer Size ✗ ✗ 200 200 200 200 200 200 ✗ 200
Avg Acc. 71.91 77.35 85.01 80.80 85.22 79.50 84.02 90.04 85.42±0.13 90.17±0.25

Table 3: Average classification accuracy on R-MNIST using linear classifiers.

Buffer ER GEM A-GEM FDR GSS HAL DER DER++ Co2L GPE (Md)
200 93.53 89.86 89.03 93.71 87.10 89.40 96.43 95.98 97.90 97.06
500 94.89 92.55 89.04 95.48 89.38 92.35 97.57 97.54 98.65 98.33

Table 4: Average classification accuracy on R-MNIST using convolution-based models.

average accuracy across 20 tasks, comparable to ER (Rol-
nick et al. 2019) and FDR (Benjamin, Rolnick, and Körding
2019) while outperforming other methods with a consider-
able margin. We further adopt the identical replay schemes
as DER (Yan, Xie, and He 2021), and this helps the dynamic
GPE achieve 90.17% top-1 accuracy, which is established
as a new comparable state-of-the-art approach. Besides, we
further investigate the extensibility of GPE to stronger back-
bones, e.g., the convolution network as in Cha, Lee, and Shin
(2021). We use ResNet-18 (He et al. 2016) as the backbone
for GPE and all other competing methods. The result is de-
picted in Table 4 and the detailed explanation of this part
is attached in Appendix 18. To summary, when no memory
buffer is applied, GPE with ResNet-18 (He et al. 2016) back-
bone achieves 94.77% (cf. Appendix Table 4) top-1 classifi-
cation accuracy on the R-MNIST dataset. By using a mem-
ory buffer of 200 samples and 500 samples, GPE boosts its
performance by 2.29% and 3.56%, respectively. These re-
sults achieve the comparable state-of-the-art performance.

Ablation Study
Ablation on the initial number of prototypes k. The num-
ber of prototypes reflects the model’s capacity. Too many
prototypes increase the training cost while too few lead to
under-fitting. Results shown in Table 5 provide a compar-
ison between the training cost and performance under the
fixed mode of GPE (Mf) on LiveFood. It is observed that
with the increasing initial quantity of prototypes k, the aver-
age mAP over all tasks consistently increases. However, by
comparing the last two rows in Table 5, we notice that the
performance gain between k = 40 and k = 50 is marginal
though more parameters are introduced. Therefore, we set k
to 40 throughout experiments to strike a good balance be-
tween accuracy and efficiency. If the dimension of features
outputted by the feedforward layer (FFN) in transformer en-
coder is not significantly high, the extra training cost yielded
by prototypes is not unbearable since the flops has linear
complexity with the feature dimension.
Ablation on distance constraint γ. Extremely small γ hin-
ders the model from learning new concepts since the pro-
totypes are almost unchanged. In contrast, too large γ may
lead to catastrophic forgetting since the model may heavily
overfit to the newly observed data. As shown in Table 6, we
set k to 40 by default and investigate the effects of γ with
different values. In our experiments, we find the distance
between the vanilla and highlight prototypes after T1 is less

k
mAP (γ = 5.0)

T1 T2 T3 T4 Avg.
10 35.31 33.48 29.18 25.98 30.99
20 35.82 34.66 30.72 28.73 32.35
30 36.13 35.70 30.51 28.67 32.75
40 36.14 35.82 31.87 29.88 33.43
50 36.21 35.88 31.90 29.94 33.48

Table 5: Ablations on the initial number of prototypes k.

γ
mAP (k = 40)

T1 T2 T3 T4 Avg.
1e-3 36.14 34.26 30.17 26.43 31.75
1.0 36.13 34.97 30.62 27.41 32.28
3.0 36.15 35.50 31.44 28.27 32.84
5.0 36.14 35.82 31.87 29.88 33.43
15.0 36.14 34.92 30.80 28.12 32.50

Table 6: Ablations on the changing constraints of distance γ.

than 15, so it is set as the upper bound of γ. From Table 6,
we can see that when γ is small, say 1e-3, GPE can hardly
learn the new contents, only achieving similar mAP com-
pared to the lower bound method as shown in Table 2. By
enlarging γ, the average mAP increases consistently from
31.75 to 33.43. When γ is 15, the model suffers from the
forgetting issue, resulting in a near 1.0% performance drop.
Consequently, we set k and γ to 40 and 5 by default.

Conclusion
In this paper, we introduce a new task: incremental video
highlights detection, aiming to perform VHD in the prac-
tical scenario where both the highlight domains and data
increase over time. To pave the road in this new direction,
we collect a high-quality video gourmet dataset LiveFood
which contains four fine-annotated domains, i.e., ingredi-
ents, cooking, presentation, and eating. The data collection
procedure has been reviewed and approved by an institu-
tional review board (IRB) equivalent committee. We also
propose a novel model named Global Prototype Encoding
(GPE) to learn incrementally to adapt to new highlight do-
mains. Extensive experiments clearly demonstrate the effec-
tiveness of our method. We hope this work serves to inspire
other researchers to work on this new and critical task.
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