
MKG-FENN: A Multimodal Knowledge Graph Fused End-to-End Neural
Network for Accurate Drug–Drug Interaction Prediction

Di Wu1,2, Wu Sun1, Yi He3*, Zhong Chen4, Xin Luo2

1College of Computer Science and Technology, Chongqing University of Posts
and Telecommunications, Chongqing 400065, China

2College of Computer and Information Science, Southwest University, Chongqing 400715, China
3Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA

4School of Computing, Southern Illinois University, Carbondale, IL 62901, USA
wudi.cigit@gmail.com, s220201081@stu.cqupt.edu.cn, yihe@cs.odu.edu, zhong.chen@siu.edu, luoxin21@gmail.com

Abstract

Taking incompatible multiple drugs together may cause ad-
verse interactions and side effects on the body. Accurate pre-
diction of drug-drug interaction (DDI) events is essential for
avoiding this issue. Recently, various artificial intelligence-
based approaches have been proposed for predicting DDI
events. However, DDI events are associated with complex re-
lationships and mechanisms among drugs, targets, enzymes,
transporters, molecular structures, etc. Existing approaches
either partially or loosely consider these relationships and
mechanisms by a non-end-to-end learning framework, result-
ing in sub-optimal feature extractions and fusions for predic-
tion. Different from them, this paper proposes a Multimodal
Knowledge Graph Fused End-to-end Neural Network (MKG-
FENN) that consists of two main parts: multimodal knowl-
edge graph (MKG) and fused end-to-end neural network
(FENN). First, MKG is constructed by comprehensively ex-
ploiting DDI events-associated relationships and mechanisms
from four knowledge graphs of drugs-chemical entities, drug-
substructures, drugs-drugs, and molecular structures. Corre-
spondingly, a four channels graph neural network is designed
to extract high-order and semantic features from MKG. Sec-
ond, FENN designs a multi-layer perceptron to fuse the ex-
tracted features by end-to-end learning. With such designs,
the feature extractions and fusions of DDI events are guaran-
teed to be comprehensive and optimal for prediction. Through
extensive experiments on real drug datasets, we demonstrate
that MKG-FENN exhibits high accuracy and significantly
outperforms state-of-the-art models in predicting DDI events.
The source code and supplementary file of this article are
available on: https://github.com/wudi1989/MKG-FENN.

Introduction
The joint use of multiple drugs is very common in clinical
care (Zitnik, Agrawal, and Leskovec 2018). While incom-
patible multiple drugs may cause adverse drug-drug interac-
tion (DDI) events that have harmful side effects on the body
(Vilar et al. 2014). For example, taking Abemaciclib along-
side Bosutinib can lead to an increase in serum concentra-
tions of Abemaciclib; Conversely, if Abemaciclib is taken
at the same time as Clemastine, Abemaciclib’s metabolism
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Figure 1: The examples of taking incompatible multiple
drugs together may cause adverse interactions and side ef-
fects on the body.

may be impaired, as illustrated in Figure 1. To avoid the neg-
ative consequences associated with DDI events and maxi-
mize their benefits, it is crucial to proactively identify such
interactions in advance.

DDI events prediction is essential for addressing this
issue. Recently, various artificial intelligence-based ap-
proaches have been proposed for achieving DDI events pre-
diction, such as utilizing graph neural networks (GNNs) to
analyze the structural similarity of chemicals (Huang et al.
2020), employing semi-supervised learning to extract valu-
able information from labeled and unlabeled drug data (Chu
et al. 2019), and leveraging knowledge graph for predict-
ing the pharmacological effects of multi-typed DDIs (Yu
et al. 2021). Notably, DDI events are associated with com-
plex relationships and mechanisms among drugs, targets,
enzymes, transporters, molecular structures, etc. (Cui et al.
2020; Lin et al. 2020). To exploit such complex relationships
and mechanisms, some efforts have been made (Deng et al.
2020), including drug features analyzed (Chu et al. 2019),
graph learning-based (Yu et al. 2021), and hybrid modeling
(Lyu et al. 2021) approaches. However, these approaches
either partially or loosely consider such relationships and
mechanisms by a non-end-to-end learning framework, mak-
ing the cross-modality complementarity and potential rela-
tionships between different aspects of DDI events be not
well exploited. As a result, the feature extractions and fu-
sions of DDI events are sub-optimal for predictions.

To address this issue, this study proposes a novel Multi-
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modal Knowledge Graph Fused End-to-end Neural Network
(MKG-FENN) for accurate DDI events prediction. MKG-
FENN has two main parts: multimodal knowledge graph
(MKG) and fused end-to-end neural network (FENN). First,
MKG is to comprehensively exploit DDI events associated
relationships and mechanisms by constructing four knowl-
edge graphs of drugs-chemical entities, drugs-substructures,
drugs-drugs, and molecular structures, where a four chan-
nels GNN is designed to extract high-order and semantic
features from MKG. Second, FENN designs a multi-layer
perceptron to fuse the extracted features by an end-to-end
learning framework. With such designs, MKG-FENN can
guarantee that the feature extractions and fusions of DDI
events are comprehensive and optimal for achieving accu-
rate predictions.

Specific contributions of this paper are as follows:
i) This is the first study to comprehensively exploit various

relationships and mechanisms of drugs-chemical entities,
drugs-substructures, drugs-drugs, and molecular struc-
tures to predict DDI events in end-to-end learning way.

ii) A novel and highly-accurate MKG-FENN model is pro-
posed and elaborated for DDI events prediction.

iii) Extensive experiments on real drug datasets are con-
ducted to evidence the viability, effectiveness, and supe-
riority of the proposed MKG-FENN model.

Due to page limit, some contents including notations, algo-
rithm designs, details of rival models and implementation,
and certain experimental results are deferred to the Supple-
mentary File, available as an electronic companion.

Related Work
Drug Features Analyzed Methods
Drug features analysis is a difficult but important process
for DDI events prediction. Some studies assume that similar
drugs may exhibit similar DDIs and propose to learn accu-
rate and interpretable similarity measurements from differ-
ent types of drug features for DDI prediction (Deng et al.
2020). DeepDDI (Ryu, Kim, and Lee 2018) is a deep learn-
ing method to learn drug pairs and drug–food constituent
pairs for DDIs prediction. MDF-SA-DDI (Lin et al. 2022b)
introduces a DDI event prediction model based on multi-
source drug fusion, multi-source feature fusion, and trans-
former self-attention for offline drug feature learning. ML-
RDA (Chu et al. 2019) is developed to effectively utilize
multiple features of drugs by incorporating a novel unsuper-
vised disentangling loss called CuXCov. DeSIDE-DDI (Kim
and Nam 2022) is a deep learning-based framework that fo-
cuses on interpreting the underlying genes in DDIs analysis.
Recently, a multi-type DDI prediction model named MDDI-
SCL(Lin et al. 2022a) is presented by supervised contrastive
learning and three-level loss functions. Nonetheless, most
of the drug features analyzed methods focus on acquir-
ing the extensive attributes and features of drugs while ne-
glecting the topological information and semantic relation-
ships among drugs, targets, enzymes, transporters, molecu-
lar structures, etc. In comparison, the proposed MKG-FENN
model can extract such high-order topological information

and semantic relationships, which is of great help to DDI
events prediction.

Graph Learning-Based Methods
Graph embedding-based. Currently, there are many
graph embedding methods used for effective network-based
features in DDI prediction. These methods fall into three cat-
egories. The first category involves models that use the ad-
jacency matrix as input to learn latent embeddings through
matrix decomposition (Shi et al. 2019).

The second category focuses on generating sequences of
nodes through random walks and learning node represen-
tations based on these sequences (Ribeiro, Saverese, and
Figueiredo 2017). The final category utilizes diverse neural
architectures and graph data as input to capture higher-order
connectivity patterns and leverage rich drug network infor-
mation (Tang et al. 2015; Wang, Cui, and Zhu 2016).

Knowledge graph-based. The utilization of knowledge
graphs has significantly advanced research in various do-
mains, including relation inference and recommendation
(Wang et al. 2019). KGNN (Lin et al. 2020) success-
fully integrated graph convolutional networks with neigh-
borhood sampling to effectively extract neighborhood rela-
tions. SumGNN (Yu et al. 2021) introduced a graph summa-
rization module for subgraphs to extract manageable path-
ways. LaGAT (Hong et al. 2022) proposed a link-aware
graph attention method that generates multiple attention
pathways for drug entities based on different links between
drug pairs. DDKG (Su et al. 2022) extended this idea by
learning drug embeddings from their attributes in the KG
and considering neighboring node embeddings and triple
facts simultaneously using an attention mechanism.

Molecular graph-based. This type method encompasses
predicting molecular properties (Wang et al. 2022) and
molecular interactions (Li et al. 2022). MFFGNN (He et al.
2022) combines the topological structure within molecu-
lar graphs with the interaction relationship between drugs
and the local chemical context in SMILES sequences. Fur-
thermore, Molormer (Zhang et al. 2022) leverages the two-
dimensional structures of drugs as input and encodes the
molecular graph with spatial information using a lightweight
attention mechanism.

Note that although these graph learning-based methods
have delved into the higher-order structure and semantic re-
lationships of drugs, they still partially consider these rela-
tionships. In comparison, the proposed MKG-FENN model
has comprehensively exploited various relationships and
mechanisms from drugs, chemical entities, and molecular
structures.

Hybrid Modeling Methods
Hybrid modeling is more effective than individual mod-
els (Chen et al. 2021). MDNN (Lyu et al. 2021) design a
two-pathway framework including a drug knowledge graph
pathway and a heterogeneous features pathway to for pre-
dicting DDI events. Deepika and Geetha (Deepika and
Geetha 2018) employed a semi-supervised learning frame-
work that incorporated network representation learning and
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meta-learning techniques on different drug datasets. Chen et
al. (Chen et al. 2021) introduced a multi-scale feature fu-
sion deep learning model called MUFFIN to learn drug rep-
resentations from both the drug structure and a biomedical
knowledge graph. However, these hybrid modeling meth-
ods are non-end-to-end learning frameworks, resulting in
sub-optimal feature extractions and fusions for DDI events
prediction. In comparison, the proposed MKG-FENN has
an end-to-end learning way to fuse the extracted features,
which guarantees the feature extractions and fusions of DDI
events always to be comprehensive and optimal.

Preliminaries
DDI Matrix. The DDI matrix represents drug-drug in-
teraction events and is denoted as Y ∈ (0, yij)

Nd×Nd ,
where Nd represents the number of drugs in the matrix.
The label matrix consists of labels yij ∈ L, where L =
{y1, y2, · · · , yNl

} denotes the set of possible labels, and Nl

represents the number of event types. Each element yij ∈ L
in the DDI matrix indicates whether there is a presence or
absence of an interaction event between drug di and drug
dj . If yij = 0, it signifies that there is no interaction event
between drug di and drug dj . Please note that in our exper-
iment, there are a total of 65 classes of DDI events, such as
”serum concentration increase” and ”fluid increase”, and we
have assigned a unique identifier to each event class.

Drug Knowledge Graph. The drug knowledge graph is a
specialized knowledge graph for predicting DDI events. It is
represented by the tuple G = (D,R, T ). In this represen-
tation, D denotes a subset of drug entities, T represents a
subset of tail entities, which are related to drugs (such as tar-
gets), and R denotes the set of relations between drugs and
tail entities. The drug knowledge graph is defined as a set of
tuples (d, rdt, t), where each tuple represents a connection
between a drug entity d, a relation rdt, and a tail entity t.
These connections exist if and only if the drug entity is in the
set D, the relation is in the set R, and the tail entity is in the
set T . By constructing and analyzing the drug knowledge
graph, insights can be drawn regarding the relationships be-
tween drugs and their corresponding tail entities.

DDI Events Prediction. Our objective is to predict spe-
cific interaction events between drug di and drug dj using
the DDI events matrix Y and drug knowledge graph Gi,
where i represents the number of drug knowledge graphs.
To achieve this, we learn a prediction function denoted as
ŷij = Γ

(
di, dj | Θ,Y,Gi

)
, where ŷij represents the prob-

ability of an event occurring between drug di and drug dj .
The function Γ incorporates the model parameters Θ and the
information from Y and Gi to make accurate predictions.

Proposed Method
Overview. The architecture of MKG-FENN is depicted in
Figure 2, which consists of two main functional parts: multi-
modal knowledge graph (MKG) and fused end-to-end neu-
ral network (FENN). MKG employs a GNN to extract the
features of both topological structure and semantic relation-
ships from the various knowledge graphs associated with

DDI events. FENN aims to effectively exploit the potential
complementarity and relationships among the extracted fea-
tures in an end-to-end learning way.

Multimodal Knowledge Graph
Constructing Drug Knowledge Graphs. We construct
four knowledge graphs of drugs-chemical entities, drug-
substructures, drugs-drugs, and molecular structures. Each
drug knowledge graph is represented in the form of triples,
denoted as <drugs, relationships, entities>. These triples
capture the relationships between drugs and various entities
in the knowledge graph. We used Unified Medical Language
System and DrugBank ID for unified identifier system and
knowledge graph construction.

First, the data of drug knowledge graphs are sourced
from DrugBank. We collect drug-related information such
as transporters and targets to serve as the entities in this part.
To establish the relationships between drugs and entities, we
assign the general function of the entity as the corresponding
relationship. For instance, let’s consider the drug Lovastatin.
If there is a transporter called Serum albumin, and its gen-
eral function is Toxic substance binding, we would create
the following triplet: <Lovastatin, Toxic substance binding,
Serum albumin>.

Second, the data of drug knowledge graphs are sourced
from the SMILES attribute in DDIMDL (Deng et al. 2020).
In this process, the SMILES attribute of drugs is considered
as entities, while the relationship between drugs and entities
is represented by “including”.

Third, the data of drug knowledge graphs are derived from
DDI events matrix. This dataset is known for its substantial
size and rich information. In this data, we can gather infor-
mation about the other drug that each drug can interact with.
We treat these drugs as entities, and the specific interaction
event as the corresponding relationship.

Finally, the drug knowledge graphs are constructed based
on the Molecular ACCess System (MACCS) bonds along
with 13 MACCS bonds and 7 other molecular features
(Baranwal et al. 2020). These MACCS bonds and molec-
ular features are treated as entities of the drug, where the
values indicating their belonging frequencies are denoted
as relationships. For instance, Glucosamine possesses three
molecular substructures of NumSaturatedRings, yielding
<Glucosamine, 3, NumSaturatedRings>.

Extracting Features by the GNN Layer. The purpose of
using the GNN layer is to obtain the topological structure
and semantic relationships of drugs. In this article, the drug
knowledge graph is transformed into a matrix representa-
tion. The initial representation matrix of the drug knowledge
graph, denoted as Gi, is as follows:

Ei
Gi = [ e

(0)
d1

, · · · , e(0)Nd︸ ︷︷ ︸
drug−embedding

, e(0)r1 , · · · , e(0)Nr︸ ︷︷ ︸
relation−embedding

, e
(0)
t1

, · · · , e(0)Nk︸ ︷︷ ︸
tail−embedding

] (1)

In the formula, Ei
Gi represents the i-th knowledge graph’s

initial representation matrix, where i ranges from 1 to
4. Nd, Nr and Nk indicate the number of drugs, rela-
tionships, and tail entities, respectively. ed

(0) ∈ Rd ,
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Figure 2: The overall structure of the proposed MKG-FENN model.

er
(0) ∈ Rd and et

(0) ∈ Rd represent the initial
embeddings for drugs, relationships, and tail entities, where
d is the embedding dimension of the drug knowledge graph.

For each drug di, a fixed-size neighborhood of samples is
uniformly sampled as the drug’s neighbors instead of con-
sidering all tail entities. The fixed-size neighborhoods are
represented by Ns (di).

Assuming the drug knowledge graph G of drug di, we
represent it in triples (di, rin, tn), where tn represents the
neighborhood of drug di and rin represents the semantic re-
lationship within the neighborhood. To incorporate the se-
mantics of relationships into drug representation learning,
we calculate the semantic feature score between drug di and
its corresponding neighborhood tail entity tn using the fol-
lowing formula:

π
(l)
(di,rin)

= sum
[(

e
(l−1)
di

⊙ e(l−1)
rin

)
W

(p)
1 + b

(p)
1

]
(2)

In the formula, e(l−1)
rin represents the embedding of the re-

lationship between drug di and tail entity tn in the (l − 1)
th

layer of the GNN. e(l−1)
di

represents the embedding of drug

di in the (l − 1)
th layer of the GNN. W (p)

1 is the trainable

weight matrix, b(p)1 is the bias vector, and p represents the
number of fully connected layers. The symbol ⊙ represents
element-wise multiplication.

Next, we aggregate the embeddings of the neighborhood
Ns (di) by combining the embeddings of the neighborhood
and the semantic feature scores. The aggregation function is
defined as follows:

e
(l)
Ns(di)

=
∑

tn∈Ns(di)

π
(l)
(di,rin)

e
(l−1)
tn (3)

In the formula, e(l−1)
tn represents the neighborhood em-

bedding of drug di in the (l − 1)
th layer of the GNN.

π
(l)
(di,rin)

represents the semantic feature score of drug di and

the relationship in the (l)
th layer.

The final step involves the aggregation process.To fuse
the embedding of drug di with its corresponding neighbor-
hood representation into a vector, we use the following fu-
sion equation:

Edi
= e

(l)
di

= σ
((

e
(l−1)
di

⊕ e
(l)
Ns(di)

)
W2 + b2

)
(4)
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where σ represents the ReLU activation function, and ⊕
denotes the concatenation operation. W2 ∈ R(2d)∗d is
the trainable weight matrix, and b2 is a bias vector.

Note that the constructed four drug knowledge graphs
share a consistent format. Similarly, we can apply the same
methodology to calculate the representation of drug dj using
its corresponding knowledge graphs. By applying the for-
mula and generating the drug representation, we can capture
the relevant information and features of drug dj within the
drug knowledge graph.

Fused End-to-End Neural Network
To maximize the information from the four paths, we take
into account their complementarity and correlation in the
fused end-to-end neural network layer. For drug di, we can
obtain drug representations corresponding to the four parts
of the dataset in the graph neural network, represented by
E1

di , E
2
di , E

3
di and E4

di , respectively. The fusion of the
four-part drug representations can be described by the fol-
lowing formula:

Êdi
= E1

di
⊕ E2

di
⊕ E3

di
⊕ E4

di
(5)

By following this approach, the final representations of
the drug, denoted as Êdi

, incorporate semantic relation-
ships and topological information from the four parts of
the dataset. Similarly, for drug dj , we can utilize the same
method to obtain its fused representations, denoted as Êdi

.
Next, a multi-layer perceptron (MLP) is utilized to pre-

dict DDI events between different drugs. The formula for
the MLP prediction is described as follows:

ŷij = σ
((

Êdi
⊕ Êdj

)
W

(q)
3 + b

(q)
3

)
(6)

In the formula, W (q)
3 represents the trainable weight ma-

trix, b(q)3 denotes the bias vector, and q represents the to-
tal number of fully connected layers in the model. The acti-
vation function σ used in these layers is ReLU , which ap-
plies element-wise rectification and introduces non-linearity
to the network.

To optimize the model, we incorporate a batch normaliza-
tion layer to expedite convergence. Additionally, we intro-
duce a dropout layer to mitigate overfitting and enhance the
model’s generalization capabilities. Furthermore, we apply
ℓ2 regularization to counteract overfitting tendencies. For the
optimization process, we employ the Adam optimizer and
utilize cross-entropy as the loss function.

Experiments
In the subsequent experiments, we conduct three kinds of ex-
periments as follows: predicting DDI events between known
drugs (Task 1), between known drugs and new drugs (Task
2), and among new drugs (Task 3). Then, we aim to answer
the following research questions (RQs):

• RQ.1. Can the proposed MKG-FENN model outperform
state-of-the-art models in Task 1?

• RQ.2. How does the proposed MKG-FENN model com-
pare to state-of-the-art models in Tasks 2 and 3?

• RQ.3. How do different channels impact the performance
of the MKG-FENN model (ablation study)?

• RQ.4. How do different hyper-parameter settings affect
the performance of the MKG-FENN model?

General Settings
Datasets. To validate the effectiveness of MKG-FENN,
we collect real drug datasets that have four parts. Part 1:
We obtained this portion from DrugBank1 (version 5.1.7)
based on DDI events. Part 2: This section was obtained
from DDIMDL2, and we converted the drug’s smile char-
acteristics into a knowledge graph. Part 3: This section is
derived from DDIMDL, where we converted the DDI ma-
trix into a knowledge graph. Part 4: Part 4 represents the
MACCS (Molecular ACCess System) keys. We selected 13
MACCS keys and 7 other molecular features based on the
work of (Baranwal et al. 2020). The four parts of datasets
are employed to construct four drug knowledge graphs de-
scribed in Figure 2. The detailed information of the datasets
is provided in Table 1.

Dataset Drug
number

Entity
number

Relationship
number

Triple
number

Part 1 572 825 235 6541
Part 2 572 583 1 70350
Part 3 572 572 65 74528
Part 4 572 20 13 11440

Table 1: The details of the dataset.

Evaluation Metrics. For model evaluation metrics, we
employ multi-class classification evaluation metrics, includ-
ing accuracy (ACC), area under the precision-recall curve
(AUPR), area under the ROC curve (AUC), F1 score, preci-
sion (Pre), and recall (Rec) (Lyu et al. 2021).

Baselines. The proposed MKG-FENN model is com-
pared with six state-of-the-art related models: MDDI-
SCL (Lin et al. 2022a), MDF-SA-DDI (Lin et al. 2022b),
DDIMDL (Deng et al. 2020), MDNN (Lyu et al. 2021),
Lee et al.’s methods (Lee, Park, and Ahn 2019), and Deep-
DDI (Ryu, Kim, and Lee 2018). Additionally, several tra-
ditional classification methods are also considered, namely
DNN, RF, KNN, LR (Deng et al. 2020), and GNN (Kipf
and Welling 2016).

Hyper-Parameter. In the experiment, the training was
configured with the following settings: 120 epochs of iter-
ations, a learning rate of 0.01, a batch size of 1024, an em-
bedding size of 128, a Ns(neighborhood size) of 6 , and a

1https://go.drugbank.com/
2https://github.com/YifanDengWHU/DDIMDL
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Metric MDDI-
SCL

MDF-SA
-DDI DDIMDL MDNN Lee et al.’

methods DeepDDI DNN RF KNN LR GNN MKG-
FENN

Task 1

ACC 0.9378 0.9301 0.8852 0.9175 0.9094 0.8371 0.8797 0.7775 0.7214 0.7920 0.9142 0.9409
AUPR 0.9782 0.9737 0.9208 0.9668 0.9562 0.8899 0.9134 0.8349 0.7716 0.8400 0.9691 0.9786
AUC 0.9983 0.9989 0.9976 0.9984 0.9961 0.9961 0.9963 0.9956 0.9813 0.9960 0.9989 0.9989
F1 0.8755 0.8878 0.7585 0.8301 0.8391 0.6848 0.7223 0.5936 0.4831 0.5948 0.8332 0.8958
Pre 0.8804 0.9085 0.8471 0.8622 0.8509 0.7275 0.8047 0.7893 0.7174 0.7437 0.8941 0.9132
Rec 0.8767 0.8760 0.7182 0.8202 0.8339 0.6611 0.7027 0.5161 0.4081 0.5236 0.8012 0.8876

Statistic
Win/Tie/Loss 6/0/0 5/1/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 5/1/0 64/2/0*

p-value 0.0156 0.0313 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0313 -
F-rank 10 10.5 6.17 8.17 7.25 3.75 5.17 2.33 1 3 8.83 11.83

Table 2: The comparison between MKG-FENN and its competitors in task 1, including the Win/Tie/Loss counts, Wilcoxon
signed-ranks test, and Friedman test.

classification loss weight of 1e-08. Additionally, the param-
eters were set to l = 1, p = 2, and q = 3. It is worth
noting that l denotes the number of hidden layers in GNN.
Our empirical study suggested using 1 layer, aligning with
the recent issue of over-smoothing in GNN (Lyu et al. 2021).

Comparison Based on Known Drugs (RQ.1)
Task 1 holds significant importance for DDI prediction. Ta-
ble 2 illustrates the comparison of our model with all the
baselines in terms of the evaluation metric for Task 1. To
gain deeper insights into these results, we conducted statis-
tical analyses involving win/tie/loss analysis, the Wilcoxon
signed-ranks test, and the Friedman test.

In Table 2, we can clearly see that our model outperforms
all the other models across all evaluation metrics. This is
evident from the total win/tie/loss cases, where our model
has achieved a remarkable 64 wins and 2 tie, with no losses.
Furthermore, all the p-values calculated for the comparisons
are smaller than 0.05, indicating that the performance im-
provement of our MKG-FENN model is statistically signifi-
cant compared to the other models, with a significance level
of 0.05. Additionally, our model boasts the highest F-rank
value, further solidifying its superiority.

In addition, we conducted a detailed analysis of MKG-
FENN’s performance for each event in task 1 and calculated
a metric score for each event using predicted scores and real
labels. The AUPR scores and AUC scores for all predictive
models are presented in Figure 3. The results depicted in
Figure 3 clearly demonstrate that MKG-FENN consistently
achieved higher AUPR and AUC scores compared to other
models across the majority of events. To further scrutinize
the comparison, we utilized boxplots to showcase the supe-
rior performance of our model in these events. Figure 4 illus-
trates the distribution of model performances. It is worth not-
ing that our proposed model can achieve better performance
than other models for small-sample data. For instance, we
can accurately predict event number 62, which is not achiev-
able by other comparative models.

Comparison Based on New Drugs (RQ.2)
Table 3 and Table 4 present the performance comparison be-
tween our model and baselines in tasks 2 and 3. For task
1, we employed five-fold cross-validation to divide the DDI

Figure 3: The AUPR scores and AUC scores of all prediction
models for each event.

Figure 4: Boxplots displaying the AUPR and AUC of com-
pared methods of each event.

event dataset into five subsets, with four subsets used for
training and one subset for testing. In tasks 2 and 3, we ini-
tially divided the drug types into five parts, with one part
consisting of new drugs. Subsequently, we further divided
the data of new drugs in the DDI dataset to create a test set.
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Based on the experimental results, it is evident that MKG-
FENN outperforms the comparison models in most cases
and achieves a higher F-rank value. Specifically, in tasks 2
and 3, the overall outcomes can be summarized as 31 wins, 0
ties,and 5 losses in favor of MKG-FENN. Moreover, the F-
rank value of our model is 6.17, which achieves the highest
F-rank value among all the models. These results demon-
strate the superior performance of MKG-FENN.

Metric MDDI
-SCL

MDF-
SA-
DDI

DDIM
DL

Lee
et al.’

methods
Deep
DDI DNN MKG

-FENN

ACC 0.6767 0.6633 0.6415 0.6405 0.5774 0.6239 0.6805
AUPR 0.6947 0.6776 0.6558 0.6244 0.5594 0.6361 0.7049
AUC 0.9634 0.9497 0.9799 0.9247 0.9575 0.9796 0.9673
F1 0.5304 0.5584 0.4460 0.5039 0.3416 0.2997 0.5394
Pre 0.6254 0.6547 0.5607 0.5388 0.3630 0.4237 0.6063
Rec 0.4814 0.5078 0.4319 0.4891 0.3890 0.2840 0.5106

Win/Tie
/Loss 5/0/1 4/0/2 5/0/1 6/0/0 6/0/0 5/0/1 31/0/5*

p-value 0.0781 0.1563 0.0469 0.0156 0.0156 0.0313 -
F-rank 5.17 5.33 4.17 3 1.67 2.50 6.17

Table 3: The comparison results between MKG-FENN and
its competitors in task 2.

Ablation Study (RQ.3)
To examine the influence of different channels, we con-
ducted an ablation study by combining the different knowl-
edge graphs of MKG-FENN. The results are presented in
Table 5. Analyzing these results, it is evident that construct-
ing a drug representation based on drug topology is a vi-
able approach. We achieved satisfactory performance us-
ing a single-channel model. However, when employing a
multi-channel fusion model, we observed a continuous per-
formance improvement, ultimately leading to the best re-
sults with the MKG-FENN model. Including different chan-
nels aims to explore the representation of different aspects
of drugs, thereby enriching the learning process regarding

Metric MDDI
-SCL

MDF-
SA-
DDI

DDIM
DL

Lee
et al.’

methods
Deep
DDI DNN MKG

-FENN

ACC 0.4589 0.4338 0.4075 0.4097 0.3602 0.4087 0.4552
AUPR 0.3938 0.3873 0.3635 0.3184 0.2781 0.3776 0.4162
AUC 0.9053 0.8630 0.9512 0.8302 0.9059 0.9550 0.9149
F1 0.1919 0.2329 0.1590 0.2022 0.1373 0.1152 0.2186
Pre 0.2585 0.2715 0.2408 0.2216 0.1586 0.1836 0.2754
Rec 0.1678 0.2226 0.1452 0.2027 0.1450 0.1093 0.2131

Win/Tie
/Loss 5/0/1 4/0/2 5/0/1 6/0/0 6/0/0 5/0/1 31/0/5*

p-value 0.0313 0.1563 0.0313 0.0156 0.0156 0.0469 -
F-rank 4.83 5.33 3.50 3.33 1.83 3 6.17

Table 4: The comparison results between MKG-FENN and
its competitors in task 3.

ACC AUPR AUC F1 Pre Rec F-rank
P1 0.9172 0.9696 0.9988 0.8256 0.9011 0.7858 5.17
P2 0.9169 0.9693 0.9989 0.8165 0.8842 0.7846 4.08
P3 0.9169 0.9688 0.9989 0.8200 0.8933 0.7802 3.92
P4 0.9157 0.9680 0.9987 0.8230 0.9127 0.7825 4.17

P1+P2 0.9341 0.9758 0.9987 0.8707 0.9117 0.8492 10.08
P1+P3 0.9307 0.9742 0.9987 0.8666 0.9113 0.8436 6.83
P1+P4 0.9322 0.9748 0.9987 0.8669 0.9075 0.8465 7.67
P2+P3 0.9318 0.9749 0.9987 0.8689 0.9037 0.8468 7.67
P2+P4 0.9303 0.9743 0.9987 0.8661 0.9088 0.8416 6.33
P3+P4 0.9297 0.9741 0.9987 0.8700 0.9073 0.8457 6.50
P1+P2

+P3 0.9344 0.9751 0.9986 0.8858 0.9199 0.8626 10.50

P1+P2
+P4 0.9355 0.9755 0.9985 0.8847 0.9218 0.8648 11.17

P1+P3
+P4 0.9349 0.9758 0.9985 0.8868 0.9161 0.8692 11.25

P2+P3
+P4 0.9351 0.9757 0.9985 0.8765 0.9210 0.8542 10.50

P1+P2+
P3+P4 0.9409 0.9786 0.9989 0.8958 0.9132 0.8876 14.17*

* P1, P2, P3, and P4 represent 4 parts of the dataset, respec-
tively.

Table 5: The ablation study of MKG-FENN.

different drug topologies. Therefore, the fusion of multi-
channel drug embeddings can enhance the prediction accu-
racy of DDI events.

Parameter Sensitivity Analysis (RQ.4)
In this study, we identified three crucial parameters: the size
of the sampling neighborhood Ns, the dimension of the drug
embedding d in the drug knowledge graph, and the clas-
sification loss weight (CLW). To investigate the impact of
these parameters, we conducted experiments while keeping
the other parameters fixed. Finally, the model achieved op-
timal performance when Ns = 6; the model performs best
when d = 128; and the optimal CLW value for achieving the
best model performance is 1e − 8. Please refer to the Sup-
plementary File to see details.

Conclusion
This paper proposes a novel MKG-FENN model for pre-
dicting DDI events. MKG-FENN utilizes a multi-channel
GNN to effectively leverage both topological information
and semantic relationships from four knowledge graphs of
drugs-chemical entities, drugs-substructures, drugs-drugs,
and molecular structures. Additionally, the MKG-FENN is
designed as an end-to-end and tightly integrated architecture
that learns to effectively integrate and converge information
from the four constructed drug knowledge graphs. To eval-
uate the proposed MKG-FENN, extensive experiments are
conducted on real drug datasets. The results demonstrate
that the MKG-FENN significantly outperforms both tradi-
tional approaches and state-of-the-art models in predicting
DDI events. In the future, we plan to improve MKG-FENN
by incorporating some self-attention mechanisms.
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