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federica.stefano@tuwien.ac.at, simkus@dbai.tuwien.ac.at

Abstract

This paper studies a stable model semantics for Description
Logic (DL) knowledge bases (KBs) and for (possibly cyclic)
terminologies, ultimately showing that terminologies under
the proposed semantics can be equipped with effective rea-
soning algorithms. The semantics is derived using Quantified
Equilibrium Logic, and—in contrast to the usual semantics of
DLs based on classical logic—supports default negation and
allows to combine the open-world and the closed-world as-
sumptions in a natural way. Towards understanding the com-
putational properties of this and related formalisms, we show
a strong undecidability result that applies not only to KBs un-
der the stable model semantics, but also to the more basic set-
ting of minimal model reasoning. Specifically, we show that
concept satisfiability in minimal models of an ALCIO KB
is undecidable. We then turn our attention to (possibly cyclic)
DL terminologies, where ontological axioms are limited to
definitions of concept names in terms of complex concepts.
This restriction still yields a very rich setting. We show that
standard reasoning problems, like concept satisfiability and
subsumption, are EXPTIME-complete for terminologies ex-
pressed in ALCI under the stable model semantics.

Introduction
Description Logics (DLs) is a prominent family of languages
in the area of Knowledge Representation and Reasoning, al-
lowing to model a domain of interest by formalizing rela-
tionships between concepts, which are written in a conve-
nient yet rich logic-based syntax, and semantically denote
classes of objects (Baader et al. 2017). Specifically, DLs un-
derlie the W3C standard OWL for writing ontologies in the
Semantic Web (Grau et al. 2008), and they are used, e.g., in
formalizing and reasoning about complex terminologies in
healthcare (Elkin 2023); see (Schneider and Šimkus 2020)
for a survey on ontologies and data management.

DLs are often seen as fragments of the classical first-order
logic, equipped with a syntax that is more convenient for
knowledge representation. In particular, this means that most
DLs nowadays make the open-world assumption (OWA), in
which, intuitively, everything that is not forbidden is con-
sidered possible. However, it is acknowledged that support-
ing the closed-world assumption (CWA) is also important in
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order to enable commonsense reasoning in DLs; see, e.g.,
some works based on circumscription in (Bonatti, Lutz, and
Wolter 2009; Bonatti, Faella, and Sauro 2011; Di Stefano,
Ortiz, and Šimkus 2023). This is also witnessed, e.g., by
works that combine DL knowledge bases (KBs) and rules
with default negation (see, e.g., (Motik and Rosati 2010;
Bajraktari, Ortiz, and Šimkus 2018; Lukumbuzya, Ortiz,
and Šimkus 2020) and the references therein). The recon-
ciliation of OWA and CWA specifically in DL terminolo-
gies is a problem whose relevance is boosted by the new
W3C SHACL standard for expressing constraints over RDF
graphs (Knublauch and Kontokostas 2017). SHACL is syn-
tactically very close to DL terminologies, but its semantics
has not been fully established yet (but it clearly leans to-
wards CWA).

A DL terminology T consists of statements of the form
A := C, where a concept name A is defined using a complex
concept expression C. A terminology may contain termino-
logical cycles, where a definition of some concept name may
be recursive, as in the following terminology:

BasicUser := User ⊓ ¬PrivilegedUser
PrivilegedUser := Admin ⊔ ∃promotedBy .PrivilegedUser

Here BasicUser and PrivilegedUser are (intensional or de-
fined) concept names defined using (extensional) base predi-
cates User , Admin , and promotedBy . A concrete semantics
for terminologies tells us how to interpret the defined con-
cept names given an extension for the base predicates. Sup-
pose the base predicates correspond to the following facts:

User(a) User(b) promotedBy(a, b) promotedBy(b, a)

The standard (descriptive) semantics sees “:=” as a logical
equivalence; in our example, it produces two possible exten-
sions for the defined concept names:

(i) BasicUser(a),BasicUser(b)

(ii) PrivilegedUser(a),PrivilegedUser(b)

While the extension (i) is natural and expected, the ex-
tension (ii) is questionable: the membership of a and b in
PrivilegedUser is not well-founded (there is only a self-
supported justification). Thus it makes sense to seek a se-
mantics that would reject (ii), but keep (i) as an intended
structure. A relevant alternative semantics here is the least
fixpoint semantics of Baader (1990), which however is too
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strong in this example: it rejects both (i) and (ii). In (Baader
1990), a given interpretation of extensional predicates is ex-
tended to a model of the terminology. These extensions can
be ordered with a preference relation between interpretations
and the preferred model of a terminology T is given by the
model assigning the minimal possible extension to defined
concepts (Baader and Nutt 2003). Such a model might not
exist, as in the case above where the extensions in (i) and (ii)
are incomparable.

Motivated by examples as above, in this paper we study a
new semantics for DL KBs and terminologies that is inspired
by logic programming with default negation under the sta-
ble model semantics (known as Answer Set Programming).
The stable model semantics of DLs proposed here is stronger
than the classical semantics, in the sense that some classical
models of a KB or terminology will be rejected as implausi-
ble (like (ii) in our example above). This semantics enables
default negation and allows to combine the open-world and
the closed-world assumptions in a natural way. Furthermore,
in the case of DL terminologies in ALCI , reasoning under
the stable model semantics is not more expensive than rea-
soning under the classical semantics.

In a nutshell, the contributions of this paper are as follows:
◦ We define a semantics for general DL knowledge bases
using Quantified Equilibrium Logic (QEL) (Pearce and
Valverde 2008). This yields a new definition of stable mod-
els that is not only elegant but also has some other ad-
vantages. Specifically, our semantics avoids the process of
Skolemization as used in (Gottlob et al. 2021). Moreover,
the use of QEL in defining the semantics allows us to ele-
gantly support fixed predicates, which are needed for mod-
eling (extensional) base predicates in terminologies. Since
standard DLs do not support disjunction of roles, enabling
fixed predicates using other frameworks (e.g., via (Ferraris,
Lee, and Lifschitz 2011)) would be cumbersome.
◦ We provide a strong undecidability result for reasoning
in DLs in the presence of predicate minimization. First, it
shows that reasoning in general DL KBs under the pro-
posed semantics is undecidable. However, the proof is given
for KBs without negation, which means that it carries over
and applies to much simpler settings. Specifically, it shows
that concept satisfiability is undecidable in circumscribed
ALCIO KBs where all predicates are set to be minimized.
This complements the negative results in (Bonatti, Lutz, and
Wolter 2009), which rely on the use of varying predicates.
◦ We define a stable model semantics for DL terminologies.
To achieve this, we instantiate our stable model semantics
for general KBs. Intuitively, for a given terminology T , we
require all base concept and role names of T to be inter-
preted as fixed predicates, i.e. they are not subject to mini-
mization. This is natural given the nature of base predicates
(see the example above). In addition, we provide two alter-
native definitions of stable models, which are all equivalent,
but are useful to illustrate and analyze different aspects of
the proposed semantics. Specifically, we provide definitions
based on level mappings and fixpoint computation.
◦ We show a worst-case optimal complexity result for rea-
soning in DL terminologies under the proposed semantics.

Specifically, we study the case of ALCI terminologies and
prove EXPTIME-completeness of the following problems:
(i) deciding the existence of a stable model of a terminol-
ogy, (ii) deciding concept satisfiability in a stable model of
a terminology, and (iii) checking concept subsumption over
all stable models of a terminology. This is achieved by prov-
ing a tree-model property and employing 2-way alternating
tree automata (Vardi 1998). Thus, in terms of computational
complexity, the stable model semantics for ALCI termi-
nologies is not more expensive than the classical semantics.

Preliminaries
We recall here ALCIO concept expressions, terminologies
and general knowledge bases together with their classical
semantics. We assume countably infinite mutually disjoint
sets NC ,NR,NI of concept names, role names, and indi-
viduals, respectively. If r ∈ NR, then r and the expres-
sion r− are roles. We use N+

R to denote the set of all roles,
i.e.N+

R = {r, r− | r ∈ NR}. We define (complex) concepts
inductively as follows:
(a) the symbols ⊤ and ⊥ are concepts;
(b) each concept name A ∈ NC is a concept;
(c) the expression {o}, where o ∈ NI , is a concept;
(d) if C,D are concepts, and r is a role, then ¬C, C ⊓ D,

C ⊔D, ∀r.C, and ∃r.C are also concepts.
A concept inclusion is an expression of the form C ⊑ D,
where C,D are concepts. A TBox T is any finite set of
concept inclusion axioms. Assertions are expressions of the
forms A(c) or r(c, d), where A ∈ NC , r ∈ NR and c, d ∈
NI . An ABox A is a finite set of assertions. A knowledge
base is a pair K = (T ,A) of a TBox T and an ABox A.

An interpretation is a tuple I = (∆I , ·I), where ∆I is a
non-empty set (the domain), and ·I is a function that assigns
to every o ∈ NI some element oI ∈ ∆I , assigns to every
A ∈ NC some AI ⊆ ∆I , and to every r ∈ NR some binary
relation rI ⊆ ∆I × ∆I . The interpretation function ·I is
extended to all concept expressions and all roles in the stan-
dard way (see, e.g., (Baader et al. 2017)). The “|=” relation,
and thus the notion of a (classical) model of a TBox, ABox,
or a KB, are as usual.
Reasoning tasks. Assume a KB K and concepts C,D. The
satisfiability problem is to check if K has a model. The con-
cept subsumption problem (w.r.t.K) is to check if CI ⊆ DI

holds for all models of I of K. The concept satisfiability
problem (w.r.t.K) is to check if K has a model with CI ̸= ∅.
Terminologies. A concept definition is an expression of
the form A := C, where A ∈ NC and C is a concept. A
terminology T is a finite set of concept definitions, where
additionally {A := C1, A := C2} ⊆ T implies C1 = C2,
i.e. any concept name A can have at most one definition. We
say an interpretation I is a classical model of a terminology
T (in symbols, I |= T ), if AI = CI for all definitions
A := C in T . We let def(T ) = {A | A := C ∈ T } and
base(T ) = (NC ∪NR ∪ {⊤}) \ def(T ).
Minimal Models (with Fixed Predicates). We recall here
a simplified version of circumscription, in which all predi-
cates are either minimized or fixed. Assume a KB K and a
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set F ⊆ NC ∪NR of predicates. For a pair of interpretations
I,J sharing the same domain, we write I ⊆F J , if

(i) aI = aJ , for all a ∈ NI ,
(ii) qI = qJ , for all q ∈ F ,

(iii) pI ⊆ pJ , for all p ̸∈ F .

We write I ⊂F J , if I ⊆F J and J ̸⊆F I. We say J
is a minimal model of K with fixed predicates F , if J |= K
and there is no I such that I |= K and I ⊂F J . The set of
such models is denoted MM F (K). When a terminology T
is considered instead of a KB K, the above notion is adapted
to MM F (T ) in the obvious way (by replacing K with T ).

If F = ∅, we omit F from the subscript in all cases above,
using MM (K) instead of MM ∅(K), and ⊆ instead of ⊆∅.

Equilibrium Logic and DLs
Equilibrium Logic (EL) (Pearce 1996) is a powerful for-
malism that allows, e.g., extending the stable model seman-
tics of Answer Set Programming (ASP) to arbitrary theories.
EL is built upon the logic of Here-and-There (HT) with an
additional minimality requirement. Quantified Equilibrium
Logic (QEL) has been introduced in (Pearce and Valverde
2008) as a generalization of EL from the propositional to
the first-order setting.

We now introduce an HT semantics for DL KBs, which
will later allow to obtain a brief definition of stable mod-
els. In contrast to the classical case, an interpretation in the
logic HT consists of a pair of structures (I,J ) sharing the
same domain, where I is the ‘here’ world and J is the
‘there’ world. Following the standard nomenclature, we call
assumed everything that is true ‘there’, and founded every-
thing that is true ‘here’. The two worlds are related by the
inclusion relation: ‘here’ is included in ‘there’. Formally,
HT interpretations and the evaluation of complex concepts
in such interpretations are defined as follows.

Definition 1. A Here-and-There (HT) interpretation is a pair
(I,J ) of interpretations with I ⊆ J . We define an interpre-
tation function ·(I,J ) using the equations in Figure 1.

In the HT logic, the implication is intuitionistic: in jar-
gon it needs to be ‘founded’, meaning that the HT inter-
pretation must model it, and ‘assumed’, meaning that the
‘there’ world must model it. In DLs, the universally quan-
tified concept of the form ∀r.C can be translated in FOL
as ∀y((r(x, y) → C(y)). Thus the interpretation must align
with the interpretation of implication in quantified HT. As
a matter of fact, concept inclusions are also affected by this
double nature of implication, as they are ‘explicit’ implica-
tions in DLs.

Definition 2. Assume a KB K = (T ,A) and an HT inter-
pretation (I,J ). We write:

- (I,J ) |= C ⊑ D, if C(I,J ) ⊆ D(I,J ) and CJ ⊆ DJ ;
- (I,J ) |= T if (I,J ) |= C ⊑ D for all C ⊑ D ∈ T ;
- (I,J ) |= A, if I |= A;
- (I,J ) |= K, if (I,J ) |= T and (I,J ) |= A.

We can now define stable models of a DL KB.

Definition 3 (Stable model). Given F ⊆ NC ∪ NR, an in-
terpretation J is a stable model of a KB K under fixed pred-
icates F , if

(i) the HT interpretation (J ,J ) is a model of K, and
(ii) there is no I s.t. (I,J ) is a model of K and I ⊂F J .

We denote with SM F (K) the set of all stable models for K
with fixed predicates F . If F = ∅, we drop the subscript F
and write SM (K). We write K |=sm C ⊑ D if CI ⊆ DI

for all I ∈ SM (K).
In the semantics introduced above, the negation ¬ behaves

as negation as failure or default negation in logic programs.
Given an HT model, the ‘there’ is a classical model and a
concept A true at some domain element in the ‘there’ can
be thought of as ‘to be justified’. An HT model is not stable
if the truth of an atom in the ‘there’ cannot be proved. In-
tuitively, the truth of ¬A at a domain element d in a stable
model amounts to ‘we cannot justify A at d’. Since negation
is not classical, knowledge bases that are equivalent under
classical semantics might not be equivalent under the stable
model semantics.
Example 1. Assume a graph G = (V,E). For each vertex
vi, we introduce an individual i and a concept Vi. Consider
the ABox A = {C(r), C(g), C(b)} ∪

⋃
vi∈V {Vi(i)}. For

each vi we now introduce a role pi to intuitively give to each
vertex a color assignment Ai. Let T be the TBox below:

Vi ⊑∃pi for each vi ∈ V

∃p−i ⊓ ∃p−j ⊑⊥ for each i, j s.t. (vi, vj) ∈ E

∃p−i ⊓ ¬C ⊑⊥ for each i s.t. vi ∈ V

Let us call K = (A, T ). It is easy to show that G is 3-
colorable iff there exists I ∈ SM (K). Intuitively, the last
axiom requires that each assignment must correspond to one
of the three colors r, g, b, stated in the ABox, as the ‘founded’
elements of C are only the elements of the ABox.

The example above is a variation of the reduction pro-
posed in (Ngo, Ortiz, and Šimkus 2016) for showing NP-
hardness of KB satisfiability in DL-Litecore with closed
predicates. The effect of default negation is indeed the same
as closed predicates as it forces the set of colors to be re-
stricted to the individuals in the ABox. Under the classical
semantics, the KB in Example 1 is equivalent to a KB in
DL-Litecore. Under the stable model semantics, we cannot
replace ¬C on the left-hand side with positive occurrences
of C on the right-hand side while preserving the semantics.
The latter is underlined by the following example on access
policies, adapted from (Di Stefano, Ortiz, and Šimkus 2023).
Example 2. The following KB K describes the scenario in
which classified files can only be read by users holding per-
mission to do so. We want to require that the reading per-
mission must be granted by an administrator. We show that
under the stable model semantics, we can properly model
such a policy. Let K be as follows:

Classified Document(f1) User(John) read(John, f1)

∃access granted by.Admin ⊑ Has Read Perm

Classified Document ⊓ ¬∀read−.Has Read Perm ⊑ ⊥
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a(I,J ) = aI A(I,J ) = AI r(I,J ) = rI

(r−)(I,J ) = {(e, e′) | (e′, e) ∈ rI} (¬C)(I,J ) = ∆I \ CJ

(C1 ⊓ C2)
(I,J ) =CI,J

1 ∩ CI,J
2 (C1 ⊔ C2)

(I,J ) = CI,J
1 ∪ CI,J

2

(∃R.C)(I,J ) = {e ∈ ∆I | ∃e′ : (e, e′) ∈ R(I,J ) ∧ e′ ∈ C(I,J )}

(∀R.C)(I,J ) =
{
e ∈ ∆I | ∀e′ : (e, e′) ∈ R(I,J ) implies e′ ∈ C(I,J ) and

(e, e′) ∈ RJ implies e′ ∈ CJ

}
Figure 1: HT semantics for DLs.

Assume that the predicates Admin and access granted by
are fixed, i.e. classical. The default negation in the last in-
clusion implies that every classified document must be read
only by users who have permission to do so, thus John has
permission to read the file f1. However, in any stable model
this permission must be ‘justified’, i.e. an admin is grant-
ing it. Thus there exists an Admin who gave John access to
the classified document. Observe that if the last inclusion is
replaced by

Classified Document ⊑ ∀(read)−.Has Read Permission

we derive (counterintuitively) that every user reading a clas-
sified document automatically acquires permission to do so.

Reductions and Undecidability Results
We discuss here some relationships between reasoning prob-
lems and present some negative decidability results. For the
sake of simplicity of presentation, we discuss these results
assuming the set of fixed predicates F to be empty. All the
results here also hold in case F ̸= ∅.

First, we show that for any pair of reasoning tasks, one
can be reduced to the other or to the complement of it.
Proposition 1. Assume a KB K = (T ,A), concepts C,D,
and let A, r and o be a concept name, role name and indi-
vidual not occurring in K. The following are true:

(a) K |=sm C ⊑ D iff A is unsatisfiable w.r.t. K′ = (T ∪
{C ⊓ ¬D ⊑ A},A), under the stable model semantics;

(b) C is satisfiable w.r.t. K iff

K′ = (T ∪ {¬C ⊓ ¬A ⊓ {o} ⊑ A}),A)

has a stable model;
(c) K has a stable model iff K ̸|=sm ⊤ ⊑ ⊥;

Identifying a stable model of a KB requires checking min-
imality (see (ii) in Definition 3), which is computationally
difficult. We shall see that it causes undecidability of basic
reasoning tasks under the stable model semantics, e.g. for
deciding the existence of a stable model. However, the un-
decidability proof that we provide next is quite strong as it
applies to the much more basic setting: specifically, when we
are simply interested in classical models that are minimal
w.r.t. the ⊆ relation. We show undecidability of checking
concept satisfiability in minimal models of an ALCIO KB.
Technically, this setting corresponds to circumscription in
DLs (Bonatti, Lutz, and Wolter 2009) where all predicates

are minimized and no priorities among minimized predi-
cates are assumed. This result is interesting in its own right
and it complements the undecidability results on circum-
scribed DLs, relying on the use of varying predicates (Bon-
atti, Lutz, and Wolter 2009).

Theorem 1. The following problem is undecidable: given a
ALCIO KB K and a concept name A, check if there exists
I ∈ MM (K) such that AI ̸= ∅.

Proof (Sketch). We provide a reduction from the unde-
cidable domino tiling problem (Berger 1966). Let P =
(T, V,H) be an instance of the tiling problem, where T is
a finite set of tiles, and H,V ⊆ T ×T are the horizontal and
vertical compatibility conditions. For P , we construct a KB
KP = (TP , ∅) with TBox TP defined as follows:

⊤ ⊑ ∃h.⊤ ⊓ ∃v.⊤ ⊓ ∃r−.{a} (1)

⊤ ⊑
⊔
t∈T

At, At ⊓At′ ⊑ ⊥, for all t ̸= t′ (2)

At ⊑ ∀h.
⊔

(t,t′)∈H

At′ ⊓ ∀v.
⊔

(t,t′)∈V

At′ (3)

{a} ⊑ ∃r.X (4)

X ⊓ ∃h.∃v.∃h−.∃v−.X ⊑ ∀r−.(G ⊓ ∀r.X) (5)

It is not too difficult to check that P has a solution iff there is
I ∈ MM (TP ) with GI ̸= ∅. Intuitively, if I is not a proper
grid, then there exists a domain element x that cannot reach
itself via an hvh−v−-path. An interpretation J ⊂ I can be
obtained by reducing the extension of X to x only, and G to
the empty set. It is easy to prove that J is a model of TP , as
it still satisfies axiom (4) and (5), deriving a contradiction.
Thus I has to be a proper grid and a solution for P can be
easily defined. Conversely, given a solution for P , a minimal
model I of TP such that GI ̸= ∅ is easy to define.

We remark here that this construction can be seen as an
application of the saturation technique (Eiter and Gottlob
1995) known from disjunctive logic programming to prove
a result on DLs.

Observe that TP that we used for Theorem 1 does not use
negation ‘¬’ at all. We see next that for ¬-free KBs, the min-
imal model and stable model semantics coincide.

Proposition 2. For any KB K that does not use ‘¬’, and any
F ⊆ NC ∪NR, we have SM F (K) = MM F (K).
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In Example 1 using the fact that ¬ behaves as default
negation we can enforce the closed world assumption. A
similar idea can be used to reduce reasoning w.r.t. KBs in
ALCIO to reasoning w.r.t. KBs in ALCI under the equi-
librium semantics.

Proposition 3. For an ALCIO KB K we can build in poly-
nomial time an ALCI KB K′ such that: (a) a stable model
I of K can be extended to a stable model I ′ of K′, and (b)
if I is a stable model of K′, then the restriction of I to the
signature of K is a stable model of K.

Proof (Sketch). Assume a KB K = (A, T ) in ALCIO.
For all nominals o occurring in T , we introduce two fresh
concept names No, N

′
o. We obtain K′ from K by replacing

each occurrence of {o} in T with N ′
o, adding the assertions

No(o), N
′
o(o) and adding the inclusion N ′

o⊓¬No ⊑ ⊥. The
effect of this transformation is a simulation of the nominals
o: in every stable model I the extensions of No and N ′

o are
reduced to a unique element, oI . Note that the transforma-
tion requires the addition of ABox assertions.

As a consequence of the above result, the reductions in
Proposition 1 also apply for ALCI KBs.

Theorem 2. Under the stable model semantics, a standard
reasoning problem in ALCIO KBs can be reduced in poly-
nomial time to the same problem in ALCI .

The following theorem follows from Theorem 1, Proposi-
tions 2 and 3.

Theorem 3. Standard reasoning problems in ALCI under
the stable model semantics are undecidable.

Stable Models for Terminologies
In the previous sections we have seen that reasoning under
the stable model semantics in general DL KBs is undecid-
able. Here we turn our attention to terminologies, which con-
sist of (possibly recursive) definitions of concept names in
terms complex concept expressions. A key feature of termi-
nologies is the separation of the predicates of a terminol-
ogy T into two sets: def(T ) are the intensional predicates
that are defined using concept definitions based on the exten-
sional predicates in base(T ). In the context of stable model
semantics here (or other contexts, like circumscription) it is
thus natural to not require minimization of the predicates in
base(T ), i.e. the extensions of these predicates should re-
main fixed during the minimization process. Based on this
observation, a stable models semantics for terminologies T
can be immediately obtained by instantiating Definition 3,
which covers general KBs: (a) view every concept defini-
tion A := C ∈ T as an inclusion C ⊑ A, and (b) use
F = base(T ) as the set of fixed predicates. This leads to
a setting that is not only intuitive from the knowledge rep-
resentation perspective, but that is also decidable and—in
terms of complexity theory—not more expensive that rea-
soning under the usual semantics.

Example 3. Consider an example, where we reason about
the risks of using different components in some production

scenario. Consider the following terminology T :

RiskyComponent := ¬ValidatedComponent ⊔
∃depends.RiskyComponent

ValidatedComponent := ∃hasCertification.⊤ ⊔
∃supercedes.RiskyComponent

We have base roles depends, hasCertification, supercedes.
Specifically, supercedes tells us that one component/part is
a new (improved) version of an older one. A component is
deemed to be safe as a unit if it has a certification, or if it
supercedes an older component that is deemed to be risky. A
component is deemed to be risky, if we cannot validate the
component, or it depends on a risky component.

Consider the structure I with ∆I = {c1, c2} and such
that RiskyComponentI = {c1}, ValidatedComponentI =

{c2}, and hasCertificationI = ∅, dependsI = {(c1, c1)}
and supercedesI = {(c2, c1)}. This interpretation is a clas-
sical model of T , but it is not entirely intuitive. There was
no well-founded justification to infer that c1 is a risky com-
ponent, and as a consequence there was no reason to val-
idate c2. The stable model semantics rejects I. If we set
dependsI = ∅, we obtain an interpretation that is indeed
a stable model of the terminology.

We next formalize the above intuition in a stand-alone
definition of stable models for ALCI terminologies. In addi-
tion, we provide two alternative definitions, one based on the
so-called level mappings and another one based on fixpoint
computation. All three definitions describe the same stable
models but the two alternatives provide complementary in-
sights and are useful for obtaining reasoning algorithms.

Stable Models via Equilibrium Logic. Assume a concept
definition A := C, a terminology T and an HT interpreta-
tion (I,J ). We write:

- (I,J ) |= A := C, if C(I,J ) ⊆A(I,J ) and CJ ⊆AJ ;
- (I,J ) |= T , if (I,J ) |= A := C for all A := C ∈ T .

We can now define the stable models of T as follows:

Definition 4. Assume a terminology T and let F =
base(T ). An interpretation I is called a stable model of T , if

(i) (J ,J ) |= T , and
(ii) there is no I s.t. (I,J ) |= T and I ⊂F J .

We note that since all role names are fixed predicates, the
semantics of a concept of the form (∀R.C)(I,J ) in Figure 1
simplifies to the equality (∀R.C)(I,J ) = {e ∈ ∆I | ∀e′ :
(e, e′) ∈ RI implies C(I,J )}.

Stable Models via Level Mappings. The first alterna-
tive definition is based on level mappings, which, intu-
itively speaking, ensure a well-founded justification for the
membership of objects in defined concept names. The ex-
istence of a level mapping in a classical model I of a ter-
minology T guarantees that I is in fact a stable model.
Similar characterizations are quite common in ASP (see,
e.g., (Janhunen 2004)) and have been recently used in the
context of SHACL (Andresel et al. 2020).
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Definition 5. Assume an interpretation I and a terminology
T . We use conc(T ) to denote the set of all concept expres-
sions that appear in T , including the concepts that appear
as subconcepts of larger concepts.

A level mapping is a strict partial order ≺ over ∆I ×
conc(T ) such that:

(i) if e ∈ CI , then (e, C) ≺ (e,A) for all A := C ∈ T ,
(ii) if e ∈ (C1 ⊓ C2)

I , then (e, Ci) ≺ (e, C1 ⊓ C2) for all
i ∈ {1, 2}

(iii) if e ∈ (C⊔D)I , then (e, C) ≺ (e, C ⊔D) or (e,D) ≺
(e, C ⊔D)

(iv) if e ∈ (∃r.C)I , then (e′, C) ≺ (e, ∃r.C) for some e′

such that (e, e′) ∈ rI

(v) if e ∈ (∀r.C)I , then (e′, C) ≺ (e, ∀r.C) for all e′ such
that (e, e′) ∈ rI

A level mapping ≺ is well-founded if it contains no infinite
chain (e1, C1) ≻ (e2, C2) ≻ · · · .

We can now define stable models as follows:

Definition 6. An interpretation I is a stable model of a ter-
minology T , if

(i) AI = CI for all A := C ∈ T , and
(ii) there exists a well-founded level mapping ≺ for I.

Intuitively condition (ii) has a twofold purpose: it ensures
that the truth of a defined concept at a given domain ele-
ment (1) can always be justified, decomposing the complex
concept defining it, and (2) the chains tracking this justifi-
cation eventually terminate. Observe that negation “¬” does
not even appear in the above definition. Basically, the condi-
tion (ii) in Definition 6 checks that I is the minimal model of
T that is “reduced” w.r.t. I (in the sense of Gelfond Lifshitz
reduct).

Stable Models via Fixpoint Computation. We next char-
acterize stable models in terms of the least fixpoints of im-
mediate consequences operators. Given a terminology T
and an interpretation I, we will define an operator

TI,T : 2∆
I×conc(T ) → 2∆

I×conc(T )

with the intuitive meaning as follows: if S is a set of pairs
(e, C) such that the membership e ∈ CI is justified, then
TI,T (S) produces further pairs (e′, D) such that the mem-
bership e′ ∈ DI is also justified by S and the terminol-
ogy T . The operator TI,T is formally defined as follows:

TI,T (S) = S ∪
∪ {(e, C)|C ∈ base(T ) ∧ e ∈ CI}

∪ {(e,¬C)|e ∈ (¬C)I}
∪ {(e, C1 ⊓ C2)|(e, Ci) ∈ S}

∪ {(e, ∀r.D)|(e′, D) ∈ S for all e′ s.t. (e, e′) ∈ rI}

∪ {(e, ∃r.C)| there is (e′, C) ∈ S s.t. (e, e′) ∈ rI}
∪ {(e, C1 ⊔ C2)|(e, C1) ∈ S or (e, C2) ∈ S}
∪ {(e,A)|A := C ∈ T ∧ (e, C) ∈ S}

Observe that TI,T is monotonic, i.e., TI,T (S) ⊆
TI,T (S

′) whenever S ⊆ S′, and (2∆
I×conc(T ),⊆) is a com-

plete lattice. Thus TI,T has a least fix-point, reached at some
limit ordinal α (Lloyd 1987).

Let us denote with lfp(TI,T ) the least fix point of TI,T .
Definition 7. An interpretation I is a stable model of a ter-
minology T , if

(i) AI = CI for all A := C ∈ T , and
(ii) lfp(TI,T ) = {(e, C) ∈ ∆I × conc(T ) | e ∈ CI}.

Theorem 4. The above three definitions of stable models of
terminologies are equivalent.

Computational Complexity of Reasoning
We provide here our main complexity result for reasoning
over terminologies under the introduced semantics.
Theorem 5. For ALCI terminologies under the stable
model semantics, the problems of satisfiability, concept sub-
sumption, and concept satisfiability are EXPTIME-complete.

Note that the reductions between reasoning tasks in
Proposition 1 can be easily reformulated for the case of
ALCI terminologies1. Hence to prove the above result we
focus in the rest of this section on the problem of deciding
the existence of a stable model for a given ALCI terminol-
ogy. We first observe that this problem is as hard as deciding
the existence of a classical model of a ALCI TBox, which
is an EXPTIME-complete problem (Schild 1991). Indeed,
if T is a TBox in ALCI , then T has a (classical) model
iff T ′ = {A := ¬A ⊓ ¬CT } has a stable model, where
CT = ⊓C⊑D∈T (¬C ⊔D).

To illustrate one of the challenging aspects of obtaining
reasoning algorithms, we note that the stable model seman-
tics leads to the loss of the finite model property that is en-
joyed under the classical semantics of ALCI (Baader et al.
2017). This is illustrated via the following example:
Example 4. Let T consist of the following:

A := ¬¬∃r.A (A)

B := ∀r−.B (B)

C := ¬B ⊓ ¬C (C)

Observe that T has an infinite stable model with AI ̸= ∅.
Indeed, take I with ∆I = {1, 2, 3, . . .} and such that
AI = BI = ∆I , and CI = ∅. Suppose a finite stable
model J of T exists such that AJ ̸= ∅. Due to (A), there
is an infinite sequence e0 ∈ AJ , e1 ∈ AJ , . . . of elements
such that (ei, ei+1) ∈ rJ holds for all i ≥ 0. Since J is
finite, it contains a cycle “formed” by the directed r-edges.
Specifically, there exist 0 ≤ j1 < j2 such that ej1 = ej2 .
Due to (B), we have that none of the vertices of this cycle
can participate in BJ , otherwise J is not stable as each
occurrence of B in the cycle does not have a well-founded

1Since terminologies do not allow nominals or ABoxes, the
only interesting case is point (b) in Proposition 1. Observe that
checking satisfiability of a concept C w.r.t. a terminology T re-
duces to checking if T ′ = T ∪ {B := ¬∃r.C ⊓¬B} has a stable
model, where r is a fresh role name, and B is a fresh concept name.
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justification, i.e. no well-founded level mapping for J can
be found. The last concept definition (C) is simply a con-
straint that tells us that B must be proven at every element
of a stable model. Putting these two observations together
we get that J cannot be a stable model of T .

To check the existence of a stable model for a terminol-
ogy T in deterministic exponential time, we apply similar
techniques as in (Vardi 1998; Sattler and Vardi 2001) for µ-
calculus (Kozen 1983). The key insight here is the tree model
property: we show that if T has a stable model, then T has a
stable model that is shaped like a tree. We then define a two-
way alternating automaton over infinite trees (Muller and
Schupp 1987) that accepts exactly the trees corresponding
to tree-shaped stable models of a given terminology.

Given a concept C, we denote with nnf(C), the negation
normal form of C.

Definition 8 (Types). Given a terminology T , we de-
note with cl(T ) the smallest set of concepts that contains
nnf(C) and nnf(¬C) for each concept C that appears in
T (possibly as a subconcept of a larger concept). A type for
T is any set τ ⊆ cl(T ) such that:

(a) for all A := C ∈ T , A ∈ τ iff nnf(C) ∈ τ ;
(b) for all C ∈ cl(T ), either C ∈ τ or nnf(¬C) ∈ τ ;
(c) for all C ⊔D ∈ cl(T ), C ⊔D ∈ τ iff C ∈ τ or D ∈ τ ;
(d) for all C ⊓D ∈ cl(T ), C ⊓D ∈ τ iff C ∈ τ and D ∈ τ .

We now define the notion of pre-models, which essen-
tially characterizes classical models of a terminology.

Definition 9 (Pre-models). A pre-model of a terminology T
is a pair (I, π) of an interpretation I and a mapping π that
assigns to every e ∈ ∆I some type π(e) for T such that:

- for all concept names A, e ∈ AI iff A ∈ π(e);
- for all ∃r.C ∈ cl(T ), if ∃r.C ∈ π(e) then there exists e′

such that (e, e′) ∈ rI and C ∈ π(e′);
- for all ∀r.C ∈ cl(T ), if ∀r.C ∈ π(e) then for all e′ with
(e, e′) ∈ rI we have C ∈ π(e′).

We next define the notion of choice function, which will
help us to keep track of justifications of defined concepts.

Definition 10 (Choice function). A choice function ch for a
pre-model (I, π) of T is a partial function

ch : ∆I × cl(T ) → ∆I ∪ cl(T )

such that:

(i) if C ⊔D ∈ π(e), then ch(e, C ⊔D) ∈ π(e)∩{C,D};
(ii) if ∃r.C ∈ π(e), then ch(e, ∃r.C) = e′ for some e′ such

that (e, e′) ∈ eI and C ∈ π(e′).

A triple (I, π, ch) is an adorned pre-model for T .

Intuitively, pre-models are candidates for stable models.
To check that an adorned pre-model is stable we use a further
relation that tracks justifications of positive concepts.

Definition 11. Assume an adorned pre-model (I, π, ch) for
T . For this structure we define the binary derivation relation
⇝ over conc(T )×∆I such that:

• if A ∈ π(e) and A := C ∈ T , then (A, e)⇝ (C, e);

• if C ⊔D ∈ π(e)∩ conc(T ), then (C ⊔D, e)⇝ (ch(C ⊔
D, e), e);

• if C ⊓ D ∈ π(e) ∩ conc(T ), then (C ⊓ D, e) ⇝ (C, e)
and (C ⊓D, e)⇝ (D, e);

• if ∀r.C ∈ π(e) ∩ conc(T ), then (∀r.C, e) ⇝ (C, e′) for
all e′ with (e, e′) ∈ rI;

• if ∃r.C ∈ π(e), then (∃r.C, e)⇝ (C, ch(∃r.C, e)).
We say ⇝ is well-founded if it contains no infinite chain
ℓ1 ⇝ ℓ2 ⇝ · · · . In this case, (I, π, ch) is also well-founded.

The above-defined “decorations” of an interpretation al-
low us to recognize stable models of a terminology. Observe
that there is a clear correspondence between the notion of
level mapping and the derivation relation. In a stable model
I the well-founded level mapping can be used to identify
a well-founded derivation relation; vice versa given a well-
founded adorned pre-model (I, π, ch), the derivation rela-
tion can be used to define a well-founded level mapping.
The latter intuition is exploited in the following result.
Lemma 1. An interpretation I is a stable model of a ter-
minology T iff there exist π, ch s.t. (I, π, ch) is an adorned
pre-model of T whose derivation relation is well-founded.

For an interpretation I, its graph GI is the graph whose
nodes are ∆I and such that there is an edge between v and
v′ if (v, v′) ∈ rI for some role name r. An interpretation I
is tree-shaped if GI is a tree.
Theorem 6. If a terminology T has a well-founded adorned
pre-model then it has a tree-shaped well-founded adorned
pre-model with branching degree bounded by the size of T .

We prove the result following the technique used in (Sat-
tler and Vardi 2001): a given model I is unraveled into
a tree-shaped one using π to keep the branching degree
bounded by the size of T and the function ch to preserve
the well-foundedness of the derivation relation.

Theorem 6 shows that to decide the existence of a sta-
ble model for T it suffices to search for a tree-shaped well-
founded adorned pre-model for T .
Theorem 7. Given a terminology T , we can construct a
2ATA A (with Büchi acceptance condition) whose number
of states is polynomial in the size of T and such that T has
a tree-shaped well-founded adorned pre-model iff A is not
empty, i.e. A accepts a tree.

The automaton A is the intersection of two automata AM

and AF that operate on labeled trees where, roughly speak-
ing, a node stores the concept names satisfied by the object
together with the roles that connect it to the parent (if it is
not the root). The first automaton AM checks that the input
tree is a classical model of the terminology, it can be con-
structed in the usual way (Calvanese, Eiter, and Ortiz 2007).
The second automaton AF tracks the justifications for de-
fined concepts. It can be constructed in a similar way as in
(Sattler and Vardi 2001) and uses the characterization of sta-
ble models given by well-founded adorned pre-models given
by Lemma 1, that is indeed tightly related to level mappings.
Both AM and AF require only polynomially many states in
the size of T .

The emptiness of 2ATA A can be checked in exponen-
tial time in the number of states, (Vardi 1998). Thus, from
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Lemma 1, Theorem 6 and Theorem 7, checking the exis-
tence of a stable model for a terminology T can be done in
deterministic exponential time in the size of T .

Related Work
Fixpoint-based Approaches. In the last three decades, es-
sentially three semantics have been proposed to deal with
terminologies: the least fixpoint semantics, the greatest fix-
point semantics, and the descriptive semantics. The descrip-
tive semantics (Nebel 1991) is nowadays the classical se-
mantics for DLs, deemed as the most natural semantics.
Baader (1990) advocates fixpoint semantics to overcome
some weaknesses of the descriptive semantics. Intuitively,
the main difference between the latter and our approach is
as follows: the approach of Baader (1990) takes an interpre-
tation J of the base predicates and then selects the ‘best’
extension of J modeling the terminology. The latter is se-
lected as the least fixpoint of an operator, that might not exist
if the TBox is not monotonic; our approach instead takes a
model of terminology (thus the extension of all predicates
is given) and checks that occurrences of the defined concept
are justified. For the terminologies in FL0, the semantics
of (Baader 1990) and our coincide, i.e. we select the same
stable models. De Giacomo and Lenzerini (1997) proposed
an extension of the syntax with fixpoint operators, based on
µ-calculus. A drawback of the latter, shared with the ap-
proaches proposed in (Baader 1990; Schild 1994), is the re-
quirement on the syntactic monotonicity of terminologies.

Tuple Generating Dependencies (TGDs). (Gottlob et al.
2021) presents a stable model semantics that can be used for
TGDs as well as for some DLs. The semantics there uses
Skolemization, i.e., dedicated new objects are used in or-
der to satisfy existential quantifiers. This approach brings
benefits in terms of decidability, but it is not fully intuitive
as argued in (Alviano, Morak, and Pieris 2017). The latter
work advocates a definition based on a formula in second-
order logic from (Ferraris, Lee, and Lifschitz 2011). The re-
sults for TGDs of (Alviano, Morak, and Pieris 2017) regard
query answering, and use syntactic constructs that are not al-
lowed in standard DLs. The semantics proposed in this work
avoids the use of a translation of the terminologies into a
richer framework, as second-order logic. This facilitated our
analysis of the model-theoretic properties and computational
complexity of the introduced formalism.

Other approaches. Similarly to Equilibrium Logic, the
logic of minimal knowledge and negation as failure (MKNF)
(Lifschitz 1994) generalizes the stable model semantics of
logic programs. Based on MKNF, extensions of expres-
sive DLs have been proposed in (Donini, Nardi, and Rosati
2002) and in (Motik and Rosati 2010). In contrast, our non-
monotonic extension of DLs directly adopts the semantics
of QEL, which leads to a self-contained formalism that does
not rely on a translation into a more expressive logic. Fur-
thermore, the authors in (Donini, Nardi, and Rosati 2002)
apply different syntactic restrictions to ensure decidability,
and as a consequence, different reasoning algorithms are
used. Differently from (Motik and Rosati 2010), in the ap-
proach we proposed in this work the non-monotonicity is

not carried by the integration of rules but occurs already at
the level of the knowledge base. The latter aspect also dif-
ferentiates our approach from the one in (Levy and Rousset
1998). In (Heymans, Nieuwenborgh, and Vermeir 2006), the
authors consider the so-called conceptual logic programs,
where only unary and binary predicates are allowed, under
the open answer set semantics. They impose decidability-
ensuring restrictions on the programs that are similar to
those used for terminologies. The proposed formalism can
capture DLs under the classical semantics however does not
directly extend the stable model semantics to them.

SHACL constraints. DL terminologies are related to con-
straints over RDF graphs expressed using the recent SHACL
standard of W3C (Knublauch and Kontokostas 2017): de-
fined concept names correspond to shape names, basic predi-
cates are classes or properties, depending on the arity. In par-
ticular, (Andresel et al. 2020) presents a stable model seman-
tics for SHACL using a definition based on level mappings.
A large fragment of SHACL constraints from (Andresel
et al. 2020) can be directly translated into ALCIO ter-
minologies, while essentially preserving a correspondence
between stable models. We say “essentially” because in
this paper (as customary in DL research) infinite interpre-
tations are supported, while this is not the case in (An-
dresel et al. 2020). Based on this correspondence, our EXP-
TIME membership result here can be applied for reasoning
about SHACL constraints under the stable model seman-
tics. Specifically, checking the existence of a (possibly in-
finite) RDF graph that satisfies a given shape name under
a given set of SHACL constraints (corresponding to ALCI
concepts) can be performed in single exponential time.

Conclusion
In this paper, we have investigated a stable model semantics
for general DL KBs and cyclic DL terminologies. Among
our insights is a positive complexity results for ALCI ter-
minologies as well as some negative results that apply even
to the more basic settings of minimal model reasoning.

For future work, we expect that our result for ALCI can
be extended to ALCIO using ideas from (Sattler and Vardi
2001). Finite model reasoning in terminologies under the
stable model semantics is also a relevant open problem: it
has the potential to provide new insights into, e.g., the com-
plexity of static analysis problems for SHACL. Another nat-
ural direction (also relevant for SHACL) is to study termi-
nologies that support regular expressions over roles, which
enable recursive navigation of paths in an interpretation.
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