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Abstract

Assumption-based argumentation (ABA) is a powerful defea-
sible reasoning formalism which is based on the interplay of
assumptions, their contraries, and inference rules. ABA with
preferences (ABA+) generalizes the basic model by allowing
a qualitative comparison of assumptions. The integration of
preferences however comes with a cost. In ABA+, the eval-
uation under two central and well-established semantics—
grounded and complete semantics—is not guaranteed to yield
an outcome. Moreover, while ABA frameworks without pref-
erences allow for a graph-based representation in Dung-style
frameworks, an according instantiation for general ABA+

frameworks has not been established so far. In this work, we
tackle both issues: First, we develop a novel abstract argu-
mentation formalism based on set-to-set attacks. We show
that our so-called Hyper Argumentation Frameworks (HY-
PAFs) capture ABA+. Second, we propose relaxed variants of
complete and grounded semantics for HYPAFs that yield an
extension for all frameworks by design, while still faithfully
generalizing the established semantics of Dung-style Argu-
mentation Frameworks. We exploit the newly established cor-
respondence between ABA+ and HYPAFs to obtain variants
for grounded and complete ABA+ semantics that are guaran-
teed to yield an outcome. Finally, we discuss basic properties
and provide a complexity analysis. Along the way, we settle
the computational complexity of several ABA+ semantics.

1 Introduction
Formal argumentation is a major research area in knowledge
representation and reasoning, with applications in various
fields in the realm of Artificial Intelligence (Bench-Capon,
Prakken, and Sartor 2009; Baroni et al. 2018). The close in-
terplay between rule-based systems and graph-based meth-
ods is thereby key to exploit the full potential of argumen-
tative methods. Rule-based formalisms are crucial to under-
stand and evaluate complex dependencies between defeasi-
ble elements of a knowledge base. Assumption-Based Argu-
mentation (ABA) (Cyras et al. 2018) is one of the leading
rule-based argumentation formalisms. Key elements are as-
sumptions, their contraries, and inference rules; they form
the building blocks to construct arguments and to identify
conflicts in the given knowledge base. Acceptability of the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

assumptions is evaluated by employing so-called argumen-
tation semantics. Graph-based representations, on the other
hand, offer an intuitive and easy-to-understand model of
argumentative scenarios. One of the most popular models
are abstract Argumentation Frameworks (AFs) (Dung 1995)
which are directed graphs where nodes correspond to argu-
ments and the arcs encode attacks (directed conflicts) be-
tween them. In recent years, researchers have proposed and
further developed numerous generalizations. A notable one
are AFs with collective attacks (SETAFs) due to Nielsen and
Parsons (2006). SETAFs allow for situations where sets of
arguments jointly attack a single argument.

The instantiation of knowledge bases in terms of abstract
frameworks yields access to the visual advantages of graph-
based models and allows the application of well-developed
algorithms, tailored to abstract frameworks.

Example 1. Alice wants to go on vacation to Tokyo. Ideally,
she would like to visit for two weeks and stay in a 5-star ho-
tel; however, such a long stay in a luxurious hotel is too ex-
pensive for her. We can formalize this as an ABA framework
with assumptions t (“Alice travels to Tokyo”), w (“Alice vis-
its for two weeks”), and h (“Alice stays in a 5-star hotel”)
and their contraries t, w, and h, expressing the negation of
the respective assumptions. The rule r : (t ← w, h) for-
malizes that two weeks in a 5-star hotel implies that Alice
cannot travel to Tokyo. An intuitive representation of con-
flicts in this framework can be obtained via the following
simple SETAF (König, Rapberger, and Ulbricht 2022):

tw h

The arrow from the set containing w and h to t indicates
the joint attack. The set {w, h} can be accepted since they
are unattacked whereas t is defeated by them. Hence, Alice
won’t be able to go to Tokyo, given her trip specifications.

Suppose we also want to model different preferences of
Alice, e.g. she might think that it would be better to have
a short stay in Tokyo than none at all, i.e., she prefers go-
ing to Tokyo over staying for two weeks. There is a vari-
ety of approaches to handle preferences in different argu-
mentation formalisms (Modgil and Prakken 2014; Besnard
and Hunter 2014; Amgoud and Vesic 2014). ABA with pref-
erences (ABA+) (Cyras and Toni 2016) generalizes ABA
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by allowing qualitative comparisons between assumptions.
ABA+ has been studied extensively (Cyras et al. 2018) and
computational analyses as well as efficient solvers are avail-
able (Lehtonen, Wallner, and Järvisalo 2021a,b).
Example 2. In our case, we get the preference ordering
t > w. Preferences in ABA+ are handled as follows: Since
t is preferred over w, the attack from {w, h} to t is reversed.
The underlying rationale is that, on the one hand, the con-
flict between t and {w, h} must be preserved; however, on
the other hand, Alice prefers t over w and thus the reversed
attack better captures the intended meaning.

tw h

However, this situation cannot be expressed as SETAF
since the head of the reversed attack contains multiple el-
ements, which is beyond the scope of the traditional model.

While the connection between ABA and abstract graph-
based representations is well understood (Caminada et al.
2015; Cyras et al. 2018; König, Rapberger, and Ulbricht
2022), an instantiation procedure for ABA+ is not yet de-
veloped. Bao, Cyras, and Toni (2017) discuss an instantia-
tion for a restricted class of ABA+ frameworks satisfying
weak contraposition; however, they show that their method
cannot be used for ABA+ in its full generality (e.g., Exam-
ple 2 violates weak contraposition). As demonstrated in the
above example, also SETAFs fail to capture ABA+.

There is, however, an even bigger issue: In contrast
to most established argumentation formalisms, an ABA+

framework does not necessarily admit a complete extension.
Intuitively, a set S of assumptions is complete if i) S does
not have internal conflicts, ii) each assumption a ∈ S is
defended, i.e., S refutes each set of assumptions that ob-
jects against a, and iii) S contains each assumption it de-
fends. This notion is a cornerstone in argumentation theory
and the absence of complete extensions is a major drawback
in ABA+. Even the (simple) example above does not ad-
mit a complete extension: Each assumption w, h, and t is
unattacked (and thus defended) individually, but the whole
set {w, h, t} has the internal conflict from t to {w, h}.

In this paper, we tackle both issues. For this, we gener-
alize traditional AFs by allowing for set-to-set attacks. Our
so-called Hyper Argumentation Frameworks (HYPAFs) will
serve as theoretical basis to develop adaptations of complete
semantics for ABA+ that avoid the undesired behavior. Our
novel closure operator ΘF will be central for our goal as it
adopts a more cautious approach compared to usual defense.

Our main contributions are as follows.
• We develop an abstract representation for ABA+. For

this, we propose a generalization of AFs that allows
attacks between sets. We show that HYPAFs capture
ABA+ by providing a semantics-preserving translation.

• We propose an adaptation of complete semantics for HY-
PAFs by refining the characteristic function; our seman-
tics retain desirable properties of their AF counterparts.

• We exploit the novel connection between HYPAF and
ABA+ to obtain new complete ABA+ semantics that
guarantee extension existence.

• We discuss properties of the novel ABA+ semantics and
conduct a complexity analysis. Along the way, we fill
some gaps in the computational complexity landscape of
the ABA+ semantics that have been open so far.

2 Preliminaries
We recall Assumption-Based Argumentation with Prefer-
ences (ABA+) (Cyras and Toni 2016) and briefly recall a
graph-based instantiation that utilizes argumentation frame-
works with collective attacks (SETAFs) (Nielsen and Par-
sons 2006). This connection is akin to our instantiation
method that we will introduce in Section 4.

ABA+ We assume a deductive system (L,R), where L is
a formal language, i.e., a set of sentences, and R is a set of
inference rules over L. A rule r ∈ R has the form a0 ←
a1, . . . , an, with ai ∈ L, head(r) = a0 is the head and
body(r) = {a1, . . . , an} is the (possibly empty) body of r.
Definition 3. An ABA+ framework is a tuple D =
(L,R,A, ,≤), where
• (L,R) is a deductive system,
• A ⊆ L a non-empty set of assumptions,
• : A → L is the contrary function,
• and ≤ is a reflexive, transitive binary relation on A.

As usual, we write a < b if a ≤ b and b ̸≤ a; D is an
ABA framework (without preferences) if ≤ is empty.

In this work, we focus on frameworks which are flat, i.e.,
head(r) /∈A for all r ∈ R, and finite, i.e., L,R,A are finite.

We say that a sentence p ∈ L is tree-derivable from as-
sumptions S ⊆ A and rules R ⊆ R, denoted by S ⊢R p,
if there is a finite rooted labeled tree T such that the root is
labeled with p, the set of labels for the leaves of T is equal
to S or S ∪ {⊤}, and for every inner node v of T there is a
rule r ∈ R such that v is labelled with head(r), the number
of successors of v is |body(r)| and every successor of v is la-
belled with a distinct a ∈ body(r) or ⊤ if body(r) = ∅. We
call S ⊢ p an argument iff there is a tree-derivation S ⊢R p.
Example 4. Let us revisit Example 1. The corresponding
formalization in terms of ABA+ is (L,R,A, ,≤) with L =
{t, t, w, w, h, h}, R = {t ← w, h}, A = {t, w, h}, and
preference t > w. The contrary function is implicitly given
by the names of the atoms (e.g., the contrary of t is t).

Inspired by Lehtonen, Wallner, and Järvisalo (2021a), we
introduce ABA+ attacks via normal and reversed attacks.
ABA without preferences has only normal attacks. Prefer-
ences might reverse attacks, as formalized next in item (ii).
Definition 5. Given an ABA+ framework (L,R,A, ,≤),
an assumption set S ⊆ A, and an assumption a ∈ A with
S ⊢ a.
(i) S normally attacks {a} iff there is no s ∈ S with s < a.

(ii) {a} reversely attacks S iff there is s ∈ S with s < a.
Definition 6. For two sets of assumptions S, T ⊆ A,
• S attacks T iff there are S′ ⊆ S and T ′ ⊆ T such that
S′ normally or reversely attacks T ′;

• S is conflict-free iff it does not attack itself;
• S defends T iff S attacks each attacker of T .
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We recall admissible, grounded, complete, preferred, and
stable semantics for ABA+ (abbr. adm, grd, com, pref, stb).

Definition 7. Let D = (L,R,A, ,≤) be an ABA+ frame-
work. Further, let S ⊆ A be conflict-free. Then

• S ∈ adm(D) iff S defends itself;
• S ∈ com(D) iff S is admissible and contains every as-

sumption set it defends;
• S ∈ grd(D) iff S is ⊆-minimal in com(D);
• S ∈ pref(D) iff S is ⊆-maximal in com(D);
• S ∈ stb(D) iff S attacks each {x} for every x ∈ A \ S.

For a set S of assumptions, we let S = {a | a ∈ S}.

Instantiating ABA Oftentimes the semantics of ABA
frameworks are evaluated on a semantically equivalent ab-
stract argumentation framework; the construction of this
framework is an instantiation of the ABA framework (Cyras
et al. 2018). We discuss a recent instantiation procedure that
relies on collective attacks (Nielsen and Parsons 2006).

Definition 8. A SETAF is a pair (A,R) where A is a finite
set of arguments, and R ⊆ 2A ×A is the attack relation.

SETAFs (A,R), where for all (T, h) ∈ R it holds that
|T | = 1, amount to (standard Dung) AFs (Dung 1995). The
semantics of SETAFs are defined in a way very similar to
ABA+; due to space restrictions we omit the detailed def-
initions. A recent overview can be found in (Flouris and
Bikakis 2019; Dvořák et al. 2022).

As observed in (König, Rapberger, and Ulbricht 2022),
SETAFs and ABA frameworks are closely related. We ob-
tain a SETAF instantiation for ABA frameworks (without
preferences) as follows: we construct for an ABA framework
D = (L,R,A, ) a SETAF SFD = (A,R), where the ar-
guments A correspond to the assumptions A, and for each
set of assumptions S that attacks a singleton {a} ⊆ A we
add an attack (S, a) to SFD. It was shown in (König, Rap-
berger, and Ulbricht 2022) that now the grounded, complete,
preferred, and stable extensions of D and SFD coincide.

Example 9. Let us continue Example 4. Via the previously
discussed instantiation we obtain a SETAF (left illustration)
with arguments t, w, and h, and an attack from {w, h} to
t. The preference t > w effectively changes the direction of
the attack (right illustration), the resulting framework is no
longer a SETAF and cannot be captured by the semantics
proposed by Nielsen and Parsons (2006). For this reason,
we generalize these semantics in the next sections.

tw h tw h

3 Hyperframeworks
In this section, we introduce our novel formalism. We define
Hyper Argumentation Frameworks (HYPAFs) where we al-
low attacks from sets of arguments to sets of arguments. We
introduce HYPAFs as a general formalism that syntactically
captures even more than ABA+. Afterwards in Section 4 we
come back to HYPAFs’ use as a possible instantiation for
structured argumentation with preferences.

Definition 10. A HYPAF is a pair F = (A,R) with a finite
set of arguments A, and an attack relation R ⊆ 2A×(2A\∅).

HYPAFs (A,R), where for all (T,H) ∈ R it holds that
|H| = 1 and |T | = 1, amount to AFs. Note that we allow for
the empty set in the first position of an attack (i.e., (∅, H)).
The empty set in the second position of an attack however
(i.e., (T, ∅)) we exclude. This is due to the fact that an attack
towards an empty set of arguments is nonsensical and has no
corresponding counter-part in any argumentation scenario.

Let us now define the concepts required to generalize the
AF semantics to capture the interaction of sets of arguments.

Definition 11. Let (A,R) be a HYPAF. For S, T ⊆ A,

• S attacks T (S 7→ T ) iff there are S′ ⊆ S and T ′ ⊆ T
such that (S′, T ′) ∈ R; we call S an attacker of T ;

• S is conflict-free, S ∈ cf(F ), iff it does not attack itself;
• S defends T iff for all (U, T ′) ∈ R with T ′ ⊆ T , there

are S′ ⊆ S and U ′ ⊆ U such that (S′, U ′) ∈ R.

Example 12. Consider the following HYPAF F with
arguments a, b, c, d, e, f, g and attacks ({a, b}, {c, d, e}),
({a, b}, {c, d}), ({c}, {f}), and ({c, d}, {g}).

a

b

c

d
e

f

g

Both S1 = {a, b, c} and S2 = {a, b, d} are conflict-free
since {a, b} only attacks {c, d}, but none of them individu-
ally. Moreover, {a, b} defends g, but it does not defend f .

Using these underlying notions, the definitions of the se-
mantics naturally generalize to hyperframeworks.

Definition 13. Let F = (A,R) be a HYPAF and S ∈ cf(F ).
Then S is called

• admissible, S ∈ adm(F ), iff S defends itself;
• complete, S ∈ com(F ), iff S ∈ adm(F ) and S contains

every set T ⊆ A it defends;
• grounded, S∈grd(F ), iff S is ⊆-minimal in com(F );
• preferred, S∈pref(F ), iff S is ⊆-maximal in adm(F );
• stable, S ∈ stb(F ), iff S attacks each T ⊆ A \ S.

We observe that if a set T is defended by some set S, then
all individual arguments of T are defended as well.

Lemma 14. Let F = (A,R) be a HYPAF and let S, T ⊆ A.
If S defends T then S defends {a} for each a ∈ T .

Analogously, in order for a set S to be stable, each indi-
vidual argument outside S needs to be attacked. We can thus
simplify our definitions for com and stb semantics.

Lemma 15. Let F = (A,R) be a HYPAF. Then

• S∈stb(F ) iff S∈cf(F ) and S 7→{x} for all x∈A\S;
• S ∈ com(F ) iff S ∈ adm(F ) and S contains each argu-

ment it defends.

Due to the first item, we note the following: If all attacks
(T,H) towards some a ∈ A satisfy |H|≥2, then {a} cannot
be defeated and hence occurs in each stable extension.
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4 ABA+ as an Instance of HYPAFs
In this section, we state our first main result: ABA+ can be
seen as an instance of our HYPAFs. With this, we success-
fully develop the first abstract instantiation for ABA+.

When allowing for preferences between assumptions,
some attacks might be reversed. We capture these attack re-
versals with HYPAFs intuitively as follows.
Definition 16. The associated HYPAF FD = (A,R) of an
ABA+ framework D = (L,R,A, ,≤) is given by A = A
and (S, T ) ∈ R iff S normally or reversely attacks T in D.

We are ready to state our first main result: HYPAFs pro-
vide an abstract graph-based representation of ABA+. By
design, we capture ABA+ semantics with our translation.
Theorem 17. Let σ ∈ {adm, com, grd, pref, stb} and let D
be any ABA+ framework. It holds that σ(D) = σ(FD).

Note that each HYPAF FD associated to an ABA+ frame-
work D satisfies that either the head or the tail has size 1;
hence our translation does not capture arbitrary HYPAFs.
Observation 18. Let D be an ABA+ framework, and let
FD = (A,R) be the associated HYPAF. For all (H,T ) ∈ R,
we have either |H| = 1 or |T | = 1.

Let us now revisit our motivating example.
Example 19. As promised in the introduction, we can now
represent Alice’s travel problem as the following HYPAF:

tw h

We can utilize the abstract representation to compute the
admissible extensions. All singletons {t}, {w} and {h} are
unattacked, hence they are admissible; for the same reason,
the sets {h, t} and {w, t} are admissible as well. Our theo-
rem proves that these extensions coincide with the admissi-
ble extensions of the corresponding ABA+ framework.
Observation 20. The translation from ABA+ to HYPAF is
not bijective since different preference orderings can cause
the same attack reversal. In Example 19, replacing the pref-
erence ordering t > w with t > h yields the same HYPAF.

The semantics correspondence of HYPAFs and ABA+ es-
tablished in Theorem 17 indicates certain shortcomings of
our new abstract formalism. As for ABA+ frameworks, the
existence of complete extensions is not guaranteed.
Example 21. Let us examine complete semantics in our HY-
PAF from above. We start with an admissible set. As outlined
before, we can accept, for instance, the set E = {h, t} under
admissible semantics. Note that w is not attacked, so w is de-
fended by E. However, the set A = {h, t, w} is not conflict-
free. It can be checked the HYPAF has no complete extension
(as expected, since it coincides with the ABA+ framework).

5 Refining the HYPAF Semantics
As we have seen, the previous example illustrates certain
issues. The HYPAF (and the underlying ABA+ framework)
in fact has no complete and no grounded extension. While
the absence of stable extensions is generally accepted also
for AFs, the absence of complete extensions is considered

as a major drawback. After all, the 3-valued complete-based
semantics serve as a compromise for reasoning in situations
where no 2-valued (stable) model exists.

Since we have established an instantiation of ABA+

frameworks as HYPAFs, we can solve these issues by bor-
rowing from the rich toolbox of abstract argumentation re-
search: In this section, we recall several basic properties of
AFs and study to which extend our HYPAF semantics sat-
isfy them in our generalized setting. We will identify culprits
for the absence of desirable properties and propose suitable
solutions to fix these issues. Then, we will study how ABA+

can benefit our insights regarding HYPAFs.

5.1 General Desiderata
While stable extensions do not necessarily exist, we expect
each HYPAF to possess admissible, complete, grounded,
and preferred extensions. Moreover, the grounded extension
should be unique since it intuitively formalizes the set of ar-
guments that also cautious agents are willing to accept. The
most important technical tool in order to ensure properties
of this kind is the fundamental lemma (Dung 1995).
Lemma 22 (Fundamental Lemma, (Dung 1995)). Let F =
(A,R) be an AF, S ∈ adm(F ), and T, T ′ ⊆ A be sets of
arguments that are defended by S. Then

1. S′ = S ∪ T is admissible, and
2. T ′ is defended by S′.

We collect the most important properties which are typi-
cally considered desirable for generalizing Dung’s setting.
1. (Some version of) the fundamental lemma holds.
2. There is always at least one admissible, complete,

grounded, and preferred extension.
3. Every preferred extension is complete, and every stable

extension is preferred.
As we will see, most of these properties are not satisfied by
HYPAFs. However, let us start with the positive news: there
is always at least one admissible set which also implies the
existence of preferred extensions. Moreover, stable exten-
sions are guaranteed to be preferred, as is the case for AFs.
Observation 23. Let F be a HYPAF. Then

1. adm(F ) ̸= ∅ and pref(F ) ̸= ∅;
2. stb(F ) ⊆ pref(F ).

Both properties follow directly from the definitions: The
empty set trivially defends itself. Moreover, stable exten-
sions defend themselves hence they are admissible. It is also
clear that they are maximal in adm(F ) and thus preferred.

However, the following simple example already illustrates
that the semantics we defined so far violate all of the remain-
ing properties we mentioned.
Example 24. Let us consider the following HYPAF F :

a b c dF :

In F , both sets S = {a, b, c} and S′ = {a, b, d} are conflict-
free. Moreover, they are also admissible since they defend
themselves and both are preferred as {a, b, c, d} /∈ cf(F ).
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On the other hand, what are the complete extensions of
the HYPAF? We would expect that the two preferred sets
{a, b, c} and {a, b, d} are complete as well. However, F has
no complete extension at all. The reason is that S defends
d since no attack is directed towards {d} (or a subset of it).
Yet, as discussed, {a, b, c, d} is not conflict-free illustrating
that the fundamental lemma is violated.

It is no surprise that the absence of the fundamental
lemma causes further issues in our setting as it is essential
for many AF properties. We summarize our observations.

Observation 25. Let F be a HYPAF. Then

1. the fundamental lemma is in general violated;
2. complete and grounded extensions do not always exist;
3. not every preferred extension is complete.

5.2 HYPAF Properties
The goal of this subsection is to fix these problems. To this
end we will first delve into the technicalities of defense in
HYPAFs. After identifying the culprits, we will propose an
alternative definition for complete extensions, which ensures
more well-behaved semantics.

We define the characteristic function for HYPAFs as it is
defined for (SET)AFs: ΓF applied to a set S of arguments
returns all arguments defended by S. Due to Lemma 14 this
also captures our intuition of defending sets of arguments.

Definition 26. Let F = (A,R) be a HYPAF and let S ⊆ A.
We define the characteristic function as

ΓF (S) = {a ∈ A | S defends {a}}.

Example 27. We revisit F from Example 24. Here ΓF (S) =
{a, b, c, d} for each S ⊆ A as each singleton is unattacked.

We mention that our characteristic function is monotonic.

Lemma 28. Let F = (A,R) be a HYPAF and let S ⊆ T ⊆
A. Then ΓF (S) ⊆ ΓF (T ).

With the help of the characteristic function we can ana-
lyze the properties of complete-based semantics.

Complete Semantics As for AFs and SETAFs, complete
semantics can be alternatively defined via the characteristic
function. By definition, the complete extensions are the ad-
missible fixed points of ΓF .

Lemma 29. Let F = (A,R) be a HYPAF. Then S ∈
com(F ) iff S ∈ adm(F ) and S = ΓF (S).

However, in contrast to Dung AFs and SETAFs, the char-
acteristic function might have no admissible fixed points, as
Example 27 demonstrates: {a, b, c, d} is the only fixed point
of ΓF . We can attribute the non-existence of complete ex-
tensions to set-attacks: If the head of each attack contains at
least two arguments, then complete extensions do not exist.

Lemma 30. Let F = (A,R) be a HYPAF, R ̸= ∅. If |H| > 1
for all (T,H) ∈ R then com(F ) = ∅.

Even in the special (somewhat well-behaving) case where
ΓF admits (admissible) fixed points (i.e., there are complete
extensions), we are not guaranteed to have the usual seman-
tics relations that we know from Dung’s notions.

Example 31. The following example illustrates that even if
com(F ) ̸= ∅ holds, it is still not ensured that we also have
pref(F ) ⊆ com(F ). Consider the following HYPAF F .

a

b

c f

d

e
F :

We have ∅ ∈ com(F ) and thus, com(F ) ̸= ∅. The set
S = {b, c} is preferred, but not complete (S defends a, but
{a, b, c} is not conflict-free). Thus pref(F ) ⊈ com(F ).

We will resolve all of these problems in Section 5.3 by
introducing a better suited notion of completeness.

Grounded Semantics In AFs and SETAFs, the grounded
extension is the least fixed point of the characteristic func-
tion, and can be computed by via iteration, starting from
the empty set until a fixed point is attained, i.e., we have
grd(F ) = {Γ∞

F (∅)} whenever F is a (SET)AF. For HY-
PAFs, this fundamental property of grounded semantics is
no longer satisfied. The least fixed point of the characteristic
function is not necessarily admissible or conflict-free, which
causes potential non-uniqueness of the grounded extension.

Example 32. The following HYPAF F (that instantiates an
ABA+ framework) has grd(F )={{a, d, e},{b, d, e}}.

a

b
c

d

e
F :

This result implies that skeptical reasoning w.r.t. com-
plete semantics in HYPAFs cannot be done by computing
the grounded extension as in (SET)AFs. However, while on
the one hand we cannot guarantee that Γ∞

F (∅) is admissible,
if this happens to be the case we are guaranteed to obtain the
unique grounded extension this way.

Proposition 33. Let F = (A,R) be a HYPAF. If Γ∞
F (∅) ∈

adm(F ) then grd(F ) = {Γ∞
F (∅)}.

5.3 Revisiting the Characteristic Function
Inspired by our analysis within the previous subsection, our
goal is now to refine the characteristic function ΓF . Thereby,
we do not question that ΓF is suitable in the context of ad-
missibility, i.e., we do not want to alter the fact that

If S ∈ adm(F ), then S ⊆ ΓF (S).

However, it is apparent that we need a more restrictive ver-
sion in order to assess whether or not some admissible set
is complete. To this end recall Example 24. Here our no-
tion of defense requires any complete extension to include
all four arguments, which immediately causes a conflict. We
therefore develop an alternative function ΘF which serves
to verify whether or not a set includes sufficient arguments
in order to be considered “complete”. That is, we aim at:

If S is complete, then ΘF (S) ⊆ S.

We refer to ΘF as the closure of a set S. Our revised com-
plete extensions need to defend themselves and be closed
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under ΘF . In order to propose such ΘF in a natural way, let
us consider the interaction between some set S and a single
argument a ∈ A. In our setting, when should a belong to the
“closure” of S? A quite apparent condition is that S defends
a, i.e., counters any attack directed towards a: if (T,H) ∈ R
with a ∈ H , then S attacks T . In addition, we propose a sec-
ond possibility: suppose S attacks H \ {a}. Then (assuming
we accept S), H can be considered “defeated”, but a is not
involved in this defeat. Hence in this case S renders the at-
tack (T,H) redundant and thus frees a to be acceptable. To
illustrate this idea, we consider the following example.
Example 34. Let F be given as follows.

a

b

c

d

e

f

g
F :

Let us argue why {d} belongs to the closure of S = {g}.
The attack ({e, f}, d) is countered by the attack (S, {e, f}).
Consider now the attack ({a, b}, {c, d}). Recall our inter-
pretation of set-attacks: This attack encodes that, unless
countered, {a, b} prevents us from accepting both c and d
simultaneously. However, S already defeats c, so this con-
straint is already satisfied given acceptance of S.

This gives the following notion of our closure operator.
Definition 35. Let F = (A,R) be a HYPAF and let S ⊆ A.
We define the closure function as

ΘF (S) = {a ∈ A | ∀(T,H) ∈ R s.t. a ∈ H

it holds S 7→ T or S 7→ H \ {a}}
Note that ΘF in contrast to ΓF considers not only attack-

ers on {a} but all attacks (T,H) with a ∈ H and is in that
sense thus more restrictive. However, for the additional at-
tacks (T,H) it can also use attacks on H \{a} to protect the
argument a. The more cautious ΘF operator gives rise to
an adjusted notion of complete-based semantics. Intuitively,
we use our previously established notion of defense to deter-
mine admissibility, and ΘF to assess whether further argu-
ments have to be accepted (i.e., whether the set is “closed”).
Definition 36. Let F =(A,R) be a HYPAF and let S⊆A.
• S is Θ-complete, S ∈ Θ-com(F ), iff S is admissible and
ΘF (S) ⊆ S;

• S is Θ-grounded, S ∈ Θ-grd(F ), iff S is a ⊆-minimal
Θ-complete extension.

Example 37. Recall our F from Example 24. Let us verify
that the set S1 = {a, b} is now Θ-complete. To this end we
consider c with incoming attack ({a, b}, {c, d}).
• The first condition S1 7→ {a, b} does not hold;
• the second condition S1 7→ {c, d} \ {c} is also not true.

We conclude c /∈ ΘF (S1) and analogously d /∈ ΘF (S1).
Thus S1 ∈ Θ-com(F ). Note that S2 = {a, b, c} is also Θ-
complete, because S2 ∈ adm(F ) and d /∈ ΘF (S2). Finally,
by symmetry, S3 = {a, b, d} ∈ Θ-com(F ).

In terms of faithfully generalizing the characteristic func-
tion of (SET)AFs, both ΓF and ΘF are equally suitable: If
F is a SETAF, i.e. |H| = 1 for each (T,H) ∈ R, then the
two notions coincide, both corresponding to the “standard”
characteristic function formalizing defense in SETAFs.

Lemma 38. Let F = (A,R) be a HYPAF with |H| = 1
for all (T,H) ∈ R. If S ⊆ A, then ΓF (S) = ΘF (S). In
particular, com(F ) = Θ-com(F ) and grd(F ) = Θ-grd(F ).

As is the case for ΓF , the closure function is monotonic.
Lemma 39. Let F = (A,R) be a HYPAF and let S ⊆ T ⊆
A. Then ΘF (S) ⊆ ΘF (T ).

We observe that every complete extension is also Θ-
complete; moreover, the Θ-grounded extension does not in-
troduce new arguments.
Proposition 40. Let F = (A,R) be a HYPAF. Then
1. com(F ) ⊆ Θ-com(F );
2. if E∈grd(F ) exists, then E′∈Θ-grd(F ) implies E′⊆E.

Recall that our motivation for introducing ΘF was the
potential non-existence of complete extensions for HYPAFs
which in turn is due to the fact that ΓF violates the funda-
mental lemma. For ΘF , we can indeed derive the following
result, similar in spirit to this crucial property in AFs.
Proposition 41. Let F = (A,R) be a HYPAF. If S ∈
adm(F ), then S ∪ΘF (S) ∈ adm(F ).

This ensures that G ∈ Θ-grd(F ) is unique and can be
computed as usual: Starting from the empty set, we iterate
ΘF until reaching a fixed point. In particular this implies
that there is always a complete extension (namely Θ∞

F (∅)).
Proposition 42. Let F = (A,R) be a HYPAF. Then Θ∞

F (∅)
is the unique Θ-grounded extension of F . In particular,
Θ-com(F ) ̸= ∅ and Θ-grd(F ) ̸= ∅.

Moreover, maximal Θ-com and pref extensions coincide.
Proposition 43. Let F = (A,R) be a HYPAF. Then S is
maximal in Θ-com(F ) iff S ∈ pref(F ).

We summarize the properties of Θ-com and Θ-grd.
Observation 44. Let F be a HYPAF. Then
1. Using ΘF , a version of the fundamental lemma can be

obtained;
2. Θ-com and Θ-grd extensions always exist;
3. every preferred extension is in Θ-com(F ).

6 Consequences for ABA+

Having developed well-behaving alternatives for complete
and grounded semantics, we are now in a position to reap
the benefits of these results and state our Θ-semantics in the
realm of ABA+. We close with a discussion of the complex-
ity of ABA+ semantics.

6.1 Fixing Complete-based ABA+ Semantics
To formalize our novel semantics, we will first define a
stronger form of defense that resembles the Θ-operator. For
this, we consider not only direct attacks on an assumption
a ∈ A, but also reversed attacks on sets that contain a.
Definition 45. Let (L,R,A, ,≤) be an ABA+ framework.
A set S ⊆ A of assumptions Θ-defends a ∈ A iff for all
H,T ⊆ A with a ∈ H , such that T normally or reversely
attacks H , either (i) S attacks T ; or (ii) S attacks H \ {a}.

To illustrate this concept, we extend our running example.
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Example 46. After carefully reviewing her budget, Alice
now also considers a stay in a dormitory instead of a 5-star
hotel, formalised by the ABA+ framework and its HYPAF:

t
d

w h

L = {t, t, d, d, w, w, h, h}
R = {t← w, h; d← h; h← d}
A = {t, d, w, h}, t > w, t > d, t > h

The assumption d Θ-defends w against the attack from {t}
to {w, h}: d attacks h, hence, condition (ii) in Definition 45
applies. Note d also Θ-defends t since t is unattacked.

We are ready to give our novel definitions.
Definition 47. Let (L,R,A, ,≤) be an ABA+ framework.
Further, let S ⊆ A be conflict-free. Then
• S ∈ Θ-com(D) iff S is admissible and contains every

assumption set it Θ-defends;
• S ∈ Θ-grd(D) iff S is ⊆-minimal in Θ-com(D);

Example 48. First, let us return to our introductory example
(cf. Example 1). As stated before, no complete extension ex-
ists. We apply our novel Θ-complete semantics and obtain
the following extensions, capturing the intuitive outcome:
{t} (i.e., ‘Alice goes to Tokyo’), {t, w} (‘. . . and stays for
two weeks’) and {t, h} (‘. . . or stays in a 5-star hotel’).

Coming to our example above, we note that both {t, w}
and {t, w, d} are complete. Hence, Alice can visit Tokyo for
two weeks, but cannot stay at the expensive hotel.

We can accept both sets also under Θ-complete seman-
tics; however, now we can furthermore realize the choice
between h and d. We show that we can accept E = {t, h}:
indeed, E defends itself against d; moreover, t is the only
element E Θ-defends. Hence E is admissible and contains
each assumption set it Θ-defends. Our Θ-complete assump-
tion sets are {t}, {t, w}, {t, w, d}, and {t, h}. That is, with
our novel semantics we also capture the possibility to have
a shorter stay in Tokyo but in a 5-star hotel.

Our definitions correspond to their HYPAF counter-parts.
Theorem 49. Let σ ∈ {Θ-com,Θ-grd} and let D be any
ABA+ framework. Then σ(D) = σ(FD).

Together with the results from the previous section we can
now derive several crucial properties of our Θ-semantics:
1. With our notion of Θ-defense (cf. Definition 45), we can

entail a version of the fundamental lemma;
2. Θ-com and Θ-grd extensions always exist;
3. every preferred extension is Θ-complete.
Moreover, each complete extension is Θ-complete; also,
the Θ-grounded extension is unique and contained in the
grounded extension (whenever the latter exists). With our
novel semantics we therefore provide faithful generaliza-
tions of both semantics for ABA+ that are guaranteed to
return an extension while preserving their original spirit.

6.2 Computational Complexity
Finally, we consider the computational complexity of our
novel semantics and compare them with the complexity of
the existing semantics. We also provide a refined analysis

adm grd Θ-grd com Θ-com pref stb
Verσ coNP-c ΠP

2 -c DP-c DP-c DP-c in ΠP
2 in P

Credσ ΣP
2 -c in ΣP

3 in ∆P
2 ΣP

2 -c ΣP
2 -c ΣP

2 -c NP-c
Skeptσ triv. ΠP

2 -c in ∆P
2 ΠP

2 -c in ∆P
2 in ΠP

3 coNP-c

Table 1: Complexity of ABA+ semantics.

of the traditional ABA+ semantics, extending the results
from (Lehtonen, Wallner, and Järvisalo 2021a,b). We as-
sume familiarity with the polynomial hierarchy. In our anal-
ysis, we focus on the classical reasoning tasks: verification
of an extension set under semantics σ (Verσ) as well as cred-
ulous (Credσ) and skeptical accpetance (Skeptσ), i.e., decid-
ing whether a given conclusion is contained in some or each
σ-extension, resp. (cf. (Dvořák and Dunne 2017)).
Theorem 50. The complexity results in Table 1 hold.

The results for adm and stb are due to Lehtonen, Wallner,
and Järvisalo (2021a). We extend the results of (Lehtonen,
Wallner, and Järvisalo 2021a,b) for grd, com, and pref.

Key to establishing the results for our Θ-semantics is the
complexity of Θ-defense. We show that the problem is NP-
complete, which is in accordance with the complexity of de-
ciding standard defense (Lehtonen, Wallner, and Järvisalo
2021a). With this at hand we can show that verification and
credulous acceptance for com and Θ-com coincides. Since
the Θ-grounded extension can be computed via fixed point
iteration, the complexity of Θ-grd semantics and SkeptΘ-com
is less demanding, compared to their traditional variants.

7 Discussion and Related Work
We tackled two crucial drawbacks of ABA+: the missing
abstract instantiation and the problem of non-existence of
grounded and complete extensions. To this end, we intro-
duced Hyper Argumentation Frameworks, based on set-to-
set attacks, and showed that ABA+ is an instance of the
novel formalism. We developed faithful generalizations of
complete and grounded semantics which are guaranteed to
return an output, without causing a rise in complexity.

While set-to-set attacks as used in HYPAFs received only
limited attention so far, the idea of collective attack appeared
in different variants in the KR community, the most promi-
nent example being SETAFs (Nielsen and Parsons 2006).
They discuss potential ways to capture set-to-set attacks
via SETAFs. Verheij (1996) models defeat not via directed
graphs but using rule-like statements; Bochman (2003) uses
similar concepts to formalize global conflicts; Nielsen and
Parsons (2006) reduce set-to-set attacks to SETAFs; and
Gabbay and Gabbay (2016) investigate (among other no-
tions) cases where the attacking set applies conjunctively
and the attacked set is understood disjunctively. An overview
of possible interpretations of set-to-set attacks is given in the
workshop paper (Dimopoulos et al. 2023), where attacks are
also interpreted in an indeterministic setting.

Future work includes further investigating our newly es-
tablished Θ-semantics in the context of applications of
ABA+ and other structured formalisms as well as settling
the remaining tight bounds in our complexity analysis.
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On the Difference between Assumption-Based Argumenta-
tion and Abstract Argumentation. IfCoLog Journal of Logic
and its Applications, 2(1): 15–34.

Cyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018.
Assumption-Based Argumentation: Disputes, Explanations,
Preferences. In Baroni, P.; Gabbay, D.; Giacomin, M.; and
van der Torre, L., eds., Handbook of Formal Argumenta-
tion, chapter 7, 365–408. College Publications. Also ap-
pears in IfCoLog Journal of Logics and their Applications
4(8):2407–2456.

Cyras, K.; and Toni, F. 2016. ABA+: Assumption-Based
Argumentation with Preferences. In Baral, C.; Delgrande,
J. P.; and Wolter, F., eds., Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Fifteenth In-
ternational Conference, KR 2016, Cape Town, South Africa,
April 25-29, 2016, 553–556. AAAI Press.

Dimopoulos, Y.; Dvorák, W.; König, M.; Rapberger, A.; Ul-
bricht, M.; and Woltran, S. 2023. Sets Attacking Sets in
Abstract Argumentation. In Sauerwald, K.; and Thimm,
M., eds., Proceedings of the 21st International Workshop
on Non-Monotonic Reasoning co-located with the 20th In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2023) and co-located with
the 36th International Workshop on Description Logics (DL
2023), Rhodes, Greece, September 2-4, 2023, volume 3464
of CEUR Workshop Proceedings, 22–31. CEUR-WS.org.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif. Intell., 77(2):
321–358.
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