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Abstract
Experience management (EM) agents in multiplayer serious
games face unique challenges and responsibilities regard-
ing the fair treatment of players. One such challenge is the
Greedy Bandit Problem that arises when using traditional
Multi-Armed Bandits (MABs) as EM agents, which results
in some players routinely prioritized while others may be
ignored. We will show that this problem can be a cause of
player non-adherence in a multiplayer serious game played
by human users. To mitigate this effect, we propose a new
bandit strategy, the Shapley Bandit, which enforces fairness
constraints in its treatment of players based on the Shapley
Value. We evaluate our approach via simulation with virtual
players, finding that the Shapley Bandit can be effective in
providing more uniform treatment of players while incurring
only a slight cost in overall performance to a typical greedy
approach. Our findings highlight the importance of fair treat-
ment among players as a goal of multiplayer EM agents and
discuss how addressing this issue may lead to more effective
agent operation overall. The study contributes to the under-
standing of player modeling and EM in serious games and
provides a promising approach for balancing fairness and en-
gagement in multiplayer environments.

1 Introduction
Player modeling and experience management (EM) are crit-
ical aspects of modern digital game design, as they en-
able developers to create engaging and personalized expe-
riences. Multi-Armed Bandits (MABs), a class of reinforce-
ment learning algorithms, have emerged as an effective tool
for this purpose (Gray, Zhu, and Ontañón 2020, 2021). There
is also a growing body of research on the application of
MABs in multiplayer modeling, where a single agent is
charged with managing the experience of multiple players
simultaneously (Zhu and Ontañón 2019) and which offers a
more complex problem due to the need to consider interac-
tions among multiple players.

When dealing with multiplayer EM in serious games,
where the primary goal is to facilitate interventions toward
specific goals, the focus shifts from simply balancing the
game to accommodate player skill to ensuring that the EM
agent caters to individual needs within the shared experi-
ence. This introduces unique challenges and responsibilities
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for the agent, particularly where the agent must make deci-
sions that affect multiple players simultaneously. Even be-
yond the ethical considerations for why such an agent holds
a responsibility to provide fair treatments across the player
base, doing so in the case of interventional applications may
ultimately lead to more effective agent operation overall.
For instance, consider the element of player non-adherence,
where a player that does not feel they are receiving a worth-
while experience within an activity may reduce their par-
ticipation, thereby reducing the opportunities through which
the intervention can operate with those players and nullify-
ing even the greatest of innovations it may present.

In this study, we examine a natural pitfall in the use of tra-
ditional MAB strategies as EM agents, where the agent may
fail to properly administer its intervention across the player
group in its pursuit of maximizing a particular outcome met-
ric. For instance, a traditional strategy aiming to maximize
player physical activity in an exercise game may prioritize
its motivational techniques for only the highest-performing
players. We call this the Greedy Bandit Problem, and we
demonstrate its potential to promote player non-adherence in
a multiplayer serious game. We then propose a solution for
mitigating the effects of this problem via a new bandit strat-
egy, the Shapley Bandit, that enforces fairness constraints in
its treatment of players based on the Shapley Value.

It is worth noting that this paper relates to a contempo-
rary publication (Gray et al. 2022) where we validate this ap-
proach with human users. Where that paper discusses the hu-
man factors and user study evaluation, this paper discusses
the rationale and details for the Shapley Bandit AI design
and our preliminary validation via simulation prior to hu-
man user studies. The remainder of this paper is structured
as follows. Section 2 presents literature related to this prob-
lem space, followed by our motivating scenario in Section 3.
Section 4 analyzes data from a Pretest User Study with hu-
man participants, enabling us to identify the Greedy Bandit
Problem and offer the Shapley Bandit as a solution in Sec-
tion 5. We then describe our simulation environment in Sec-
tion 6, which we use to evaluate our approach in Section 7.

2 Background and Related Work
The following discusses necessary background regarding
Multi-Armed Bandits, Player Modeling and Experience
Management, and the Shapley Value.
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2.1 Multi-Armed Bandits
The Multi-Armed Bandit (MAB) problem is a sequential
decision problem (Robbins 1952; Lai and Robbins 1985)
where an agent must repeatedly decide which option of a set
of available options (called “arms”) to select (or “pull”) to
maximize their expected reward over a series of such pulls.
The agent does not know the true reward distribution of each
arm and, therefore, must explore by pulling different arms
to learn more about the reward probabilities (exploration)
while spending as many opportunities as possible to pull the
arms it believes to yield the highest rewards (exploitation).

Several strategies have been developed to address the
MAB problem, including epsilon-greedy (Kuleshov and
Precup 2000; Lattimore and Szepesvári 2020), upper con-
fidence bound (UCB) (Auer, Cesa-Bianchi, and Fischer
2002), and Thompson sampling (Thompson 1933). Epsilon-
greedy is a simple and intuitive approach that balances ex-
ploration and exploitation by randomly selecting either the
“greedy” action (i.e., the arm that so far has yielded the
greatest rewards) or exploring randomly, based on probabil-
ity determined by the ε parameter. UCB and Thompson sam-
pling are more sophisticated approaches that use Bayesian
inference and uncertainty estimates (i.e., confidence inter-
vals) to guide exploration and exploitation.

2.2 Player Modeling & Experience Management
In the domain of player modeling and Experience Man-
agement (EM), several studies have explored the use of
AI agents to create adaptive games (Bates 1992) that
cater to individual player needs, preferences, and skill
levels. Yannakakis and Togelius provide a comprehensive
overview (Yannakakis and Togelius 2018) of the various
techniques employed in AI-driven game design, including
player modeling through observations of metrics that pre-
dict aspects of the user (Yannakakis et al. 2013; Drachen,
Canossa, and Yannakakis 2009). Toward this task, a va-
riety of AI techniques can be deployed toward building
player models, such as support vector machines (Missura
and Gärtner 2009), neural networks (Min et al. 2016), or
MABs (Gray et al. 2020; Vinogradov and Harrison 2022).

EM agents construct a model using the AI for a player
and, in the case of software-based interventions like serious
games, leverage this understanding of the player to tailor the
gaming experience for the player toward its particular goals,
such as health outcomes (Fujiki et al. 2008) or learning ob-
jectives (Valls-Vargas et al. 2015). The EM agent is able to
perform this tailoring through the use of EM levers (Gray,
Zhu, and Ontañón 2021), or elements within the game en-
vironment that provide the agent with opportunities to af-
fect the game state. Essential to our own study scenario and
method (Section 3), other studies have found success in us-
ing additional characters in the game environment as EM
levers (Feltz et al. 2014; Samendinger et al. 2017).

2.3 Shapley Value
Proposed in 1953 by Lloyd S. Shapley (Shapley 1953,
1997), the Shapley Value addresses the problem of attribut-
ing individual utility (most often to determine commensu-

rate rewards) for a set of participants operating in cooper-
ation toward a common goal (Winter 2002). Due to over-
lapping and unseen effects of influence and synergy, it may
be difficult to know precisely how much each participant
contributed to the performances of others or to what de-
gree others contributed to their own individual performance
within the joint endeavor. However, Shapley aimed to find
an estimate for this value, proposing that an optimal assess-
ment would meet the following criteria, or axioms (Ma and
Tourani 2020; Roth 1988): (1) Symmetry, where completely
interchangeable participants should be interpreted as having
equal contributions to the team, (2) Nullity, where a partic-
ipant that adds no value to any sub-division of the overall
group is assigned no contribution beyond their individual
achievement, (3) Additivity, where no contribution is lost if
we were to separate the game into sub-events or rounds, and
(4) Efficiency, where the sum of the contribution of all par-
ticipants equals the total contribution for the full group.

More formally, in a coalition N containing a participant
i (among others), considering every possible way that N
could form to include participant i would be to consider ev-
ery permutation of the sub-coalitions (S) of participants in
N other than i (i.e., N \ {i}). If the increase in the coali-
tion’s utility provided by participant i for each of these sub-
coalitions is averaged, it results in the expected marginal
contribution that i provides to the coalition as a whole. Shap-
ley summarized this operation with the following equation:

ϕi(N, v) =
1

N !

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)![v(S ∪ {i})− v(S)]

(1)
Additionally, Shapley provided proofs that this formulation
not only achieves all four of the axioms but provides the
only solution that does so (Roth 1988). Importantly, this ax-
iomatic approach, facilitated by Equation 1, empowers any
solution employing the equation to imbue its results with a
notion of stability defined by these qualities. As such, these
axioms have been interpreted by some as rules defining a
“fair” division, as if they served as an impartial “arbitra-
tor” or “referee” separate from the participants seeking eval-
uation (Hart 1989). This is in following other approaches
using the Shapley Value to satisfy specific fairness proper-
ties in games (van den Brink 2002; Balkanski and Singer
2015), specifically those regarding distribution fairness (Co-
hen 1987; Alexander and Ruderman 1987) as a principle
of Organizational Justice Theory (Greenberg 1990; Green-
berg and Colquitt 2013) founded on J.S. Adams’ equity the-
ory (Adams 1963, 1965). In this work, we aim to use the
Shapley Value to estimate the relative contribution of indi-
vidual players toward the achievement of a team within a
video game for the purpose of attributing the reward they
should receive within the game system.

3 Study Scenario
Our formulation of the Greedy Bandit Problem and our so-
lution proposed in this work were the result of an analysis of
a previous user study conducted by our research team (Zhu
et al. 2020). We will refer to this study as the Pretest User
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Figure 1: Two participant teammates engage remotely in a
daily software activity in which their steps from the previous
day are presented. An artificially constructed third teammate
is added to the game by the AI, presenting as a genuine par-
ticipant alongside the others. The MAB strategy determines
the steps of this third teammate to be either above, between,
or below those of the others (i.e., option A, B, or C), of-
fering additional comparison opportunities that will ideally
target the SCO preferences of the two real participants.

Study (or simply Pretest) throughout this work, with a sum-
mary provided for convenience here.

Our ongoing research centers around an intervention that
models and leverages the psychological concept of social
comparison theory to motivate players in an exercise game
(or exergame) to improve their daily habits around physical
activity (PA). The field of social comparison examines the
personality traits that govern a person’s propensity to com-
pare themselves to others, consciously or subconsciously,
when assessing their own abilities or beliefs (Festinger 1954;
Gibbons and Buunk 1999). Depending on a person’s social
comparison orientation (SCO), they will experience positive
or negative motivation in a task when exposed to others who
are perceived as doing better (i.e., “upward” comparisons)
or worse (i.e., “downward” comparisons) than themselves.

The intervention embedded in our exergames is facilitated
by an AI agent that both models individual SCO by ob-
serving player behavior and adapts the intervention to best
accommodate the individual’s predicted preferences. In our
scenario, participants are grouped into pairs that engage in
a PA-related web activity with a third teammate controlled
by the AI agent but presented to the participants as real.
The agent, governed by our MAB strategy, chooses each
day among three potential arms to determine the perfor-
mance of this third teammate, as depicted in Figure 1. The
agent can choose to report the fabricated teammate’s steps
as above, between, or below those of the two real partic-
ipants, which will create additional comparison opportuni-
ties that can leverage the SCO preferences it has modeled
for each of the two genuine participants. When engaging in
their daily session, each of the participants will be shown
the step achievements of their two other teammates as they
report their motivation to personally engage in PA (via a 5-
point Likert scale survey question) and examine data regard-
ing daily lifestyle health habits.

The Pretest deployed this scenario among a group of 55

human user participants (37 women, 18 men) recruited from
undergraduate courses at a university in a large U.S. city,
where they were asked to participate in one session per day
with the web-based activity and wear a Fitbit device to track
their daily steps. Our findings demonstrated that an MAB
strategy built around an ε-greedy policy based on a regres-
sion model predictor (i.e., experimental condition) yielded
statistically higher motivation than a control group with a
random policy. Additional details regarding results from the
Pretest can be found in its own publication (Zhu et al. 2020),
but continuing analysis of our results indicated interesting
trends regarding player participation, discussed in the next
section.

4 Analysis of Pretest User Study Data
We analyzed our user data from the Pretest to look beyond
player motivation and performance and instead explore a
proxy for player satisfaction—namely, player adherence—
relative to their treatment by the Pretest bandit strategy. In
this analysis, we wished to examine both a metric relating to
the user’s treatment by the system and a metric relating to
the user’s engagement.

Specifically, we analyzed all sessions from the Pretest for
players in the (greedy) experimental condition. For each of
these sessions, the analysis considered both the choice made
by the bandit strategy and that choice’s predicted success
with each participant. From this, we determined how of-
ten the bandit strategy chose the arm most likely and least
likely to benefit each player (“top” and “bottom” arms, re-
spectively). We then aggregated a count of these for each
player, which served as a metric reflecting the treatment of
the player in terms of the degree to which the AI “catered”
(i.e., prioritized positive treatment) to them. A second met-
ric we collected was the number of days the player missed
their session during the experimental phase. This served as
our marker for engagement, a proxy for the player’s interest
in continuing to participate in the exercise.

We then compared these values, beginning with our graph
in Figure 2. Here we graph our participants in descending or-
der of their “Top” counts (grey bars). On a secondary axis,
we graph the percentage of missed days in the experimental
phase (orange line). With a Pearson’s R of -0.40, we observe
a large (Gignac and Szodorai 2016) negative correlation be-
tween a player’s top treatment counts and their likelihood to
miss a session.

The above considers how often a player received positive
preferential treatment, but it does not consider how often
players received treatment against their preferences. For this
reason, the next analysis considers the net top treatments for
a player (Ti), calculated as the difference between the num-
ber of times the player received their top and bottom treat-
ments from the bandit strategy.

We also wanted to include an element of player perfor-
mance (i.e., daily steps achieved) to examine the degree to
which each player’s treatment was commensurate with their
effort. We predicted that one cause for player disengage-
ment (i.e., missed days) might be due to an innate sense of
receiving a “bad deal” in terms of how well their compari-
son experiences aligned with their individual SCO versus the
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Figure 2: Individual participants in the Pretest are sorted by
the number of times they received their top treatment for
either steps or motivation (grey). On a secondary axis, we
chart the likelihood that the player would miss a day in the
experimental phase (orange). We see a large (Gignac and
Szodorai 2016) negative correlation between the number of
times a player received their top treatment and the likelihood
they would miss a given session (Pearson’s R = -0.40).

amount of effort (i.e., daily steps) they had been committing
to the activity. This would follow the concept of psychologi-
cal meaningfulness, in which humans are more likely to en-
gage or disengage in activities based on the perceived reward
received for their physical, emotional, and cognitive invest-
ments (Kahn 1990). Though the precise knowledge of their
step performance versus others and the degree to which the
MAB catered to them would not be known to the players, we
posited that an impression of the relationship between these
factors might have been sensed by players over the course of
the study. Therefore, we created a new derived metric called
the disparity score (D) that measures the degree to which
these two values may be misaligned for players.

Computing the disparity score values requires
{E1, ..., En}, the effort achieved by the n players (i.e.,
average steps) throughout the experimental phase as well as
{T1, ..., Tn}, the treatments given to each of the n players
(i.e., the net top treatment counts) over the same period. The
disparity score (Di) for a particular player (i) is computed
as follows, where the PR(V, Vi) function denotes the
percentile rank of value for a player (Vi) among a set of
values for all players (V ):

Di = PR(E,Ei)− PR(T, Ti). (2)

In other words, the Di value for player i is the difference
between their percentile rank of step performance and their
percentile rank of net top treatments, and the results for all
players are illustrated in Figure 3. Here we graph the dis-
parity scores for each player, sorted from lowest to highest.
Players near the center of the graph (i.e., with Di near zero)
represent those for whom treatment was commensurate with
their efforts. Players closer to the left side of the graph were
given much better treatment relative to their performance,
and players on the right were given top treatment much less
frequently compared to that player’s efforts. On a secondary
graph, we chart the percentage of missed days observed for
that player in the experimental phase. This figure helps us to

Figure 3: Disparity scores (blue) for participants in the
Pretest, where participants on the left represent those who
received very good treatment relative to their step perfor-
mance, and players on the right received poor treatment rel-
ative to their efforts. On a secondary axis, we chart the like-
lihood that the player would miss a day in the experimental
phase (orange) to find a large (Gignac and Szodorai 2016)
positive correlation (Pearson’s R = 0.36).

visualize the large (Gignac and Szodorai 2016) positive cor-
relation (Pearson’s R = 0.36) between a player’s disparity
score and the percentage of sessions they missed.

We then perform regression analysis on the correlation be-
tween the disparity score and miss likelihood to find a slope
and intercept (y = 0.1394x+ 0.157, R2 = 0.13) to help us
define a model for the relationship between them. With the
disparity score serving as our estimate of the psychological
meaningfulness the activity may hold for a player, we take
this result to serve as a method for estimating the likelihood
a user will miss a session based on their disparity score.

5 The Greedy Bandit Problem
We believe this analysis reveals a potential issue that arises
in the case where an AI must make decisions that potentially
benefit some players more than others, where there is a risk
that certain players may be routinely prioritized and others
neglected. This may result in some players becoming dis-
enfranchised and growing less engaged over time, lessening
the AI intervention’s overall potential impact and efficacy.
We argue that the AI has a responsibility to be aware of this
potential risk and would benefit from mitigating designs.

We refer to this dilemma as the Greedy Bandit Problem,
where the term “greedy” is often used in algorithmic fairness
literature as the opposite of something that is designed with
a notion of “fairness” (Balkanski and Singer 2015; D’Amour
et al. 2020). To address this problem, we propose a two-
component approach. In the first, where typical bandit de-
sign may compare player output metrics directly, we pro-
pose a more nuanced comparison technique (i.e., the Shap-
ley Value) that better assesses the contributions that individ-
uals make when they work in a team (Section 5.1). In the
second, where a “greedy bandit” may pursue a single met-
ric related to performance, we consider alternative, player-
focused metrics by which bandit strategy success should be
determined.
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5.1 Application of the Shapley Value
The Shapley Value provides a method by which the contri-
butions of individuals can be assessed from the sum of their
joint effort in a way that achieves fairness as defined by four
axioms. Given a coalition of players (N ) containing player
i, we are interested to know the true value that this player
contributes (ϕi) to the coalition when engaged in a joint en-
deavor pursued (or game played) by that group, or (N, v).

To do so, we consider every possible permutation by
which the coalition could be constructed and average the
marginal increase brought to the group by player i at the
point in which player i is added during construction. Specif-
ically, for this three-member coalition, we consider all pos-
sible permutation formation sequences (F ) that could con-
struct coalition N = {A,B,C}. This set would include the
following six items, with double arrows (⇒) denoting where
player A is added to the formation sequence:

F1 : ∅⇒ {A} → {A,B} → {A,B,C}
F2 : ∅⇒ {A} → {A,C} → {A,B,C}
F3 : ∅ → {B}⇒ {A,B} → {A,B,C}
F4 : ∅ → {B} → {B,C}⇒ {A,B,C}
F5 : ∅ → {C}⇒ {A,C} → {A,B,C}
F6 : ∅ → {C} → {B,C}⇒ {A,B,C}. (3)

To find the average marginal increase that player A brings
to the efforts of the full coalition N , we find the average of
the values player A added to each of these six hypothetical
formations at the time they were added. To provide a value
for all elements of F , we require the following variables:
v(A0), v(B0), and v(C0) refer to the utility that the play-
ers achieve each when working alone, which in our case is
the baseline step performance demonstrated by each player
prior to the game as well as the step value assigned to the
virtual player (C) by the AI agent. v(AB), v(AC), and
v(BC) refer to the utility achieved by players working in
their respective pairs, which we estimate as the sum of the
steps of the players in each pair. v(ABC) refers to the util-
ity achieved by the entire coalition N .

With these variables, we are able to define a value for each
element of F for any player i, examining our definitions de-
scribed in Equation 3, to yield the corresponding marginal
utility values for that player v(Fi,n). We present FA as our
example and derive values for the utility brought to the team
by player A in each of the six formation sequences:

v(FA,1) = v(A0)

v(FA,2) = v(A0)

v(FA,3) = v(AB)− v(B0)

v(FA,4) = v(ABC)− v(BC)

v(FA,5) = v(AC)− v(C0)

v(FA,6) = v(ABC)− v(BC). (4)

According to the Shapley approach, the attribution of util-
ity ϕi(N, v) assigned to player i will be the average of the
values in this set (Fi):

ϕi(N, v) =
1

6

6∑
n=1

v(Fi,n). (5)

5.2 The Shapley Bandit
As discussed in Section 5, the typical approach to bandit
strategy design will aim to maximize a particular value, re-
gardless of how its operation may or may not prioritize cer-
tain arms above others. However, when these arm selections
correspond to outcomes for human participants, extra care
should be taken to ensure that players are not repeatedly ex-
cluded over time, leading to their potential disenfranchise-
ment. Therefore, we address the Greedy Bandit Problem by
adding a constraint to our bandit strategy design that aims
to align the favorable attention that each player receives to
their individual efforts.

Shapley Disparity: Given a set of players N , a Shapley
Bandit estimates the Shapley Disparity for each player i at
each time step t. When a reward is received for an arm pull,
the Shapley Value (Equation 5) is computed for that player
and added to a Cumulative Shapley Value, CSV i. From this,
we define the player’s CSV Ratio, CSVRi, as their Cumu-
lative Shapley Value divided by the total of that of all play-
ers. Additionally, the bandit maintains a Treatment Counter,
TC i, for each player that tracks how often the agent chose
the arm predicted to most benefit that player. From this,
we similarly define the player’s TC Ratio, TCRi, as their
Treatment Counter divided by the sum of that of all play-
ers. Finally, we define each player’s Shapley Disparity as
SDi = |CSVRi−TCRi|, measuring the difference between
the player’s proportional contribution and the proportion of
pulls in which the agent has prioritized the player.

Shapley Bandit: Instead of a greedy bandit strategy that
would simply select the arm predicted to maximize total
steps, the Shapley Bandit aims to reduce the Shapley Dis-
parity among players. Specifically, it will select the arm pre-
dicted to most benefit the player who, if catered to, would re-
sult in the lowest total Shapley Disparity among all players.
As with conventional (ε-greedy) bandit strategies, this pre-
diction is based on previous rewards observed, with a small
probability that the strategy will choose a random arm.

By prioritizing alignment of the proportion of top treat-
ments for each individual to their proportion of total team
contribution, we anticipate that this strategy will empower
the agent to prioritize high performers while still ensuring
that it never fully ignores any member of the group. Of
course, we expect that this will result in an incurred cost
to total utility (i.e., rewards will no longer be fully maxi-
mized as they would with a greedy bandit) but that the cost
of this fairness constraint will provide a better experience to
all participants. We will examine this further via simulation
experiments, first evaluating the impact on user experience
(via adherence metrics) in Section 7.2 and then examining
the cost of this tradeoff (via total utility) in Section 7.3.

6 Simulation Environment
We aim to create a simulation in which we can evaluate the
potential efficacy of the Shapley Bandit prior to conducting
human user studies. To do so, we employ virtual players
provisioned with models that adjust their behavior accord-
ing to their exposure to different social comparisons (dis-
cussed in Section 3) and described in further detail in our
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previous simulation study (Gray, Zhu, and Ontañón 2021).
In short, virtual players will either be motivated or demoti-
vated (in terms of daily step activity) based on their exposure
to upward or downward comparisons and depending on their
(randomized) internal preferences for such comparisons.

Beyond this, we also include a virtual player behavior for
skipping their daily sessions based on their perception of the
misalignment between their effort and the treatment they are
receiving in the activity. We create a model that allows a
player to predict these two values (effort and treatment rela-
tive to other players) to better mimic the subconscious sense
a human player might build regarding their perception of
psychological meaningfulness in this activity.

The first component of this subsystem is a notion of the
player’s own step performance relative to others. Though
no virtual player will have access to any other player’s
steps, it’s reasonable to believe that a human participant will
have some knowledge of average human walking behavior.
Therefore, we allow the virtual players to understand the
distribution of steps expected from players like them, from
which they can find their position within that general ex-
pectation. Specifically, virtual players were allowed to know
that daily steps were generally distributed with a mean of
11832 and a standard deviation of 2369, which are values
derived from a study on human walking behavior conducted
by Furberg et al. (Furberg et al. 2016). Therefore, virtual
players were able to use the average of their daily steps so
far (ρ̄i) to estimate their effort relative to the group (Êi) us-
ing the following, where Φ(x) is the cumulative distribution
function of the standard normal distribution:

Êi = Φ(
ρ̄i − 11832

2369
). (6)

The second component of our behavioral subsystem is a
notion of the treatment the player feels they have received
from the system. This may not be known or even explic-
itly considered by human participants, but it may be sensed
through their implicit satisfaction with the system based on
how well the selection targets have been catered to accom-
modate their individual SCO preferences. Therefore, we al-
low virtual players to track how often their comparison tar-
gets have been in favor or against their preference. An in-
ternal treatment counter increments by one whenever both
of their teammates compare to them in the virtual player’s
preferred direction, and it decrements whenever both team-
mates compare against their preference.

Human players would have insight neither into the indi-
vidual SCO of the other players nor into the MAB strategy’s
operation and choices among arms. Similarly, virtual players
do not have access to this higher-level information; however,
for the sake of the simulator, we allow virtual players to un-
derstand the expected distribution of such scores in a game
lasting two weeks. It could be reasoned that in a large sam-
ple, the mean of such treatment counter values would rest
on zero, and it would present in a normal distribution be-
tween the extreme values of ±14 (i.e., if a player received
their best or worst treatment exclusively). Using the intu-
ition of the range rule (Wan et al. 2014), the virtual player
could guess a standard deviation of treatment counter values
to be S ≈ 14∗2/6 = 4.7 over a large group. Therefore, vir-

tual players were able to use the value of their own treatment
counter at any point (Hi) to estimate their treatment relative
to the group (T̂i) using the following:

T̂i = Φ(
Hi

4.7
). (7)

With both Êi and T̂i values for a virtual player, we can com-
pute an estimate of their disparity score (D̂i) at any time,
following the definition provided in Equation 2:

D̂i = Êi − T̂i, (8)

where D̂i is a value within [−1, 1]. This value can be gen-
erated at any time step (i.e., D̂i,t) by using the Êi and T̂i
values generated at that same time step. As an update to our
virtual player behavioral model, we can introduce a new be-
havior in which the virtual player may choose to miss one of
their sessions based on their disparity score estimate at that
time, using insight from human participant data discussed in
Section 4. Specifically, we apply the coefficient and inter-
cept of the regression analysis to model the virtual player’s
likelihood of missing a given session (Mi,t) as follows:

Mi,t = 0.1394 ∗ D̂i,t + 0.157. (9)

Virtual players keep track of the total number of times their
non-adherence behavior is triggered and report it at the end
of the experiment along with the other metrics we collected
regarding human players in the Pretest, such that we can per-
form the same analysis on our simulation results.

7 Evaluation
Our evaluation consists of three parts. First, in Section 7.1
we aim to validate our simulation such that we can verify the
manifestation of the Greedy Bandit Problem in the same de-
gree that we observed in the human user study environment
of the Pretest. Second, once this is established, in Section 7.2
we can deploy the Shapley Bandit within this environment
to gain an understanding of how our strategy may help to
mitigate the effects of the Greedy Bandit Problem. Finally,
in Section 7.3 we run a third experiment to examine the cost
incurred by the Shapley Bandit relative to the performance
of the Greedy Bandit.

7.1 Simulation Validation
To compare our simulation results with our Pretest analysis
above, we wish to run a batch of experiments. For example,
the only way for us to generate values for Ei that are mean-
ingful in a larger set (E) for use in analysis by Equation 8,
we must perform our analysis on larger groups of players
({p1, ..., pn}). Therefore, we set up our experiment to run
batches of 12 such teams (i.e., 24 total virtual players) to
mimic the Pretest so that we can repeat the same analysis on
the results of the virtual players in our simulation.

With results of one such batch presented in Figure 4, we
see many promising similarities and some differences when
comparing the graphs resulting from our analysis of simula-
tion data against our same analysis of real human behavior
data in Section 4. We first see that our simulation is capable
of creating the same pattern of disparity across the user base,
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Figure 4: Disparity scores for a batch of virtual players, in-
tended for comparison to Pretest data (Figure 3). The sim-
ulation under a greedy bandit can create a similar disparity
spread as human user data. Non-adherence rates, based on
Equation 9, are also reported for each virtual player (orange)
to again reflect real human behavior patterns.

which indicates that the simulator can manifest the issues of
disparity that are symptoms of the Greedy Bandit Problem.
Similarly, the regression analysis finds a coefficient and in-
tercept that is not too dissimilar to that of the human data
(i.e., coefficient of 0.122 vs. 0.139 and intercept of 0.167
vs. 0.157 in the simulation and Pretest data, respectively),
where the overall trend and shape of the data are similar.

We extend this experiment to reduce the impact of
stochastic elements in our simulation. First, we increase the
number of days in each game to 100 to allow the agent more
of an opportunity to understand the players. Second, we in-
crease our test from a single batch of games to a set of 100
batches, where the results are aggregated for all 24 players
across batches based on their rank in disparity among those
in their batch cohort. In other words, the key metrics (i.e.,
top treatments and miss %) for the players with the lowest
disparity score in each batch were averaged to construct the
first aggregate player. Metrics for the second-lowest players
were then averaged in the same way, and so on.

The scatter plot for these players, each reflecting aggre-
gate players across 100 batches, is illustrated in blue in Fig-
ure 5. Regression analysis over this set of data again finds
a coefficient and intercept that is similar to that of the hu-
man data (i.e., coefficient of 0.117 vs. 0.139 and an inter-
cept of 0.132 vs. 0.157), this time reflecting the trend to an
even greater degree (R2 = 0.97, vs. R2 = 0.13 in the hu-
man data) due to the synthetic nature of the simulation and
averaging of significantly more points of data (2400 virtual
players in simulation vs. 24 players in the human data).

From these results, we see that across a larger sample size,
we can expect virtual player metrics to manifest the intent of
our model fairly closely. We determined this performance to
be satisfactory to support our simulation as a test bed for
exploring the potential of the Shapley Bandit.

7.2 Shapley Bandit Evaluation
We leverage our simulation environment to explore the effi-
cacy of the Shapley Bandit strategy, described in Section 5.2,
to assess the degree to which it may help alleviate the effects

Figure 5: Scatter plots of the disparity score / non-adherence
relationship in the Greedy Bandit experiment (blue) vs. the
Shapley Bandit experiment (orange). The smaller slope of
the Shapley condition regression (0.096 vs. 0.118 in the
Greedy condition) indicates a reduced likelihood of non-
adherence relative to disparity (p < 0.001).

of the Greedy Bandit Problem. We repeat the last experiment
described above with 100 batches, except we replace the de-
fault Greedy Bandit with a Shapley Bandit for each game.

Our first analysis compares the miss rates of the aggre-
gate players in the Shapley Bandit experiment to those of
the Greedy Bandit experiment, which are shown in Fig-
ure 5. These results allow us to compare the performance
between conditions of MAB strategy effect on participant
non-adherence. First, we identify that there is a tighter hori-
zontal grouping among the Shapley Bandit disparity values,
suggesting a smaller variance in the disparity provided to the
players in that condition. Because the purpose of introducing
the Shapley Value was to better align bandit rewards to indi-
viduals based on their performance, we would consider this
an intended effect of the strategy. F-Test analysis on the full
data sets (Greedy vs. Shapley conditions, n=2400 players in
each) indeed demonstrates a mean disparity score of zero
with a statistically significant smaller variance (p < 0.05) in
the Shapley condition.

Second, regression analysis on both data sets yields a
smaller coefficient in the Shapley condition (βS < βG),
found to be statistically significant (p<0.001) via a z-test
for the difference between two regression coefficients (Pa-
ternoster et al. 1998). This suggests that players attended
to by this strategy exhibited a smaller likelihood for non-
adherence even at the same disparity level.

In general, we do not expect the Shapley Bandit to outper-
form the greedy bandit on performance metrics, and indeed
we observed that virtual players in the Greedy Bandit con-
dition achieved more steps per day per player (average of
12366.0 vs. 12224.6, p < 0.001) due to the fact that ex-
ploitation pull targets were unconstrained. However, we en-
dure this lower performance in a willing exchange, where
we expect the Shapley Bandit to instead achieve a more
uniform distribution of metrics (of both treatment and per-
formance) due to the fairness constraints it applies. Indeed,
again we observe via F-test that players in the Shapley con-
dition experienced lower variance among their step achieve-
ments (p < 0.001). Similarly, though we observe a non-
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Figure 6: Distributions of final internal Treatment Counter
values (TC i) perceived by the virtual players in both Greedy
Bandit (avg. = 19.84) and Shapley Bandit (avg. = 20.26) ex-
periments (not statistically significant, n = 2400 in each
condition). The bimodal nature in both graphs is likely due
to both high and low-performing players in both simulations;
however, because the Shapley strategy ensures that even the
lower-performing players are catered to, it raises the treat-
ment of those players, thereby providing smaller variance in
treatment among all players (p < 0.001).

statistically significant indication that players in the Shapley
Bandit condition may achieve overall lower miss likelihood
than those in the Greedy condition (11.97% in the Shapley
condition vs. 12.04% in the Greedy condition, p = 0.328),
our focus returns once again to the smaller variance of this
metric across players in the Shapley condition (p < 0.001),
further supporting the Shapley Bandit’s aim of providing a
more uniform treatment of players among the group.

Additional F-Test analysis reveals that players in the
Shapley condition indeed observed statistically significant
(p < 0.001) lower variance in overall treatment scores per-
ceived by the virtual players (Figure 6) and net top treat-
ments given by the agent (Figure 7). These results are
promising because they not only demonstrate a solution that
improves the overall experience for players but that also
treats players more uniformly. In both conditions, the virtual
players operated with the same parameters, behavior sets,
and models for non-adherence based on the players’ perfor-
mance and disparity scores (Equation 9). These results show
that the Shapley Bandit succeeded in reducing variance in
disparity, where its focus on the TC Ratio (TCRi) required
that even lower-performing players still received attention.

This effect is especially evident in Figure 6, which visu-
alizes the virtual players’ internal perceptions of treatment.
While both conditions present a bimodal graph with high-
and low-performing players clustered, the Greedy Bandit
condition (blue) shows much more inequality between the
two groups, where the bandit catered to higher-performing
players at the expense of ignoring the remainder to a sig-
nificant degree. In contrast, the Shapley condition (orange)
ensured that even the lower-performing players were still
given proper attention. Though the Shapley strategy sacri-
ficed some performance in not maximizing its exploitation
of the higher players, we see that the overall scores among
its lower grouping are seated higher than that of the Greedy
Bandit’s lower group. The results for treatment average in

Figure 7: Distributions of net top treatment counts (TC i)
values in both Greedy Bandit (avg. = 95.77) and Shap-
ley Bandit (avg. = 77.6) experiments (n = 2400 in each
condition). Though Greedy outperforms (p < 0.001) in
this metric due to its unconstrained targeting of only high-
performing players, the Shapley Bandit achieves lower vari-
ance (p < 0.001) in net treatments across all players. Addi-
tionally, significantly (p < 0.001) fewer players in the Shap-
ley Bandit condition (12.6%) receive more bottom treat-
ments than top compared to the Greedy condition (17.6%).

our simulation were inconclusive, yielding an average treat-
ment score of 19.84 for the Greedy Bandit and 20.26 for the
Shapley Bandit (p = 0.329). However, and again more im-
portant to our objective, this tightening of the treatments for
both player groups results in a closer grouping of all players
overall, yielding a statistically significantly lower variance
of treatment scores (p < 0.001) in the Shapley group.

A separate but related metric can further explain this oper-
ational difference between the strategies, illustrated in Fig-
ure 7. In this analysis, we observe not the virtual players’
estimation for their treatment but the actual degree to which
they were catered to as tracked by the agent. We review all
decisions in the trial and note the number of times a player
received the arm that was predicted to be that player’s top
arm, and we also record the number of times each player
received their worst arm. The difference between these val-
ues (i.e., top count subtracting worst count) for each player
yields that player’s net top treatments metric.

We see in this distribution of player net top treatments
where the Greedy Bandit exploited top-performing play-
ers (i.e., at x>110) to a greater degree than the Shapley
Bandit. However, without a fairness constraint, we also see
that many players experienced negative top treatment scores,
some greatly so. For example, seven players received their
top treatment as few as twice in 100 pulls in the Greedy con-
dition. In contrast, the Shapley strategy aimed to correct this
pattern and instead set up a resistance to negative net top
treatments that is visible in the graph around x=0. While
this resulted in a slightly lower average than that achieved
by the Greedy Bandit, the distribution illustrates how the
Shapley strategy very clearly (p < 0.001) achieved a smaller
variance of player experience with regard to this metric. Fur-
ther, we observe that the Shapley Bandit condition resulted
in significantly fewer players with a net top treatment score
below zero (12.6% in the Shapley vs. 17.6% in the Greedy
condition, p < 0.001).
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Bandit Strategy Overall Avg. Reward Pull #100
Greedy Bandit 12431.9 (±0.068) 12530.3
Shapley Bandit 12338.6 (±0.061) 12435.0

UCB1 11927.3 (±0.049) 12011.0
ε-greedy 11928.8 (±0.049) 12031.2
Random 11617.5 (±0.015) 11621.2

Table 1: Average rewards of Greedy vs. Shapley Bandit
strategies in multiplayer scenario (h = 100, ±99.9% CI)

7.3 Overall Performance in Study Scenario
Consideration of the lower step results in the Shapley con-
dition prompts a final experiment in which we aim to assess
more precisely what the Shapley approach loses in perfor-
mance in order to support this more uniform experience for
its players. Specifically, we wish to run a larger simulation
measuring the average step performance of teammates in our
sample scenario when under the control of various MAB
strategies. We set up an experiment of one million games
(i.e., a total of two million players), each lasting 100 time
steps, and observed the average step performance of those
players when governed by a battery of MAB strategies.

We examine the following set of strategies: Random (ran-
dom pulls), UCB1 (C = 800), and ε-greedy (ε = 0.01)
along with the Greedy and Shapley Bandits, both set up as
they were in the previous experiments. It’s worth noting that
the distinction between the Greedy Bandit and the standard
ε-greedy strategy is the use of the regression-based model
for predictions, mentioned in Section 3 and described in pre-
vious work (Zhu et al. 2020). We began with a pre-test in
which values for C and ε parameters were determined via
parameter sweep (Gray et al. 2020). Results of this experi-
ment are presented in Table 1, where we observe merely a
0.75% loss in average reward for the Shapley Bandit.

8 Discussion
Results from our simulation evaluation confirmed that the
environment was capable of reproducing similar metrics
with a Greedy Bandit as those we observed in the Pretest
study with human users, providing a capable tool for ex-
ploring the potential of the Shapley Bandit. With that in
place, our experiments involving the Shapley Bandit demon-
strated an ability to better homogenize user experiences with
respect to the agent’s decisions, if not always in signifi-
cantly raising the expected value of virtual player metrics
(e.g., treatment scores or missed sessions), then decisively
with respect to the variance among those metrics. In partic-
ular, the results illustrated in Figures 6 and 7 demonstrate
the strategy’s ability to significantly alter the distribution of
player experience in terms of how they were catered to by
the agent. Our simulations indicated a modest but statisti-
cally significant reduction in the degree to which disparity
score influences player non-adherence likelihood both in re-
gression coefficient and variance among players, which we
expect to be reflected in higher player adherence when we
deploy this strategy in human user studies.

Regarding overall MAB strategy efficacy, we see from the
results of the final experiment that although the Greedy Ban-
dit does yield better performance overall, the Shapley Ban-
dit incurs a relatively low cost (0.75%) for all the benefits
demonstrated in the previous experiments. That is, in our
simulation, the Shapley Bandit approach yields a strategy
that is 99.2% as effective as a Greedy Bandit but achieves
this outcome with smaller variances across a number of met-
rics important for player satisfaction and fairness. By con-
sidering the distribution of attention it gives to all players
in the group, the Shapley Bandit demonstrates capability in
making worthwhile tradeoffs around metrics that are mean-
ingful when serving as an AI agent working with human
players. From these results, we were confident in further
evaluating this approach with human participants.

9 Conclusion
Our primary contributions in this work include (1) the iden-
tification of the Greedy Bandit Problem as it was observed
in a human user study guided by a greedy MAB strategy,
(2) the construction of a simulation and virtual player be-
havior strategy that embodies the concept of psychological
meaningfulness, by which player non-adherence (i.e., a vir-
tual player choosing not to participate) could be used as a
metric for player satisfaction, and (3) an alternative bandit
strategy called the Shapley Bandit that leverages the Shapley
Value to better align AI agent treatments to player contribu-
tions in a multiplayer environment.

Following analysis of data from a Pretest User Study with
which we formalized the Greedy Bandit Problem, we de-
signed a simulation scenario (including virtual players) that
we confirmed to be capable of generating observations of
the Greedy Bandit Problem to a similar degree as that which
manifested in the human user data. We then deployed our
Shapley Bandit strategy in that same environment and deter-
mined that it was able to mitigate many of the issues of the
Greedy Bandit Problem. In our final experiment, we eval-
uated the direct performance of both strategies to verify a
relatively small difference in performance (less than 1%) in
exchange for the benefits it was shown to provide.

We identify some limitations in this work, most notably
that our approach discussed here is only so far validated in a
simulation based on human user data; however, this investi-
gation provided the insight needed before we could validate
the approach with human users (Gray et al. 2022). Addition-
ally, our solution may face scaling issues as the groupings of
players grow larger, but only to the extent that the Shapley
Value itself faces such scaling issues. Overall, we believe
that this approach provides a good foundation for moving
forward with MAB-based EM strategies involving human
players, where considerations like fairness, player satisfac-
tion, and adherence are a concern.
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Modeling via Multi-Armed Bandits. In Proceedings of the
2021 IEEE Conference on Games.
Greenberg, J. 1990. Organizational justice: Yesterday, today,
and tomorrow. Journal of management, 16(2): 399–432.
Greenberg, J.; and Colquitt, J. A. 2013. Handbook of orga-
nizational justice. Psychology Press.
Hart, S. 1989. Shapley value. In Game theory, 210–216.
Springer.
Kahn, W. A. 1990. Psychological conditions of personal
engagement and disengagement at work. Academy of man-
agement journal, 33(4): 692–724.
Kuleshov, V.; and Precup, D. 2000. Algorithms for the
multi-armed bandit problem. In Journal of Machine Learn-
ing Research, volume 1, 1–48.
Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics,
6(1): 4–22.
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