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Abstract

We present a novel perception model named Herd’s Eye View
(HEV) that adopts a global perspective derived from multi-
ple agents to boost the decision-making capabilities of rein-
forcement learning (RL) agents in multi-agent environments,
specifically in the context of game AI. The HEV approach
utilizes cooperative perception to empower RL agents with
a global reasoning ability, enhancing their decision-making.
We demonstrate the effectiveness of the HEV within simu-
lated game environments and highlight its superior perfor-
mance compared to traditional ego-centric perception mod-
els. This work contributes to cooperative perception and
multi-agent reinforcement learning by offering a more re-
alistic and efficient perspective for global coordination and
decision-making within game environments. Moreover, our
approach promotes broader AI applications beyond gam-
ing by addressing constraints faced by AI in other fields
such as robotics. The code is available at https://github.com/
andrewnash/Herds-Eye-View

Introduction
Game environments traditionally grant AI agents access to
extensive global information from the game engine. While
this configuration assists in efficient decision-making, it
does not accurately represent the restrictions encountered
by AI applications outside of gaming, where comprehensive
access to a system’s software or engine is not feasible. Con-
sequently, game AI techniques that rely predominantly on
game engine data may limit their potential contribution to
broader AI applications, as their dependency on perfect in-
formation and global environmental data is often unrealistic
in other contexts such as robotics and autonomous vehicles.

In response to these challenges, our work delves into the
application of more constrained, realistic perception mod-
els for game AI. We take inspiration from publications like
the ViZDoom platform (Wydmuch, Kempka, and Jaśkowski
2019) and the Obstacle Tower Challenge (Juliani et al. 2019)
that have embraced the shift towards game AI with real-
world constraints. ViZDoom and Obstacle Tower have uti-
lized visual data as the primary input for AI agents, en-
abling them to navigate complex 3D environments. These
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perception-based game AI agents reinforce the importance
of models without access to game engine information.

Research in autonomous vehicles has made extensive
strides in AI perception models, particularly using inter-
mediary environmental representations like the Bird’s Eye
View (BEV). The BEV model provides an overhead per-
spective of the environment, often in the form of a semantic
obstacle grid, from a single “ego” vehicle’s standpoint. This
concept has become a key component in many self-driving
systems (Ma et al. 2023).

Drawing on these past works, we propose a similar inter-
mediary representation for game AI: the Herd’s Eye View
(HEV) model. Differing from the BEV’s ego-centric per-
spective, the HEV model offers a shared world-centric per-
ception derived from multiple agents. This shared percep-
tion model aligns closer to real-world AI applications, where
multiple systems often work together to understand and nav-
igate their environment.

The HEV model presents dual advantages. First, it mirrors
the constraints faced by AI outside of gaming, contribut-
ing to the development of more believable AI behavior in
games. Second, it alleviates the computational demands as-
sociated with the BEV model, where each agent maintains
its own unique view of the environment, instead, only a sin-
gle shared global view is utilized.

Emulating the successful methodologies of the ViZDoom
project and the Obstacle Tower paper, we also incorporate
Reinforcement Learning (RL) into our approach. RL enables
us to test the effectiveness of HEV in both low-level con-
trol tasks and high-level planning challenges concurrently in
complex environments. Importantly, similar to the Obstacle
Tower approach, our agents are assessed not solely on their
ability to navigate familiar environments, but also on their
ability to handle unique variations of these environments.
This highlights the importance of generalization in adapting
to novel scenarios within the same environment.

To assess the effectiveness of the HEV model, we con-
duct two sets of experiments in three simulated Multi-Agent
Reinforcement Learning (MARL) game environments. The
first compares the accuracy of HEV world-centric predic-
tions with BEV ego-centric predictions. The second exper-
iment evaluates the efficiency of policies learned by RL
agents trained on HEV perspective views compared to those
trained on BEV perspective views.
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Our work makes the following contributions:
1. We propose a baseline model for performing semantic

segmentation in a fixed “HEV” world-centric view.
2. We demonstrate the effectiveness of the HEV fixed

world viewpoint in improving collaborative perception
and MARL in games.

Our exploration of more realistic perception models pro-
vides significant insights for game AI development, stress-
ing the wider applicability of these techniques beyond the
gaming industry.

Related Works
Birds Eye View Semantic Segmentation
In autonomous vehicle research, the bird’s-eye view seman-
tic segmentation task involves predicting pixel-level seman-
tic labels for a top-down ego-centric view of an environ-
ment. Segmentation classes are typically dedicated to vehi-
cles, driveable areas, and obstacles. In prior BEV research,
a significant point of distinction lies in the method used for
transforming 2D perspective-view features into 3D space or
directly onto the BEV plane. Many previous works have
leveraged explicit geometric reasoning in their perspective
transformation (Reiher, Lampe, and Eckstein 2020; Phil-
ion and Fidler 2020; Hu et al. 2021). An approach that has
recently gained popularity is the Cross-View Transformer
(CVT) (Zhou and Krähenbühl 2022) model, which implic-
itly models scene geometry. The CVT model leverages a
camera-aware cross-view attention mechanism to implicitly
learn a mapping from individual camera views to a canon-
ical map-view representation for map-view semantic seg-
mentation. The model consists of a convolutional image en-
coder for each view and cross-view transformer layers for
inferring the segmentation in a simple, easily parallelizable,
and real-time manner. BEVFormer (Li et al. 2022c) uses a
similar cross-attention model to extract spatiotemporal BEV
information. BEVSegFormer (Peng et al. 2022) uses a de-
formable transformer-based encoder. There are many pub-
lications in this research area using similar architectures of
transformers to shift perspective view(s) to BEV, Ma et al.
provides a recent review of these architectures.

The HEV semantic segmentation task poses a unique
challenge compared to the BEV task since the agent trans-
lations are unknown; this requires the model to geometri-
cally reason about multiple camera views to localize. For
our baseline approach, we leverage the CVT model pro-
posed by (Zhou and Krähenbühl 2022). The CVT model is
well suited for the HEV task because of its global attention
mechanism. Many BEV publications such as BEVFormer
(Li et al. 2022c) and BEVSegFormer (Peng et al. 2022) aim
to optimize this global attention mechanism since in ego-
centric tasks, a camera view only overlaps with a consistent
subsection of the map-view. Conversely, in our HEV world-
centric use case, global attention is an advantage because
a camera view can overlap with any part of the map-view.
Additionally, we expect that the model’s performance can
be further improved by incorporating additional information
from other sensors, such as lidar and radar, as demonstrated
by recent works (Harley et al. 2022).

Collaborative Perception Datasets
Autonomous vehicle datasets have been widely used in
collaborative perception research, comprising various sen-
sory inputs, including cameras, lidar, and GPS (Han et al.
2023), from multiple vehicles in a vehicle-to-vehicle envi-
ronment (Xu et al. 2022c; Yu et al. 2022). Some datasets,
such as those proposed in (Li et al. 2022a; Mao et al.
2022), include infrastructure sensors, resulting in a vehicle-
to-infrastructure data model. Others, such as the dataset pre-
sented in (Xu et al. 2022b), employ a vehicle-to-everything
model. The CoPerception-UAVs dataset (Hu et al. 2022)
employs five images from five drones flying in forma-
tion. It is worth noting that these datasets are all sourced
from CARLA (Dosovitskiy et al. 2017) in Unreal En-
gine, a widely used open-source platform for simulating au-
tonomous vehicles.

The HEV datasets sourced from our simulated environ-
ments are uniquely challenging in the field of collaborative
perception, as the agents are equipped with only one or two
cameras. Unlike previously proposed collaborative percep-
tion problems, the HEV task does not provide the agents
with the transformation component of their pose. The un-
known position of each camera view within the global co-
ordinate frame adds a significant challenge to the semantic
segmentation prediction task and other downstream tasks.

Collaborative Perception Methods
Collaborative perception has been explored in recent years,
improving the capability of single-agent perception models
(Li et al. 2022b; Hu et al. 2022; Lei et al. 2022; Su et al.
2023; Zhou et al. 2022). In conventional collaborative per-
ception, intermediate representations produced by sensors or
neural networks from multiple viewpoints are propagated
among a team of robots, such as a group of vehicles (Hu
et al. 2022; Xu et al. 2022a) or a swarm of drones (Zhou et al.
2022; Hu et al. 2022). The existing works commonly learn
a collaboration module, produced by a Graph Neural Net-
work (Zhou et al. 2022; Li et al. 2021), Convolutional Neu-
ral Network (Li et al. 2022b; Qiao and Zulkernine 2023), or
a Transformer (Xu et al. 2022a; Hu et al. 2022) to combine
multiple robot intermediate representations.

Prior research has focused on robots equipped with mul-
tiple sensors, requiring sensor data fusion on a per-agent ba-
sis before information exchange among agents (Han et al.
2023). However, in this work, we focus on robots with only
one or two cameras and no additional sensors, making our
approach more amenable to smaller, simpler robot swarms.
Since we focus on simpler robots, we do not utilize a collab-
oration module, and instead fuse all camera views together
in a single cross-attention module.

Methodology
Herd’s Eye View
In the Herd’s Eye View (HEV) semantic segmentation
task, we are given a set of n monocular camera views,
(Ik,Kk, Rk)

n
k=1 consisting of an input image Ik ∈

RH×W×3, camera intrinsics Kk ∈ R3×3, and extrinsic ro-
tation Rk ∈ R3×3 with respect to the agent base. The goal
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Figure 1: A visualization of the proposed HEV approach in the Dungeon Escape environment: Agent camera views are extracted
via a backbone model, then combined in a cross-attention module, then decoded into a world-centric semantic segmentation.
The resulting semantic segmentation can be used as an observation for a swarm of robots.

of the HEV task is to predict a binary semantic segmenta-
tion mask y ∈ {0, 1}h×w×C in the global coordinate frame,
where C is the desired number of segmentation classes.
The HEV task adds additional ambiguity to the well-studied
BEV task as each camera view is at an unknown translation
and orientation with respect to the global coordinate frame.

We define a BEV as a single-agent perception transformed
into an ego-centric view, whereas the HEV is a collabora-
tive perception transformed into a fixed world-centric view.
A comparison of the ego-centric views tested and the fixed
word-centric view can be seen in Figure 3.

Our approach, seen in Figure 1, follows three steps:
1. Collect multiple views of the environment from robot

cameras.
2. Use a collaborative perception model to obtain the HEV,

the world-centric semantic segmentation of the environ-
ment.

3. Input the HEV to a Reinforcement Learning (RL) control
policy to obtain agent control commands.

Our goal is to establish a baseline HEV perception model
to extract information from the multiple camera views and
project them onto a fixed world-centric view. We propose
a baseline perception model using the Cross-View Trans-
former (CVT) (Zhou and Krähenbühl 2022) and use seman-
tic segmentation as our downstream task. The Cross-View
Transformer is a recent approach that uses a cross-view at-
tention module, first proposed by (Zhou and Krähenbühl
2022), enabling the agents to reason about their environ-
ment in an ego-centric coordinate frame. We extend the
CVT model to further improve its accuracy and speed for
the HEV use case. We name our baseline model the Herd’s
Eye View Cross-View Transformer (HEV-CVT). We use a

world-centric map embedding and tune positional embed-
dings, output sizes, and the number of transformer layers to
fit our proposed HEV environments.

Data Collection
We use identical Unity simulation environments to source
the datasets for training the HEV semantic segmentation
task and MARL task. To collect the HEV ground truth for
both tasks, we use our own custom fork of MBaske’s Unity
Grid-Sensor Library (Baske 2021) which allows the collec-
tion of HEV world-centric grid-sensors. The only difference
between ego-centric based agents and world-centric based
agents is the location of their grid-sensor and the perspec-
tive at which they take their actions (e.g., forward for the
word-centric agent is always North, but forward for the ego-
centric agent is with respect to their current orientation). All
agents are trained on ground-truth sensors, calculated using
the bounding boxes that are individually tuned to each ob-
ject. The resolution of the grid-sensor is adjusted to accom-
modate the complexity and size of the environment as seen
in Table ??. Example observations of world-centric and ego-
centric based agents can be seen in Figure 3

Our simulations are conducted in three different Unity
ML-Agents environments:

Collaborative Push Block: Three agents are required to
push white blocks to a green goal area on a randomly se-
lected side of a square area. There are blocks sized one, two
and three, each requiring the respective amount of agents to
push into the goal area (Cohen et al. 2022).

Dungeon Escape: As a Green Dragon slowly walks to-
wards an exit portal, one of the three agents must collide
with it in order to sacrifice itself and spawn a key. The key
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Figure 2: Images of the three environments used to test the HEV collaborative perception and reinforcement learning algorithms.
The top left is the Dungeon Escape environment. The top right is the Collaborative Push Block environment. The bottom is the
Planar Construction environment.

must then be picked up by one of the two remaining agents
and brought to the exit door to escape the dungeon (Cohen
et al. 2022). Once any agent escapes, all agents win.

Planar Construction: Six agents collaborate to push red
pucks into desired positions. Desired positions are randomly
assigned to valid coordinates within the arena, and are ob-
served via a Grid-Sensor, similar to the Push Block environ-
ment (Strickland, Churchill, and Vardy 2019). In each round
a new random amount of pucks from 2 to 16 are spawned.

We utilize the open-source Collaborative Push Block and
Dungeon Escape environments from ML-Agents (Cohen
et al. 2022), which are already native to Unity and only
change the sensor input of agents. We recreate the Planar
construction task (Vardy 2018; Strickland, Churchill, and
Vardy 2019; Vardy 2020, 2022, 2023) based on Strickland,
Churchill, and Vardy’s work in the CWaggle simulator but
adapt the environment to Unity ML-Agents. All three envi-
ronments can be seen in Figure 2. For MARL training, we
use the HEV ground truth as model input and identical re-
ward functions to the original implementations. Specifically,
the agents are trained using the Multi-Agent POsthumous
Credit Assignment (MA-POCA) algorithm (Cohen et al.
2022) in Unity ML-Agents. By using identical reward func-
tions, we aim to create a fair comparison between the per-
formance of agents using HEV and those using traditional
sensor frames in cooperative scenarios.

The MARL task enables us to train the CVT models,
which can perform semantic segmentation in an ego-centric

or world-centric view. To collect the data necessary for train-
ing the CVT models, we run the trained MA-POCA mod-
els and collect the camera view, camera intrinsics, and rota-
tion extrinsic from each agent at each step of the simulation,
along with the ground truth HEV and BEV. By collecting
data from various environments and introducing variations,
we aim to create diverse and robust datasets for training the
CVT models.

Implementation Details
The Cross-View Transformer is adapted from Zhou and
Krähenbühl for the Herds Eye View Collaborative Percep-
tion task. The first stage of the network passes each in-
put image from agents into a feature extractor, we use
an EfficientNet-B4 (Tan and Le 2019), which outputs two
multi-resolution patch embeddings of size (28, 60) and (14,
30). Each patch is passed into a Cross-View Transformer
convolution stack as in the original implementation. We
found fewer convolution stacks significantly degrade the
HEV-CVTs ability to localize, and more are not necessary.
The patch embedding act as image features and are used in
the keys and as the values for the Cross-View Transformer.

We encode the rotation Rk ∈ R3×3 of the agent’s camera
into a D-Dimensional positional embedding using a multi-
layer perceptron. We use D = 64 for all of our experiments.
The positional embedding is combined with the image fea-
ture to compute the keys for the cross-view transformer. The
world-centric map embedding operates similarly to the orig-
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Figure 3: Example scene and corresponding agent observations from the Collaborative Push Block environment. The top image
shows a debug camera (not available for agent observation). The bottom left shows the HEV world-centric observation of the
blue agent. The bottom middle shows the BEV-centric observation of the blue agent. The bottom right shows the BEV-forward
observation of the blue agent. Blue is the controller agent, green is ally agents, and red shades are differently-sized push blocks.

Agents Agent Cameras Grid Size

Collaborative Push Block 3 1-left, 1-right 32x32

Dungeon Escape 2-3 1-left, 1-right 32x32

Planar Construction 6 1-forward 32x64

Table 1: HEV simulated environment parameters.

inally proposed map-view embedding. The key difference
with our approach is we do not subtract camera location em-
beddings from the map embedding, instead, we directly use
the learned map embedding as queries. The camera locations
with respect to the world are unknown for the HEV task, and
we found subtracting rotation embeddings did not improve
performance. The transformer architecture refines its world-
centric estimate through two rounds of computation, each
resulting in new latent embeddings used as queries.

The cross-view transformer computes softmax-cross-
attention (Vaswani et al. 2017) between the image feature
keys, values and world-centric queries. This setup allows
world coordinates from the world-centric map embedding to
attend to one or more image locations, allowing the model to
reason about the environment from multiple image features.
The multi-head attention mechanism uses 4-heads like the
original implementation but with half the embedding size of
dhead = 32.
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Figure 4: Sample HEV-CVT prediction from the Dungeon Escape environment validation dataset. The two left columns show
each of the three agents’ unique camera views, each row contains the images from the left and right cameras of the same agent.
The top right shows the HEV-CVT prediction confidence heat map of the agents and dragon, the ground truth is directly to the
left (agents are blue, the dragon is red). The bottom right shows a world-view camera not available to agents to help readers
understand the scene.

The cross-view transformer output is 8x8 for square en-
vironments and 8x8 and 8x16 for rectangular environments,
this then passes through a decoder consisting of three up-
convolutional layers to a final size of 64x64 and 64x128.
This is purposely larger than is required for RL observa-
tion size, as smaller sizes can create ambiguity for some
object occupancy resulting in decreased performance. These
larger HEV-CVT sizes can easily be down-sampled to match
the required RL observation sizes of 32x32 and 32x64. We
threshold the output prediction confidences, keeping predic-
tions with a confidence greater than 0.4. The prediction con-
fidences prior to thresholding can be seen in Figure 4 as a
heat map (lighter is higher confidence).

Our training process is similar to the original implemen-
tation by Zhou and Krähenbühl, we also use focal loss (Lin
et al. 2017) and the AdamW (Loshchilov and Hutter 2017)
optimizer with a one-cycle learning rate scheduler (Smith
and Topin 2018). All models are trained with a batch size of
4 for 25 epochs. Training lasts approximately 8 hours on a
single RTX 3090 GPU before converging.

Experiments and Results
Collaborative Perception
The HEV-CVT model must accurately localize the position
of each agent based on the overlap of camera frames, which
are located at unknown positions. An example of this in the
Dungeon Escape environment can be seen in Figure 4. The
cameras are recorded at resolution 480×224, and we use the
camera intrinsics of a Raspberry Pi Camera Module 3. Con-
sistent with prior works (Ma et al. 2023), we show the re-

sult Intersection over Union (IoU) metric for the HEV-CVT
model trained on each environment in Table ??. We com-
pare the performance of the baseline CVT model on world-
centric, ego-centric, and ego-forward coordinate frames.

In the Collaborative Push Block environment, three
agents are equipped with two forward-facing cameras and
are tasked with predicting the occupancy of all push blocks,
agents and the goal area. In the Dungeon Escape environ-
ment, three agents are equipped with two forward-facing
cameras and are tasked with predicting the occupancy of the
dragon, agents and key. In the Planar Construction environ-
ment, six agents are equipped with a single forward-facing
camera and are tasked with predicting the occupancy of all
pucks and agents.

Our results shown in Table ?? demonstrate the world-
centric coordinate frame consistently outperforms the ego-
centric coordinate frames in all environments. The Collabo-
rative Push Block and Dungeon Escape environments show
the largest performance improvements, with up to 32.72%
and 17.46% improvement in IoU, respectively. These re-
sults suggest that the world-centric HEV approach is effec-
tive in addressing the challenges of collaborative perception
in multi-agent environments. This result is especially appar-
ent in the Collaborative Push Block environment, where the
HEV-CVT model easily localizes itself based on the large
goal location seen in most camera views for a near-perfect
96.94% IoU score. The landmarks in the Dungeon Escape
environment, the exit door and portal are in randomized lo-
cations which makes localization harder than the Push Block
environment, reflected by the steep drop in IoU scores.

The standard ML-Agents environments were not as chal-
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World-Centric Ego-Centric Ego-Forward

Collaborative Push Block 96.94% 63.87% 64.22%

Dungeon Escape 43.53% 13.47% 26.07%

Planar Construction 48.37% 35.45% 10.16%

Table 2: HEV-CVT validation IoU results per coordinate frame in each environment (higher is better).

World-Centric Ego-Centric Ego-Forward

Collaborative Push Block 100.1 ± 40.6 137.9 ± 53.5 124.9 ± 47.4

Dungeon Escape 15.1 ± 0.81 17.3 ± 0.87 18.4 ± 1.44

Planar Construction 176.9 ± 40.8 233.8 ± 73.7 239.8 ± 75.8

Table 3: MA-POCA mean episode length ± standard deviation per coordinate frame in each environment (lower is better).

lenging for the CVT models as there were not many per-
mutations of the environment layout. By contrast, our cus-
tom Planar Construction environment presents a more com-
plex challenge as we randomly change the coloring of six
wall and floor components at every time step of the envi-
ronment during data collection. Additionally, the locations
of pucks to be pushed are randomized, and the environment
area is twice the size of the ML-Agents environments. De-
spite the additional challenge the HEV-CVT model still per-
forms well in the Planar Construction environment scoring
48.37% on the HEV task. This result shows the CVT models
can localize based on the overlap in views between cameras
as much of the validation set contains wall colors and puck
layouts never before seen.

Multi-Agent Reinforcement Learning
In order to compare the performance of the fixed world-
centric coordinate frames with other commonly used coor-
dinate frames, we conduct experiments in all three proposed
environments. To ensure a fair comparison between the per-
formance of agents using different coordinate frames, we
use identical reward functions to each environment’s orig-
inal implementation and identical grid sizes.

Table ?? compares the performance of agents using dif-
ferent coordinate frames in all three proposed environments.
We find consistently lower episode lengths with world-
centric based agents compared to ego-centric. We opt to use
episode length as our performance metric, as it directly re-
flects the speed of task completion. While alternative metrics
such as cumulative or mean reward are also commonly used,
these primarily reflect minor negative rewards assigned per
time step, providing less insight into an agent’s efficiency in
our context.

Our experiments highlight a common challenge faced by
BEV-based agents in all three environments, often an object
necessary to take the optimal action was missing from the
agent’s view, leading to sub-optimal decision-making and
increased episode lengths. This was especially apparent in
the Push Block environment where often one of the three
agents would not observe the size three block (requiring all

three agents to push it), causing two agents to be waiting for
the third agent to join them at the block, wasting time. Con-
versely, we found HEV-based agents in the Push Block en-
vironment stuck close together and consistently pushed the
highest value blocks together first.

The HEV-based agents were able to leverage the multi-
ple viewpoints available to them, enabling them to better
perceive their environment and take more optimal actions.
This issue was particularly evident in the Push Block en-
vironment, where the improved perception of world-centric
agents resulted in significantly lower episode lengths than
ego-based agents.

Overall, these findings suggest that the HEV framework
offers a superior perception model in MARL environments,
providing agents with a more comprehensive understanding
of their surroundings, leading to improved decision-making
and better overall performance.

Conclusion

We have proposed a new perception model called Herd’s
Eye View that provides a global view of the environment, en-
abling better global coordination and cooperation in MARL
scenarios. We conduct two sets of experiments in three
simulated multi-agent environments. Our first experiment
focuses on the perception aspect of HEV and shows the
same Cross-View Transformer model performs better on the
world-centric HEV task than its BEV ego-centric counter-
part. Our second experiment focuses on the effectiveness
of the HEV perspective view compared to BEV perspec-
tive views for MARL agents. We find that RL agents trained
on world-centric perspective views learn more efficient poli-
cies than those trained on ego-centric perspective views. Our
work opens up new possibilities for advanced perception
models in MARL game environments, which can greatly en-
hance the performance of multi-agent systems by enabling
better collaboration and coordination.
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