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Abstract
Prioritized planning is a popular approach to multi-agent
pathfinding. It prioritizes the agents and then repeatedly in-
vokes a single-agent pathfinding algorithm for each agent
such that it avoids the paths of higher-priority agents. Perfor-
mance of prioritized planning depends critically on cleverly
ordering the agents. Such an ordering is provided by a prior-
ity function. Recent work successfully used machine learning
to automatically produce such a priority function given good
orderings as the training data. In this paper we explore a dif-
ferent technique for synthesizing priority functions, namely
program synthesis in the space of arithmetic formulae. We
synthesize priority functions expressed as arithmetic formu-
lae over a set of meaningful problem features via a genetic
search in the space induced by a context-free grammar. Fur-
thermore we regularize the fitness function by formula length
to synthesize short, human-readable formulae. Such readabil-
ity is an advantage over previous numeric machine-learning
methods and may help explain the importance of features
and how to combine them into a good priority function for
a given domain. Moreover, our experimental results show
that our formula-based priority functions outperform exist-
ing machine-learning methods on the standard benchmarks
in terms of success rate, run time and solution quality with-
out using more training data.

Introduction
Multi-agent pathfinding (MAPF) is the problem of moving a
group of agents to a set of goal locations while avoiding col-
lisions. The two common objectives of MAPF are to mini-
mize the makespan (the largest arrival time of any agent at its
goal location) and to minimize the sum of costs (the sum of
the arrival times of all agents at their goal locations). In this
paper, we use the sum of costs as our optimization objective.
MAPF is NP-hard to solve optimally (Yu and LaValle 2013;
Surynek 2010; Ma et al. 2016) but has numerous real-world
applications, including moving game characters in forma-
tion in video games (Ma et al. 2017), transporting goods
in automated warehouses (Wurman, D’Andrea, and Mountz
2008), routing pipes in gas plants (Belov et al. 2020), co-
ordinating self-driving cars in intersections (Li et al. 2023)
and embedding virtual network requests in computer net-
works (Zheng et al. 2023).
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Prioritized planning (PP) (Latombe 1991; Bennewitz,
Burgard, and Thrun 2002; Silver 2005; Van Den Berg and
Overmars 2005) is a common approach for solving MAPF
suboptimally. It prioritizes the agents according to a given
priority function and then plans shortest paths for them from
their start locations to their goal locations in the order of
their priorities such that the path of each agent collides
neither with the already planned paths of all agents with
higher priorities (moving obstacles) nor with the blocked
cells in the environment (static obstacles). An efffective pri-
ority function yields in a small sum of costs while an in-
effective one could even prevent one from finding a set of
collision-free paths.

Some researchers have manually designed priority func-
tions (Van Den Berg and Overmars 2005; Wang et al.
2019; Wu, Bhattacharya, and Prorok 2020; Buckley 1988;
Li et al. 2019). Such functions are understandable by hu-
mans but since they are designed for specific problem set-
tings, they cannot be applied across a wide spectrum of
MAPF instances. Thus research from the last year auto-
matically learned priority functions with support vector ma-
chines from a set of features of MAPF instances and train-
ing data (Zhang et al. 2022). Such machine learned priority
functions may be able to achieve better performance than
manually designed ones but are typically less readable to
humans and thus less explainable.

In this paper we attempt to combine human-readability of
manually designed priority functions and high performance
of machine-learned ones. We adopt the approach by Bulitko
et al. (2022) and learn priority functions automatically. They
are expressed as arithmetic formulae that map MAPF fea-
tures to priorities. They are synthesized via a genetic search
in the space of formulae specified by a context-free gram-
mar. We regularize the fitness function by formula length to
synthesize compact readable formulae. We then compare the
performance of our formula synthesis method with the sup-
port vector machine learning method by Zhang et al. (2022).

Overall, we make the following contributions. First, we
describe how we adapt an existing automated program syn-
thesis method to the important problem of creating a priority
function for solving MAPF with prioritized planning. Sec-
ond, we show empirically that our formula-based priority
functions often outperform the state-of-the-art support vec-
tor machine on the standard benchmarks in terms of success
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rate, run time, and solution quality without requiring more
training data. Third, we show how the readability of formu-
lae may help explain the importance of specific MAPF fea-
tures.

Problem Formulation
We define the MAPF problem and the PP approach for solv-
ing it. Then we frame finding a high-performance priority
function as an optimization problem which is the focus of
this work.

The multi-agent pathfinding (MAPF) problem (Stern
2019) p is defined by a tuple (A,G) where A =
{a1, a2, . . . , an} is a set of agents and G = (V,E) is a non-
weighted undirected graph with a set of vertices V and a
set of edges E. Each agent ai has a start location si ∈ V
and a goal location gi ∈ V . Time advances in discrete steps.
At each step an agent can either move to an adjacent loca-
tion or wait at its current location. We consider two types
of conflicts: vertex conflicts and edge conflicts. A vertex
conflict occurs when two agents attempt to be at the same
vertex vi ∈ V at the same time step. An edge conflict oc-
curs when two agents attempt to traverse the same edge
(vi, vj) ∈ E in the opposite direction at the same time step.
A solution to a MAPF problem p is a set of conflict-free
paths {ρ1, ρ2, . . . , ρn} to move each agent from its start lo-
cation to its goal location. The cost of the agent ai’s path
in the solution is the number of time steps needed for ai
to complete its path from si to gi and remain motionless at
gi. The performance measure is the sum of the costs of all
agents in a solution to a MAPF problem p. Solutions with
lower sums of costs are preferred.

In PP a priority function assigns priority to each agent
which is used to order the agents. Then a single-agent
pathfinding algorithm, such as A* (Hart, Nilsson, and
Raphael 1968), is repeatedly invoked in the order of agent
priorities to compute a plan for each agent. When search-
ing for a plan for an agent ai the algorithm considers and
avoids conflicts with the plans of higher priority agents
{a1, a2, . . . , ai−1} and ignores all the lower priority agents
{ai+1, ai+2, . . . , an}. To do so the single-agent search algo-
rithm is modified to take into account not only the static
structure of the search graph G but also already planned
paths of the higher priority agents.

The order of agents in PP can have a substantial effect on
the sum of costs of the computed paths as well as whether a
valid path is found for each agent at all. An optimal ordering
allows PP to succeed in computing solutions of lowest sum
of costs. Such an ordering normally depends on the problem
instance at hand. Thus the problem we tackle in this paper
is to find a priority function that minimizes sums of costs on
a set of MAPF problem instances. Such a priority function
f ∶ Rn → R maps a vector of agent features and returns the
agent priority which is used to order the agents. Formally we
attempt to solve the following optimization problem:

fmin = argmin
f∈F

ℓ(f,P ) (1)

where F is a space of priority formulae, P is a set of MAPF

problems and ℓ is a loss function:

ℓ(f,P ) = 1

∣P ∣

∣P ∣
∑
i=1

ln(ζ(f, pi)). (2)

Here ζ(f, pi) computes the sum of costs of the MAPF prob-
lem pi when PP uses the priority function f . We scale the
sum of costs logarithmically to emphasize the impact of the
regularizer (Section ).

We prefer solutions to the optimization problem to be
(i) generated automatically, (ii) be human-readable and (iii)
be portable (i.e., yield low sum of costs solutions on novel
MAPF problem instances not seen during its generation).

We adopt the evaluation settings of Zhang et al. (2022):
deterministic ranking and stochastic ranking with random
restarts. We reproduce them below for the reader’s conve-
nience.

In the case of deterministic ranking we rank the agents
by their predicted priority scores: ai ≺ aj if and only if
ŷ(xi) > ŷ(xj) where ŷ ∶ Rn → R is the priority function
that takes as input the feature vector x ∈ Rn of an agent and
outputs a priority score zi and xi, xj are feature vectors of
agent ai, aj respectively.

In the case of stochastic ranking with random restarts we
use the computed priority scores to form a probability dis-
tribution and generate a total priority ordering from agents
with high priority to agents with low priority. Specifically,
we normalize the predicted scores ŷI using the softmax
function. Agents with higher normalized scores are more
likely to be selected earlier and thus can plan earlier.

To test the perfromance of the PP methods, given a map
M ∈M and a number of agents n, we generate a set of test
MAPF instances I(M)Test, one from each scenario (Stern et al.
2019), by using the first n pairs of start and goal indices. We
use the following measures for additional evaluation: (i) suc-
cess rate (the percentage of successfully solved problems),
(ii) run time to first solution (only applicable to stochastic
ranking with random restarts, the time it takes to find a so-
lution to a problem), (iii) normalized sum of costs* and (iv)
average solution rank (we rank the PP methods in ascend-
ing order by their sum of costs starting from index 0, and the
index of a PP method on a problem is the method’s solution
rank on that problem).

Related Work
While PP is not guaranteed to be complete (i.e., to always
find a solution when one exists) or optimal (i.e., to minimize
the sum of costs), it is widely adopted and can produce so-
lutions with near-optimal sum of costs (Morag et al. 2022).
Therefore improvements to PP have been proposed over the
years. Windowed Hierarchical Cooperative A* (Silver 2005)
and Rolling-Horizon Collision Resolution (Li et al. 2021)

*The average normalized sum-of-costs measure only considers
the problem instances that are solved and ignores the ones that are
not solved. For instance, if out of 25 problems a PP method solves
only one, its average normalized sum of costs is the sum of costs
of that one problem.
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use PP iteratively in an online manner, considering in every
planning period only conflicts in the next few steps.†

Bennewitz, Burgard, and Thrun (2002) run PP multi-
ple times, each with a different, randomly generated prior-
ity over the agents. Priority-Based Search (PBS) applies a
conflict-directed approach to search in the space of possible
agent priorities, defining a partial order over the agents to
resolve conflicts between the agents (Ma et al. 2019).

Van Den Berg and Overmars (2005) proposed to use the
distances between an agent’s start and goal locations as a pri-
ority function. Bnaya and Felner (2014) proposed a greedy
conflict-oriented prioritization mechanism, where an agent
is given a priority based on how much reserving its paths
will increase the sum of costs of all other agents.

Learning in the context of MAPF has been explored in
different ways including learning which MAPF algorithm
to use for a given problem (Sigurdson et al. 2019; Ren
et al. 2021; Alkazzi et al. 2022; Kaduri, Boyarski, and Stern
2020), learning which sets of agents should re-plan (Huang
et al. 2022), learning which conflicts should be resolved
first (Huang, Koenig, and Dilkina 2021) or which search tree
node to expand first (Huang, Dilkina, and Koenig 2021) in
tree search algorithms for MAPF (Sharon et al. 2015; Barer
et al. 2014). The closest learning approach to the work in
this paper was to learn a support vector machine as the pri-
ority function (Zhang et al. 2022). In their work, they tested
the performance of models trained on MAPF PP instances
of 500 agents on problems with number of agents larger
than 500 and demonstrated that the models can be applied
to problem never seen during synthesis. We show that our
trained formulae also have generalizability by testing the
performance of a synthesized formula trained on a particu-
lar map with a specific number of agents on other maps with
other numbers of agents thus demonstrate that the formulae
are generalizable because it performs well in problems not
seen during synthesis.

Program synthesis in heuristic search has been explored
by Bulitko (2020); Bulitko, Hernandez, and Lelis (2021);
Hernandez and Bulitko (2021); Bulitko et al. (2022) who ran
various algorithms to search a space of arithmetic formulae
to represent a heuristic function in single-agent pathfinding.
A similar approach by Bulitko and Bulitko (2020) was used
to synthesize Artificial Life (A-life) agents represented as
arithmetic formulae. Both are cases of program synthesis,
a growing research area attempting to synthesize/learn pro-
grams (or their parts) from data.

Our Approach
We adopt the approach of Bulitko et al. (2022) to synthe-
size priority functions for PP expressed as arithmetic formu-
lae. We define the space of the formulae using a context-free
grammar and then search this space via a genetic algorithm
with regularized loss ℓ as the fitness function. The result-
ing synthesized formula computes a priority value for each
agent, taking as input a set of the agent’s features (defined

†RHCR is a general framework that has been used with PP as
well as with other MAPF solvers.

Algorithm 1: Parallel multi-trial synthesis; adopted
from the work of Bulitko et al. (2022).

input : training problem set P , formula space F ,
regularized loss function ℓλ, number of trials
T , per-trial time limit κ, limit of number of
consecutive stagnate generations µ,
population size n

output: synthesized formula f
1 for t = 1, . . . , T in parallel do
2 ft ← trial(F, ℓ, λ,P, κ, µ, n)
3 ℓλt ← ℓλ(ft, P )
4 return f = argminf ℓ

λ
t

by Zhang et al. (2022) and explained in Table 1). This prior-
ity value is then used by PP to order the agents and solve a
given MAPF instance.

Multiple Synthesis Trials
In line with Bulitko et al. (2022) we take advantage of paral-
lel computing hardware. Each candidate formula from the
space F is evaluated with the PP algorithm on multiple
MAPF problem instances in parallel by utilizing multiple
cores on a single cluster node. Each of the genetic algorithm
(or trial) run in parallel on different cluster nodes. Each trial
synthesizes a single priority function. The best of them is
selected from the results of multiple evolution trials.

We run T independent synthesis trials in parallel in line 1
of Algorithm 1. We regularize the loss function defined in
Section in the same way as Bulitko et al. (2022):

ℓλ(f,P ) = ℓ(f,P ) + λ∣f ∣ (3)

to bias the genetic search towards shorter formulae which
may be easier to read and less likely to overfit. Here ∣f ∣ is the
number of vertices in an abstract syntax tree that represents
the formula and λ is the regularizer constant.

A Single Synthesis Trial
Each synthesis trial (i.e., a run of the genetic algorithm) is
carried out by Algorithm 2. Our adaptations to the original
algorithm by Bulitko et al. (2022) lie with the addition of κ,
ν and using a single problem set P .

Henceforth we use x1,...,n as a shorthand for
(x1, . . . , xn). We start with a population of n formulae
randomly drawn from the space F in line 1 of Algorithm 2.
In line 2 we initialize a historically best/lowest loss to∞ so
that it gets updated immediately during the synthesis. The
main loop ending in line 14 terminates if either the time
allowance κ expires or the number of consecutive stagnate
generations ν (i.e., generations which did not produce
a better solution than the current historic best formula)
exceeds µ.

In each generation all formulae in the population are eval-
uated by computing ℓλ(fi, P ) and the formula f ′ with the
lowest loss is selected in line 5 as the candidate. The historic
best formula is updated and the number of stagnate genera-
tions ν is reset.
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Feature Description

x1, x2, x3 width of each level (excluding the first and the last levels) of MDDi: their mean, max and min

x4, x5, x6 graph distance between si and the start locations of the other agents: their mean, max and min

x7, x8, x9 graph distance between gi and the goal locations of the other agents: their mean, max and min

x10, x11, x12, x13 graph and Manhattan distances between si and gi: graph distance, Manhattan distance, the ratio of the graph
distance over the Manhattan distance and the absolute difference between the graph distance and the Manhattan
distance

x14 the sum of the widths of all levels of MDDi

x15 the number of locations in MDDi that are also in the MDD of at least one other agent

x16 the number of unit-width levels of MDDi

x17, x18 the number of vertex conflicts between any shortest path of ai and any shortest path of one of the other agents:
counted by agent pair and counted by raw conflict count

x19 the number of the other agents whose goal locations are in MDDi

x20 the number of the other agents whose start locations are in MDDi

x21 the number of the other agents whose MDDs contain gi

x22 the number of the other agents whose MDDs contain si

x23, x24 the number of edge conflicts between any shortest path of ai and any shortest path of one of the other agents:
counted by agent pair and counted by raw conflict count

x25, x26 the number of cardinal conflicts between any shortest path of ai and any shortest path of one of the other agents:
counted by agent pair and counted by raw conflict count

Table 1: The 26 features Φ = {x1, . . . , x26} for the agent ai as defined by Zhang et al. (2022).

Algorithm 2: Single synthesis trial; adopted from
the work of Bulitko et al. (2022).
input : F , ℓ, λ, P , κ, µ, n
output: synthesized formula f

1 f1,...,n ∼ F
2 lhistoric best ←∞
3 ν ← 0
4 repeat
5 f ′, l′ ← best-ofℓλ(fi,P )(f1,...,n)
6 if l′ < lhistoric best then
7 lhistoric best ← l′
8 fhistoric best ← f ′
9 ν ← 0

10 else
11 ν ← ν + 1
12 f1 ← f ′
13 f2,...,n ← offspring(f1)
14 until κ is reached or ν > µ
15 return fhistoric best

The champion f ′ is put in the next generation (line 12)
while the rest of the population is formed from the offspring
of f ′ (line 13). Each offspring is f ′ mutated as follows. A
node in f ′ is selected by random and either deleted or mod-
ified while keeping the new formula valid. For instance, if
the selected node is a unary operator (i.e., ∣ ⋅ ∣), we may ei-
ther replace it with another unary operator, replace it with

a random binary operator with randomly initialized children
nodes or pypass it by deleting the current node and connect
its child node with its parent node (only delete the node if it
is the root node).

Empirical Evaluation
We compare performance of our synthesized formulae to the
five methods of ordering agents in PP evaluated by Zhang
et al. (2022) on the same 6 maps with the same numbers of
agents. The maps have different sizes and structures and they
are from the MAPF benchmark suite (Stern et al. 2019). The
five priority functions are: (1) LH: a query-distance heuris-
tic where agents with longer start-goal graph distances have
higher priority (Van Den Berg and Overmars 2005); (2) SH:
a query-distance heuristic where agents with shorter start-
goal graph distance have higher priority (Ma et al. 2019);
(3) RND: a heuristic that generates a random total priority
ordering (Bennewitz, Burgard, and Thrun 2002); (4) ML-
T: a machine-learned total priority ordering (Zhang et al.
2022); (5) ML-P: a machine-learned partial priority order-
ing (Zhang et al. 2022).

We generated training data for ML-T and ML-P in the
same way as Zhang et al. (2022). That is we ran PP 100
times, once with LH, once with SH, and 98 times with RND
to solve each MAPF instance I ∈ I(M)Train . We picked the PP
run with the least sum of costs for ML-T and the top 5 PP
runs with the least sum of costs for ML-P. We used LH and
SH to generate agent rankings as the training data for the
support vector machines.
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We extended the C++ implementation used by Zhang
et al. (2022) with a support for arithmetic formulae used
as priority functions within PP. We then used the training
data for ML-T and ML-P used by Zhang et al. (2022) and
additionally generated training data for higher number of
agents for two large maps. Specifically we generated train-
ing data for lak303d and ost003d with number of agents
n ∈ {600,700,800,900} while the previous work only went
up to 500 agents.

Unlike the supervised machine learning methods used be-
fore, our synthesis algorithm does not require a priori solved
MAPF problems. This is due to the fact that it solves MAPF
problems using PP during the synthesis to compute the loss
of each candidate formula (line 5 in Algorithm 2). While
this removes the requirement to build supervised-style train-
ing data the actual synthesis itself is made slower.

In line with Zhang et al. (2022) we experimented in both
the deterministic ranking and stochastic ranking with ran-
dom restarts settings for the baseline PP algorithms LH, SH,
RND, ML-T, ML-P and our formula synthesis method on
MAPF test instances on all six maps.

The control variables for the synthesis algorithm are set as
follows: the population size n = 20, the regularizer constant
λ = 0.05, the per-trial time limit κ = 1 hour, the limit of
consecutive stagnate generations µ = 15.

Space of Priority Functions
We define the formula space as F = {f(x) = S} where
x = (x1,⋯, x26) is the feature vector of an agent. The
formula body S is generated by the following context-free
grammar, adopted and modified from previous work (Bu-
litko et al. 2022). This context-free grammar was designed
in attempt to balance formula expressiveness and formula
space size.

S → T ∣∣∣ U ∣∣∣ B

T → x1 ∣∣∣ x2 ∣∣∣ . . . ∣∣∣ x26 ∣∣∣ C

U →

√

S ∣∣∣ ∣S∣ ∣∣∣ −S ∣∣∣ S2

B → S + S ∣∣∣ S − S ∣∣∣ S × S ∣∣∣
S

S
∣∣∣max{S,S} ∣∣∣min{S,S}

Here x1 to x26 are the agent features (Table 1), C ∈
{1.0, 1.1,1.2, . . . , 10.0}. Note that any support vector ma-
chine learned by ML-T and ML-P approaches (Zhang et al.
2022) can be represented in our space of formulae albeit
with numeric weights rounded to the values in C. Also note
that our formula space includes the two types of query-
distance heuristics LH and SH as x10 and −x10.

Synthesis of Priority Formulae
In order to generate training MAPF instances that follow a
similar distribution as the test MAPF instances, given a sce-
nario with a map M ∈M and a number of agents n, we gen-
erated a training instance I ∈ I(M)Train by randomly select-
ing n start locations from all start locations in the scenario,
randomly selecting n goal locations from all goal locations
in the scenario, and then randomly combining them into n
pairs of start and goal locations. Unlike the way Zhang et al.

(2022) prepared the training data by solving each instance
before training, we did not solve each generated training in-
stance because we only needed the features of the n agents
of each problem instance. We then normalized the feature
values of the agents to make them to be between 0 and 1
across all agents.

For the three small maps random-32-32-20, room-32-
32-4 and maze-32-32-2 (referred to as random, room and
maze in the tables) we generated 10 training MAPF in-
stances from each of the 25 scenarios, thus ∣I(M)Train ∣ = 250.
For the medium sized map warehouse-10-20-10-2-1 (re-
ferred to as warehouse in the tables) and the two large maps
lak303d and ost003d, we generated 2 training MAPF in-
stances from each of the 25 scenarios, thus ∣I(M)Train ∣ = 50. The
number of problems decreases with the map size as problem
instances become computationally more expensive to solve.

We ran 32 trials for each number of agents of each map
and selected the trial with the lowest/best loss as the best
trial. The formula produced by each best trial was used to
compute agent priority scores for testing. Each trial ran on a
separate 16-core cluster node with 64Gb of RAM.

Results: Deterministic Ranking
In terms of both success rate and average solution rank, the
formula synthesis method outperformed the other methods
for 3 out of 6 maps. Our formula synthesis method achieved
average normalized sum of costs values similar to others.

We omit results for random-32-32-20 with number of
agents 250 because none of the PP methods solved any test
problem instances in the deterministic setting.

Results: Stochastic Ranking with Random Restarts
We report the success rate, solution ranks and run time to
find the first solution in Table 3. We adopted the value for
the hyper parameter from Zhang et al. (2022) (β = 0.5)
when testing. We omit results of small numbers of agents
for the six maps because the success rates and average solu-
tion ranks are similar across all PP algorithms.

The random restart technique is used to boost the success
rate of the two ML-guided methods while preserving their
average solution ranks (Zhang et al. 2022). While it is clear
that the two ML-guided methods have the best performance
in all three measures among the PP algorithms, the synthe-
sized formulae are not benefiting as much from the random
restart scheme as the two ML-guided methods are and some-
times the formulae perform even worse with random restarts
compared to without.

In the stochastic setting with random restarts, ML-P re-
mained the best-performing algorithm in success rate, aver-
age run time to the first solution and average solution rank.
Although not shown in Table 3, ML-P also performed the
best among all methods in terms of the average normalized
sum of costs.

Explainability and Portability of Synthesized
Formulae
Synthesized formulae for all maps and all numbers of agents
in Table 4. Consider that a trained support vector machine
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M
ap n

Success rate (%) Average solution rank Avg. normalized sum of costs
LH SH RND ML-T ML-P FML LH SH RND ML-T ML-P FML LH SH RND ML-T ML-P FML

ra
nd

om
50 96 12 76 92 52 96 2.56 3.76 1.48 1.60 1.92 2.00 1.48 1.10 1.29 1.46 1.09 1.47
100 96 24 48 40 16 92 1.76 2.12 1.96 1.76 2.64 1.32 1.59 1.16 1.43 1.15 1.15 1.47
150 52 4 20 64 4 60 1.12 1.88 1.76 1.28 1.92 0.72 1.60 1.19 1.34 1.67 1.24 1.41
175 36 0 8 44 40 48 1.20 1.76 1.48 1.12 0.96 0.76 1.71 ∞ 1.40 1.64 1.66 1.45
200 12 0 0 32 28 40 0.96 1.12 1.12 0.68 0.84 0.40 1.70 ∞ ∞ 1.71 1.68 1.64
225 0 0 0 4 4 8 0.16 0.16 0.16 0.12 0.12 0.08 ∞ ∞ ∞ 1.82 1.39 1.44

ro
om

50 88 16 40 60 16 88 1.92 2.28 1.96 1.16 2.24 1.32 1.66 1.38 1.44 1.45 1.35 1.57
75 88 0 4 24 32 80 1.16 2.28 2.24 1.60 1.48 0.60 1.69 ∞ 2.09 1.58 1.60 1.63
100 52 0 4 56 64 68 1.72 2.44 2.36 1.40 0.88 0.60 1.78 ∞ 1.87 1.80 1.73 1.75
125 20 0 0 24 20 28 0.48 0.92 0.92 0.60 0.64 0.48 1.88 ∞ ∞ 1.91 1.88 1.86
150 0 0 0 0 4 8 0.12 0.12 0.12 0.12 0.08 0.04 ∞ ∞ ∞ ∞ 2.13 1.81

m
az

e

50 84 0 16 76 76 84 1.60 3.36 2.68 1.36 1.16 1.56 3.88 ∞ 3.55 4.00 3.99 4.00
70 84 0 0 80 80 84 1.40 3.28 3.28 1.56 1.16 1.40 4.11 ∞ ∞ 4.03 3.94 3.95
90 72 0 0 56 64 68 1.20 2.60 2.60 1.48 1.20 1.08 4.25 ∞ ∞ 4.49 4.25 4.30
110 48 0 0 24 48 24 0.64 1.44 1.44 0.92 0.76 1.00 4.68 ∞ ∞ 5.12 4.56 4.52
130 12 0 0 12 16 8 0.36 0.48 0.48 0.32 0.24 0.40 5.51 ∞ ∞ 4.86 4.63 5.17

w
ar

eh
ou

se

100 92 24 80 88 80 20 2.84 2.84 1.56 2.00 0.52 3.08 1.76 1.01 1.39 1.62 1.02 1.27
200 92 36 40 52 56 32 2.16 1.36 2.20 1.40 0.96 2.40 1.89 1.03 1.53 1.09 1.06 1.40
300 64 20 24 16 36 28 1.24 1.16 1.48 1.56 1.00 1.36 1.88 1.05 1.49 1.07 1.08 1.49
350 36 8 16 20 12 28 0.84 1.00 0.96 0.84 0.92 0.80 1.96 1.07 1.77 1.29 1.22 1.43
400 12 4 4 32 8 32 0.80 0.80 0.88 0.48 0.72 0.36 2.00 1.10 1.53 1.94 1.18 1.45
450 16 0 4 12 8 24 0.48 0.64 0.56 0.48 0.56 0.32 2.04 ∞ 1.62 1.97 1.46 1.47
500 0 0 4 0 0 4 0.08 0.08 0.04 0.08 0.08 0.04 ∞ ∞ 1.87 ∞ ∞ 1.56
550 0 0 0 0 4 4 0.08 0.08 0.08 0.08 0.04 0.04 ∞ ∞ ∞ ∞ 2.06 1.53

la
k3

03
d

300 100 24 100 96 80 96 3.68 3.64 1.16 2.76 1.20 2.32 2.73 1.71 2.15 2.60 1.76 2.58
400 100 40 96 88 76 100 3.56 2.72 2.32 1.76 1.44 2.72 2.65 1.71 2.36 2.07 1.75 2.64
500 96 24 80 84 72 92 3.16 3.12 2.24 1.44 1.32 2.44 2.71 1.74 2.37 2.03 1.79 2.59
600 92 48 84 92 64 88 3.32 1.88 1.92 2.56 1.52 2.36 2.71 1.78 2.54 2.73 1.82 2.62
700 92 36 76 52 48 88 2.68 2.08 2.04 1.44 2.08 2.28 2.86 1.82 2.66 1.82 1.87 2.72
800 80 16 56 76 40 88 2.04 2.76 1.80 2.16 1.88 1.88 2.99 1.81 2.68 2.97 1.94 2.84
900 60 8 28 56 16 64 1.28 1.92 1.44 1.48 1.80 1.00 3.09 1.83 2.73 3.18 1.97 3.05

os
t0

03
d

300 100 32 96 100 80 84 3.68 3.16 1.80 2.52 1.56 1.92 2.70 1.71 2.17 2.56 1.78 1.98
400 100 36 96 84 88 92 3.76 3.00 2.56 1.80 1.20 2.24 2.74 1.75 2.41 1.84 1.76 2.08
500 100 36 80 80 72 100 3.20 2.56 1.88 2.04 1.56 2.52 2.79 1.75 2.18 2.25 1.81 2.60
600 96 40 80 76 68 92 3.08 2.28 1.88 1.88 1.56 2.88 2.67 1.78 2.32 2.34 1.79 2.83
700 100 36 72 88 60 100 2.76 2.44 2.00 2.52 1.80 2.36 2.79 1.82 2.37 2.90 1.82 2.88
800 88 24 52 88 40 96 2.52 2.56 2.20 2.28 2.24 1.24 2.91 1.87 2.30 2.92 1.84 2.82
900 88 12 44 20 12 88 1.28 2.12 1.44 2.08 2.20 1.12 2.95 1.87 2.33 1.86 1.85 2.93

Table 2: Success rate, average solution rank and average normalized sum of costs for deterministic ranking. The best results
achieved among all algorithms are shown in bold. The results are obtained by training and testing on the same map with the
same number of agents n.∞ indicates that no problem was solved.

f(Φ) = w⊺Φ (Zhang et al. 2022) when converted into a
formula in space F , contains 26 features, 26 weights multi-
plied to each feature, 26 multiplication operators and 25 ad-
dition operators, thus in total 26 + 26 + 26 + 25 = 103 nodes
(assuming no weights are 0). In contrast, the average num-
ber of nodes in the synthesized formulae in Table 4 is 6.95.
Therefore the synthesized formulae are on average shorter
and thus may be more readable than the support vector ma-
chines.

Synthesized formulae that outperform other algorithms
in terms of the success rate and average solution rank fre-
quently include x7 or −x7. The feature x7 is the mean graph
distance between the agent i’s goal gi and the goal locations
of other agents. This suggests that proximity of the agent’s

goal to other agents’ goals is an important factor in deter-
mining the agent’s priority. Whether x7 or −x7 is more ef-
fective depends on the problem configuration. Indeed, −x7

appears most often in formulae synthesized for random-32-
32-20 while x7 appears most often in formulae synthesized
for warehouse-10-20-10-2-1.

Consider the following formula from Table 4:

f6 = −(
x7

10 − x1 + x2
18

)
2

= x2
7

−(10 − x1 + x2
18)2

which outperforms other PP methods in success rate and av-
erage solution rank on random-32-32-20 with number of
agents 225 (Table 2).
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M
ap n

Success rate (%) Average solution rank Avg. run time to the first solution
LH SH RND ML-T ML-P FML LH SH RND ML-T ML-P FML LH SH RND ML-T ML-P FML

ra
nd

om
175 100 100 100 100 100 100 3.16 1.88 2.84 2.40 1.96 2.76 0.61 3.64 3.82 1.67 1.41 1.38
200 88 84 92 100 100 100 2.92 2.36 2.60 2.76 2.24 2.00 14.57 21.30 15.79 3.58 2.91 3.70
225 32 16 20 84 96 16 2.00 2.20 1.84 1.28 0.48 2.08 50.36 52.78 51.32 24.49 13.39 52.72
250 0 4 0 12 80 0 0.96 0.88 0.96 0.72 0.16 0.96 60.00 58.31 60.00 56.65 20.77 60.00

ro
om

75 100 100 100 100 100 100 3.40 2.44 2.36 2.08 2.48 2.16 0.21 0.29 0.59 0.55 0.38 0.33
100 80 80 80 96 100 92 2.80 2.40 2.92 2.00 1.80 2.24 12.56 19.48 20.66 5.00 1.21 10.08
125 24 0 12 76 92 12 1.44 2.16 1.92 0.92 0.56 1.88 47.74 60.00 55.45 27.70 8.60 55.10
150 0 0 0 8 76 76 1.60 1.60 1.60 1.48 0.64 0.32 60.00 60.00 60.00 57.58 27.41 16.76

m
az

e

50 100 100 100 100 100 100 3.52 2.52 1.52 2.80 2.20 2.36 0.40 1.63 4.30 1.36 0.26 0.74
70 88 76 72 96 100 100 3.00 2.40 2.36 1.96 2.68 2.04 7.37 20.49 21.75 5.78 0.45 7.03
90 64 20 20 84 100 40 1.64 2.64 2.76 1.40 0.80 2.24 24.92 49.35 52.59 17.64 0.57 39.37
110 40 0 0 40 100 28 1.36 2.08 2.08 1.40 0.40 1.36 36.04 60.00 60.00 43.63 1.86 50.97
130 8 0 0 16 84 0 1.00 1.08 1.08 0.84 0.08 1.08 55.22 60.00 60.00 53.89 15.81 60.00

w
ar

eh
ou

se 350 96 96 92 96 96 96 3.28 2.12 2.36 2.24 2.20 2.20 9.39 14.76 11.23 8.69 11.25 14.56
400 80 88 84 80 84 84 3.20 2.04 2.48 2.28 2.04 1.84 19.38 16.41 23.30 23.04 19.92 22.93
450 64 64 68 60 84 68 2.40 2.08 2.12 2.44 1.56 1.96 31.90 35.31 32.71 37.21 30.30 31.70
500 36 20 32 56 20 28 1.36 1.60 0.88 0.92 1.24 1.08 44.60 55.25 46.89 42.88 53.22 49.29
550 16 12 8 24 16 12 0.52 0.60 0.76 0.48 0.60 0.64 55.96 57.82 58.56 52.44 56.65 56.98

la
k3

03
d

500 100 100 100 100 96 100 4.48 2.08 2.48 1.72 2.24 2.00 5.25 11.56 22.66 9.41 34.79 8.91
600 100 100 100 100 100 100 4.64 2.56 1.88 2.40 1.12 2.40 7.49 40.40 36.11 32.90 99.87 21.10
700 96 100 100 96 100 100 4.32 1.48 1.76 2.04 2.40 3.00 41.98 38.08 73.10 101.03 72.38 68.01
800 96 96 92 96 100 92 4.12 2.68 2.08 2.24 1.56 2.04 60.65 148.05 158.82 117.32 126.01 124.54
900 92 92 84 84 80 76 2.88 1.80 2.00 2.44 1.88 2.64 130.59 232.18 249.02 260.38 276.37 255.47

os
t0

03
d

500 100 96 100 96 92 100 4.44 2.52 1.84 2.40 1.16 2.48 2.40 39.21 20.80 31.62 60.03 10.79
600 100 100 96 100 96 100 4.08 2.44 2.28 1.80 1.36 3.00 4.46 16.58 37.82 18.79 62.19 13.55
700 100 96 96 100 96 96 4.32 1.96 2.40 2.00 1.40 2.64 13.79 47.78 46.36 44.20 83.66 47.17
800 100 96 96 96 96 96 3.56 1.92 2.60 2.72 1.44 2.36 32.53 95.01 82.01 80.12 110.79 72.39
900 100 92 96 96 92 92 3.68 2.32 2.16 2.08 2.04 2.32 72.49 164.68 153.91 160.27 172.58 169.36

Table 3: Success rate, average solution rank and average run time to find the first solution for stochastic ranking with random
restarts. The best results achieved among all algorithms are shown in bold. The results are obtained by training and testing on
the same map with the same number of agents n.∞ indicates that no problem was solved.

The numerator x2
7 gives low priority to the agents that

have goals close to other agents’ goals. Consider the denom-
inator −(10 − x1 + x2

18)2. Suppose x1 < 10 then 10 − x1

becomes smaller as x1 grows and because of the nega-
tion sign, it makes the denominator larger which leads to
smaller priority scores. So as x1 grows (given x1 < 10) the
agent’s priority score becomes larger. Suppose x1 > 10 then
10−x1 < 0 but the square makes it positive. Therefore by the
same reasoning, as x1 grows, the agent’s priority score be-
comes larger. When x1 = 10 the denominator becomes −x4

18.
Changes in x1 is less significant to the value of the priority
score than that of x18 because x18 appears with a power of
4 in the formula while x1 does not so we focus more on x18.

As x2
18 grows the denominator becomes smaller because

of the negation sign and the priority score becomes larger.
Thus the larger x18 the larger the priority score and agents
that are more likely to have conflicts with other agents will
be prioritized and will plan earlier.

We will now evaluate performance of f6 on the three
small maps and the one medium sized map with determin-
istic ranking to demonstrate an example of the formula’s
portability. Instead of computing the agents’ priority scores
using the formulae synthesized specifically for that num-

ber of agents and that map, we use f6 on all the maps and
with all numbers of agents. As per Figure 1 the formula
f6 had the highest success rate and the best average solu-
tion rank for most numbers of agents on random-32-32-20
and room-32-32-4. It performed worse on maze-32-32-2
and warehouse-10-20-10-2-1. This shows that the synthe-
sized formulae can outperform existing PP algorithms even
on maps not seen during synthesis.

Future Work
While performing well, our priority functions were synthe-
sized for a given map and a given number of agents. Future
work will synthesize priority functions with training data
from different maps and/or numbers of agents together. Ef-
fectiveness of our approach may also be increased by con-
sidering additional building blocks for the arithmetic formu-
lae. In particular, these building blocks can include previ-
ously synthesized formulae (Bulitko et al. 2022), leading to
iterative expansion of the space of formulae. Finally, future
work may aim to scale our approach to larger training sets
by using other synthesis methods (Shah et al. 2020; Mouret
and Clune 2015; Gallotta, Arulkumaran, and Soros 2022;
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M
ap

n Formula
ra

nd
om

50 f1 =
√
x7 − x15 +

√
x21

100 f2 = −x7 − x12 ⋅ x15

150 f3 = −21.2 ⋅ x7 − x15

175⋆ f4 = −x7 − x
2
12 ⋅ x15

200⋆ f5 = −8.3 ⋅ x7 +
√

5.5 + x15

225⋆ f6 = −(
x7

10−x1+x2
18
)

2

ro
om

50 f7 = x4 + 28.1 ⋅ x7 − x14

75 f8 = (x7 − 4.7)
8
+ x15

100⋆ f9 = −x7 − (0.2 ⋅ x15 ⋅ x16)
2

125⋆ f10 = (
x4 ⋅x15

7.9+max{x14,
√

x16})
2
−
√
x7

150⋆ f11 = −(789.1 ⋅ x
2
7 +
√
x11 + x17 + x18)

m
az

e

50 f12 = −x10 − x15 + x21

70 f13 = −x
2
7 − x10 +

√
x21

90 f14 = −
√

x7 + x10 ⋅
√
x16 + x21

110 f15 = −x15 + 4.3 ⋅
√√

x21

130 f16 = −x7 − x15

w
ar

eh
ou

se

100 f17 = x7 + x12 ⋅ x14

200 f18 = 61.5 ⋅ x
2
8 − x15

300 f19 = 181 ⋅ x7 + x15

350 f20 = x7 − x12 ⋅ x14

400⋆ f21 = x3 + x8 + x12 ⋅ x15

450⋆ f22 = x8 + (x20 − x4)
4
⋅ x2

14

500⋆ f23 = x7 + 1.8 ⋅ x
2
11

550⋆ f24 = x7 + x
2
8

la
k3

03
d

300 f25 =
√
x4 − x15

400 f26 = x1 − x14 + x21

500 f27 = −x10(x10 + 1) + x15

600 f28 = −7 ⋅ x
2
7 −
√
x15

700 f29 = x
2
1 − x15 +

√
x21

800 f30 = −x8 − x
2
15 − x

2
16

900⋆ f31 =min{x23,−x7 − (x10 + (x12 − x3) ⋅ x22)
2
}

os
t0

03
d

300 f32 = x7 − x
2
18

400 f33 = x7 − x11

500 f34 = −x7 − x15

600 f35 = x1 − 1.7 ⋅ x15

700 f36 = −x7 −
√
x15

800⋆ f37 = −x
2
7 − x

2
12

900⋆ f38 = −
√

3.2 + x10 + x12 + x15

Table 4: Formulae synthesized for each number of agents of
each map. All formulae are manually simplified and the nu-
meric constants are rounded. When PP with a formula out-
performs all other PP methods in both success rate and av-
erage solution rank for a given map and a number of agents
we mark the line with an asterisk.

Kimbrough et al. 2008).

Conclusions
We adopted the approach by Bulitko et al. (2022) to learn
priority functions to solve multi-agent pathfinding problems
with prioritized planning. The priority functions are ex-
pressed as arithmetic formulae and synthesized via a genetic
search. They are short and human-readable and often outper-
form the state-of-the-art machine-learning approach in terms
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Figure 1: Success rate and average solution rank of f6 on
the three small maps and the medium sized map compared
to existing PP algorithms.

of success rate, run time and solution quality without requir-
ing more training data.

We also showed that our synthesized formula can outper-
form existing PP algorithms in both success rate and average
solution rank even on maps and problems not seen during
synthesis and can provide insight in their operation.
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