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Abstract

We introduce a new reward function direction for intrinsi-
cally motivated reinforcement learning to mimic human be-
havior in the context of computer games. Similar to previ-
ous research, we focus on so-called “curiosity agents”, which
are agents whose intrinsic reward is based on the concept of
curiosity. We designed our novel intrinsic reward, which we
call “Cautious Curiosity” (CC) based on (1) a theory that pro-
poses curiosity as a psychological definition called informa-
tion gap, and (2) a recent study showing that the relation-
ship between curiosity and information gap is an inverted U-
curve. In this work, we compared our agent using the classic
game Super Mario Bros. with (1) a random agent, (2) an agent
based on the Asynchronous Advantage Actor Critic algorithm
(A3C), (3) an agent based on the Intrinsic Curiosity Module
(ICM), and (4) an average human player. We also asked par-
ticipants (n = 100) to watch videos of these agents and rate
how human-like they are. The main contribution of this work
is that we present a reward function that, as perceived by hu-
mans, induces an agent to play a computer game similarly
to a human, while maintaining its competitiveness and being
more believable compared to other agents.

Introduction
Artificial intelligence (AI) has opened up a wide range
of possibilities for game developers, from content cre-
ation (Togelius et al. 2011) to game debugging (Machado
et al. 2018a). One of the most common applications of
AI in games is the development of Game Playing Agents
(GPAs), usually with two goals: as a test environment for AI
methods and for automated game testing. From Min-Max
chess players (McAllester 1988) to AlphaGo (Silver et al.
2017), games have created virtual environments challenging
enough for advancing AI methods. AI has also helped devel-
opers automatically test their games, reducing development
costs.

However, most of the GPAs available today report flaws,
such as levels that are easy to defeat or platforms that can-
not be reached in one jump (Smith, Whitehead, and Mateas
2010; Shaker, Shaker, and Togelius 2013). While these re-
sults reduce the workload of a human tester, it says little
about the subjective aspects of the game and what areas re-
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main unexplored. This happens because these agents are de-
signed with the goal of winning at all costs. The agent will
try to reach a winning status as quickly as possible, leaving
behind much of the game content. Certain questions may
never be answered, since the agent avoids circumstances
such as confronting certain enemies or accessing difficult
level areas that do not lead to a win status, but can bring
the player rewards (coins, power-up items, etc.).

These limitations of GPAs have been studied by AI re-
searchers. One possible solution is the use of human-like
agents. Such agents are implementations to mimic human
players and explore the game as a human would. How-
ever, this solution comes with some challenges, including
the level of human likeness (sooner or later someone will
figure out that they are not human at all) and the amount of
training data generated by humans in order for the agents to
play the game at an acceptable level.

More recently, agents using the Intrinsic Curiosity Model
(ICM) have reduced the need to obtain data from humans
and are able to learn how to play games on their own,
with promising results, even in contexts previously consid-
ered difficult for agents to access (e.g., Montezuma’s Re-
turn) (Aytar et al. 2018; Burda et al. 2018)). While ICM
agents have shown good results playing games without re-
lying on human data, their human-likeness is still in need of
being better explored.

Motivated by ICM developments, we have developed a
human-like agent to investigate “how human an ICM agent
can be without losing its capabilities.” To achieve this goal,
we modeled the reward function of an agent based on the
psychological theory of information gap curiosity (Dubey
and Griffiths 2017; Loewenstein 1994), which states that the
motivation of an agent increases proportionally to the de-
gree of information learned. We hypothesized that this the-
ory, in conjunction with recent ICM advances, would bal-
ance human-likeness and competitiveness.

To test our hypothesis, we implemented our “Cautious
Curiosity” (CC) agent in the context of Super Mario Bros.,
compared its performance against baseline Game Playing
Agents 1 and conducted a study with 100 participants who
rated our agent on “how human it looks?”

Our results show that ICM combined with informa-

1https://github.com/AndyZCJ/Cautious-Curiosity-Agent
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tion gap theory can potentially lead to the development of
human-like agents that help developers test their games as a
human would, without losing competitive features. In addi-
tion, we gained valuable insights into how game content can
influence the further development of GPAs.

Background & Related Work
Game Play Agents
When designing games, designers must explore all possible
actions and outcomes in the game. As their systems become
more complex, it becomes difficult to control the range of all
possible scenarios that may result from different players in-
teracting with the system (de Mesentier Silva et al. 2017a).
Automated playtesting helps designers develop more reli-
able game systems. In this scenario, the use of gameplay
agents helps developers automate gameplay tasks, increas-
ing the chances of crash-free games. It also reduces the
hours of repetitive human tasks, which can lead to boredom
and stress (Briziarelli 2016). However, automatic gameplay
is not a mature method when subjective metrics such as
challenge and game enjoyment need to be evaluated (Yan-
nakakis and Togelius 2018; Pedersen, Togelius, and Yan-
nakakis 2009, Chapter 5). Agents whose main goal is to win
the game as fast as possible are not suitable for this task, as
they do not guarantee to explore the game enough to con-
sider states that do not lead to victory (Zhao et al. 2020;
Shao et al. 2019; Aytemiz et al. 2020). Therefore, agents
that can exhibit “as human as possible” behavior are nec-
essary. In this way, designers can evaluate non-functional
questions (Callele, Neufeld, and Schneider 2006) better than
functional ones. However, designing an agent is a complex
process. It involves fully understanding the game strategy,
knowing the algorithm that fits the best strategy, and figur-
ing out how to reward the agent when it performs the right
action and how to punish it when it performs the wrong
action (Yannakakis and Togelius 2018, Chapter 3). A typ-
ical gameplay agent can be built on different strategies,
such as graph-based heuristic search (de Mesentier Silva
et al. 2017b), evolution and genetic algorithms (Togelius,
De Nardi, and Lucas 2006; Arulkumaran, Cully, and To-
gelius 2019), supervised unsupervised reinforcement learn-
ing (Chen 2016; Blog 2021), and imitation learning (Ses-
tini et al. 2022; Hasegawa et al. 2013; Hosu and Rebedea
2016). For our gameplay agents, we focus on reinforcement
learning with intrinsic motivation. This choice is consistent
with our motivation to develop an agent that mimics humans
while maintaining the competitiveness of the average player,
i.e., it explores the game like a human without forgetting
about winning. Finally, it is free from the huge amounts of
data required to train other solutions presented in this sec-
tion.

Human-Like Agents
Many researchers have proposed algorithms that allow game
agents to behave like a real human player. Attempts to de-
velop human-like agents using Monte Carlo Tree Search
(MCTS) have yielded promising results in recent years.
Khalifa et al. (Khalifa et al. 2016) proposed a modified

MCTS that can make the agent behavior more similar to a
human. They tested their algorithm in games such as Zelda,
Pacman, and Boulderdash and set up a Turing test-like user
study. Their results show that their algorithm behaved more
like a human from the user study participants’ perspec-
tive than other MCTS-based methods. Devlin et al. (Devlin
et al. 2016) biased MCTS with gameplay trace data collected
from human players to emulate human gameplay. By analyz-
ing the data from real humans, they define a general human
gameplay style and indirectly imitate it. Their results show
that their agent can behave like a human in the traditional
card game of spades. In addition to MCTS, methods based
on Deep Learning are receiving attention. Gudmundsson et
al. (Gudmundsson et al. 2018) trained a convoluted neu-
ral network that takes player data from Candy Crush Saga
(CCS) and Candy Crush Soda Saga (CCSS) as input to pre-
dict human actions in a given position. Their experiments
show that this algorithm works well in CCS and CCSS, and
it is also suitable for many games, especially where con-
tent creation is sequential. All in all, the field of human-like
agents has shown great potential in recent years and gener-
ally attracted more attention. However, there are some issues
surrounding the development of human-like agents that mo-
tivated us to conduct this research, which we will address in
the following subsection.

Issues of Human-Like Agents
Human-like agent is a vague definition that has different
meanings in different fields. We follow the definition of
human-like agents in the game research literature, which
describes human-like agents as agents that are indistin-
guishable from human players when compared by human
judges. However, game players can be broadly classified
into three types, master players, average players, and new
players (Poels et al. 2012). One problem with developing
human-like agents is that many agents behave like master
players and tend to pass the game as quickly as possible, so
they usually ignore game content (Lillicrap et al. 2015; Mnih
et al. 2015). However, game developers want agents to help
them find potential bugs and even analyze the difficulty level
of the game (Ariyurek, Betin-Can, and Surer 2019). In this
case, agents should try to interact with as much game con-
tent as possible, but agents with master skills cannot fulfill
this requirement. Moreover, it will be easy for an agent to
behave like a master player, since master players can com-
plete the game quickly and with a low error rate. If we train
our agent millions of times, it will behave even better than
a master player, and sometimes it will even show some non-
human behaviors. For example, in Starcraft, a well-trained
agent can control more than 100 units at the same time and
make each unit perform different activities (Vinyals et al.
2019). Such a level of capability cannot be achieved by hu-
mans. Unlike master players, average players are more like
normal people. They can definitely pass the game, but they
will not make mistakes like a new player or show skills like a
master player. We try to avoid the two extremes: the master
(because its superhuman abilities can be easily noticed by
players), and the novice (because it is too inexperienced to
provide useful information about the game). Therefore, our
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goal is to make our agent indistinguishable from the average
player. This “competitive trait” is one of the differences of
our work related to recent studies on human-like agents (Mi-
lani et al. 2023).

Reinforcement Learning
Reinforcement learning (RL) is based on the framework of
Markov decision processes (MDPs). The goal of reinforce-
ment learning is to maximize long-term cumulative reward
through interaction with an observable or partially observ-
able world (Mohan and Laird 2009). In traditional reinforce-
ment learning, an agent observes the environment and learns
a policy from the environment. The reward is determined by
a task-specific reward function. Game agents learn from the
reward the environment gives them and eventually form a
“best” policy. In intrinsically motivated reinforcement learn-
ing, the agent observes the environment and then translates
the observation and reinforcement signal, such as the game
score, into intrinsic reinforcement, which is then optimized
by traditional RL (Dossa et al. 2019). Instead of being moti-
vated only by the external environment, the behavior of in-
trinsically motivated RL agents is motivated by the internal
desire to do something for its own sake. In this case, the goal
of agents is to maximize the combination of extrinsic and
intrinsic rewards. Curiosity belongs to the intrinsic rewards
group and plays an important role in tasks such as explo-
ration. We will talk more about curiosity in the following
subsection.

Curiosity in Reinforcement Learning
In the literature on intrinsic motivation as discussed in the
context of games, learning, and artificial intelligence, a fre-
quently discussed form of intrinsic motivation is curiosity.
Its importance was highlighted as early as the early 1980s
in a psychological study of intrinsic motivation and games
by Malone (Malone 1981). According to Malone, curios-
ity, fantasy, and challenge are the three most important fac-
tors in games. However, both challenge and fantasy have
strong connections with curiosity. For example, game de-
velopers incorporate interesting elements into games to at-
tract players, and they also set goals or difficulties to en-
courage players. In this case, both fantasy and challenge can
be explained by curiosity, which means that curiosity is the
dominant motivation when people play games. Therefore,
we believe that it is necessary to study curiosity as the first
step towards intrinsically motivated human-like agents. Re-
cent studies (Marvin and Shohamy 2016; Burda et al. 2018;
Pathak et al. 2017; de Abril and Kanai 2018) about curios-
ity suggest that the gap between the expected reward and
the received reward, i.e., the “information prediction error”
or “information gap” determines curiosity. The definition of
the “information gap” comes from Loewenstein (Loewen-
stein 1994). He stated that the information gap refers to the
gap between “information I want to know” and “information
I already know.” People are more likely to be curious about
topics where there is a large information gap.

The combination of reinforcement learning and curiosity
has made good progress in recent years. Some of these have

enabled agents to pass games without relying on extrinsic
rewards (Pathak et al. 2017).

Curiosity with U-Shaped Curve
Loewenstein also proposed an idea in his theory that differs
from the above definition. According to Loewenstein, peo-
ple who acquire knowledge in a particular area are likely to
become increasingly curious about the subjects which they
know the most. In this case, people will not be interested in
topics where there is a large information gap.

Relatedly, Dubey et al. (Dubey and Griffiths 2017) inves-
tigated the relationship between curiosity and information
gap (i.e., confidence, see next section for details) and sug-
gested that it can be represented as an inverted U-shaped
curve, meaning that curiosity increases with the informa-
tion gap at the beginning and then decreases when the gap
is larger than a “threshold.” We decided to combine the in-
formation gap theory and the theory of Dubey et al. to de-
sign our reward function because it details a recent theory
of curiosity based on cognitive studies that has not yet been
implemented as a game agent.

Methods
Reward Function
Intrinsic Curiosity Module Our “Cautious Curiosity” (CC)
agent is composed of two parts: an intrinsic reward genera-
tor that outputs the curiosity-driven intrinsic reward and an
extrinsic reward receiver that receives an extrinsic reward
from the environment. The policy of our agent is to perform
a series of actions that can maximize the sum of intrinsic
and extrinsic rewards. First of all, let the intrinsic curiosity
reward generated by the agent at time t be rit and the ex-
trinsic reward be ret . The sum of these two rewards can be
represented as rt = rit + ret .

We use the Intrinsic Curiosity Module (ICM) (Pathak
et al. 2017) to build the agent and use the Asynchronous
Advantage Actor-Critic policy gradient (Mnih et al. 2016)
for policy training. The policy is represented as π(St; θp)
with a parameter θp. At time t, we have state St and
an action at generated by policy at ∼ π(St; θp). θp is
optimized to get the max expected sum rewards.

max
θp

Eπ(St;θp)[
∑

trt] (1)

To get a good intrinsic reward from the prediction error
in the learned feature space, our deep neural network can be
separated into two modules. The first module will encode
state St into a feature vector ϕ(St) and the second module
takes two consequent state ϕ(St) and ϕ(St+1) then predict
the action at. The function g of the neural network can be
defined as

â = g(st, st+1; θI) (2)

where â is the predicted estimate of the action at. θI is a
parameter of our deep neural network that is trained to opti-
mize. So we have:

min
θI

LI(ât, at) (3)
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where LI is the lost function. It shows the difference be-
tween the actual action and the predicted action. Following
the action prediction, we have another neural network to pre-
dict the feature encoding of the state at time t+ 1

ϕ̂(St+1) = f
(
ϕ̂(St), at; θF

)
(4)

where ϕ̂(St+1) is the estimate state of ϕ(St+1). Parameters
θF are optimized by minimizing the lost function L:

LF (ϕ(St), ϕ̂(St+1)) =
1

2
||ϕ̂(St+1)− ϕ(St+1)||22 (5)

Finally, the prediction error P can be represented as:

P = ||ϕ̂(St+1)− ϕ(St+1)||22 (6)

From 1 to 6, we are using exactly the same equations pre-
sented in Pathak et al. (Pathak et al. 2017). Compared to
the intrinsic reward function of Pathak et al., which directly
links the size of the intrinsic reward to the size of the predic-
tion error, we used a different way to measure the intrinsic
reward.

Information Gap and Curiosity Reward From the
psychological literature, especially Loewenstein’s pa-
per (Loewenstein 1994), we know that people have a strong
interest in subjects with large information gaps. The bigger
the gap, the bigger the curiosity. However, at the same time,
many experiments have shown that people are more curi-
ous about subjects with smaller information gaps. There-
fore, based on the above viewpoints, we believe that peo-
ple will lose interest in subjects that they are not familiar
with (i.e., subjects with too large information gaps). Cu-
riosity increases with the information gap when things are
within a “range.” When subjects go beyond this “range,” cu-
riosity will decrease due to the increase of the information
gap. A recent study about curiosity supports this. Dubey et
al. (Dubey and Griffiths 2017) showed that the relationship
between curiosity and confidence can be shown as an in-
verted U-shaped curve. The graph is shown in Figure 1.

As we can see from Figure 1, curiosity increases with con-
fidence at the very beginning and decreases after it reaches
a point. That is, when people are very confident or not con-
fident in a subject, they are usually not interested in it. Con-
fidence or not represents the degree of understanding of a

Figure 1: Relationship between confidence (i.e., information
gap) and curiosity based on Dubey et al. (Dubey and Grif-
fiths 2017).

subject. This is consistent with the definition of the informa-
tion gap. If the information gap is large, it means that people
do not understand a certain subject.

Important to note is that different people can have differ-
ent understandings of the same subject, as a result of dif-
ferent life experiences. Therefore, the “range” mentioned
above is different from person to person. In the game con-
text, we call this “range” “threshold,” denoted by ψ. In the
beginning, the agent’s understanding of the world is only the
initial observation. So we have:

ψ0 = ϕ0 (7)

As the agent continues to move forward, there are constantly
new observations. The new “knowledge” broadens its per-
ception. Here, “knowledge,” denoted by K, is expressed as
the difference between the new observation and the old ob-
servation. We have

K = ||ϕ(St)− ϕ(St−1)||22 (8)

The “threshold” is constantly updated as the agent pro-
gresses, and as the knowledge gained continues to grow, the
thresholds will keep getting bigger.

ψt = ψt−1 +K (9)

When the prediction error is smaller than the threshold ψt,
the reward will be:

rit = η ∗ ||ϕ̂(St+1)− ϕ(St+1)||22 (10)

where η is a scaling factor larger than 0. When the prediction
is larger than the threshold, we have:

rit = −η ∗ ||ϕ̂(St+1)− ϕ(St+1)||22 + 2 ∗ ψt (11)

The image of the reward function is shown in Figure 2.
It can be seen that when the prediction error is less than the
threshold, the reward increases with the increase of the error.
When the prediction error is greater than the threshold, the
reward decreases as the error increases. Finally, we need to
jointly optimize (1), (3), and (5). Together, we have:

min
θI ,θP ,θF

[−λEπ(St;θp)[
∑

trt] + (1− β)LI + βLF ] (12)

Figure 2: Our inverse V-shaped intrinsic reward function.
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where 0 ≤ β ≤ 1 is a scalar that weighs the inverse model
loss against the forward model loss and λ > 0 is a scalar that
weighs the importance of the policy gradient loss against the
importance of learning the intrinsic reward signal.

It is important to note that Dubey et al.’s work does not
explain the mathematical relationship between curiosity and
the information gap because their conclusion was derived
through a questionnaire survey. In this case, we cannot di-
rectly translate the conclusions of Dubey et al.’s work into
a reward function. Therefore, the resulting graph of the pro-
posed reward function exhibits an inverted V shape that can
be used to approximate the inverted U-shaped curve.

User Study
To measure the degree of human-likeness, we compared our
method to other methods and real humans in a Turing-Test-
like user study. We evaluated our method using Super Mario
Bros. We selected relevant state-of-the-art methods as our al-
gorithmic benchmarking, in addition to game videos of real
humans as human benchmarking.

Algorithmic Benchmark We chose Intrinsic Curiosity
Module (ICM) to be the (algorithmic) benchmark. This work
not only successfully combines curiosity with reinforcement
learning, it also demonstrates that curiosity-driven agents
can explore environments efficiently without extrinsic re-
wards or with sparse extrinsic rewards.

Baselines We first chose to use a random agent which can
only choose an action randomly as our baseline. In addi-
tion, the ICM mentioned above is based on A3C (Mnih et al.
2016), which is a deep reinforcement learning algorithm.
As such, we considered that including A3C would also be
meaningful as a baseline.

Human Benchmark We opted to include three average
players who are familiar with the game, but who are not
master players, as the human benchmark.

Game Video Our team implemented the “Cautious Cu-
riosity” (CC) agent based on the newly designed reward
function and let it run in Super Mario Bros. At the same
time, we also implemented a random agent, an A3C agent,
and an ICM agent, which we used to compare the human-
likeness level with the CC agent. We also recruited three av-
erage human players to compare with. We recorded three
one-minute game videos of each agent (CC, random, A3C,
and human player), giving us a total of 15 one-minute
videos.

Participants We published our survey on Amazon Mturk.
We gave each participant $3 for finishing the survey. In total,
100 people participated in the experiment.

Study Procedure The study is a web-based survey where
participants had to watch 15 videos. For each video, the
following questions were asked:

1. Please watch this video then rank the human-likeness
of the player. (From 0 to 10, 0 means the player is not a
human at all and 10 means the player is a real human.)

2. State briefly (in one or two sentences) why you think
the player above is a human or an AI player.

Experiment Setup
Training Details All agents in this work are trained with
visual inputs that are preprocessed similarly to ICM’s
work (Pathak et al. 2017). The RGB input images for the
agents, including A3C, ICM, and CC, are converted to
grayscale and reformatted to 84×84. All agents were trained
for 50 episodes in Super Mario Bros.’s level 1-1, with each
episode representing a complete game trajectory. We con-
sidered the models from the last training episode as the ex-
perimental result shown in this paper.

A3C Agent The input state is passed through a sequence
of four convolution layers with 32 filters each, kernel size of
3x3, stride of 2, and padding of 1. An exponential linear unit
(ELU) (Clevert, Unterthiner, and Hochreiter 2015) is used
after each convolution layer. The output of the last convolu-
tion layer is fed into an LSTM with 512 units. Two separated
fully connected layers are used to predict the value function
and the action from the LSTM feature representation.

A3C Architecture for ICM and CC The input state is
passed through a sequence of four convolution layers with
32 filters each, kernel size of 3x3, stride of 2, and padding
of 1. An exponential linear unit (Clevert, Unterthiner, and
Hochreiter 2015) is used after each convolution layer. The
output of the last convolution layer is fed into a GRU with
512 units. Two separated fully connected layers are used to
predict the value function and the action from the GRU fea-
ture representation.

ICM Agent and CC Agent Due to the fact that the CC
agent is based on the ICM agent and the only difference be-
tween them is the reward function, they have the same archi-
tecture. Both of them contain an intrinsic curiosity module
that consists of two parts. The first part is an inverse model
that maps an input state st into a feature vector ϕ(st). The
inverse model is made of four convolution layers, each with
32 filters, kernel size 3x3, stride of 2, and padding of 1. An
ELU is used after each layer. After that, the inverse model
will concatenate ϕ(st) and ϕ(st+1) into a single feature vec-
tor. Then, this vector is passed as input into a fully connected
layer of 256 units followed by an output fully connected
layer with 4 units to predict a possible action from the ac-
tion space. The second part is the forward model, which is
used to concatenate ϕ(st) with at and then passed to a se-
quence of two fully connected layers with 256 and 288 units,
respectively. The output of the forward model is the estima-
tion of the next state ϕ̂(St+1). Finally, output from the in-
verse model and forward model were used to compute the
intrinsic reward.

Results
Benchmarking
We evaluated the performance of the learned policy with the
proposed intrinsic curiosity reward function in Super Mario
Bros. Our experiments with Mario were trained with the cu-
riosity reward and dense extrinsic reward. We also trained
the ICM agent with the same extrinsic reward setting. We
repeatedly ran the CC agent and the ICM agent in the level
1-1 environment in Super Mario Bros. and compared the
performance of the two agents. First, the CC agent prefers
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Name Pass the game Time used,
in M(SD)

Mistakes,
in M (SD)

CC Yes 65 (2.82) 4 (0)
ICM Yes 58.3 (0.94) 1 (0.81)
A3C Yes 60 (0) 1.33 (0.47)
Human Yes 96 (0.94) 3.67 (0.47)
Random No 400 (= time limit)

Table 1: Average time used and average mistakes made by
each player.

to stay on the ground compared to the ICM agent. The ICM
agent often jumps on the rocks and moves on them, while
the CC agent prefers to move on the ground, even if the
probability of hitting a Goomba is higher. We believe that
the reason for this phenomenon is that the reward function
of the CC agent makes it “cautious,” hence we named the
agent “Cautious Curiosity.” Because of the reward function,
the agent is more inclined to explore states that are familiar
to it. The area above the bricks is relatively unfamiliar to it,
so it prefers to stay on the ground. Second, compared to the
ICM agent, the CC agent makes more “mistakes.” The CC
agent often jumps and bumps into obstacles such as water
pipes or bricks, while the ICM agent can easily avoid most
of them. This also results in the ICM agent reaching the tar-
get faster. After observing that the average pass time of the
ICM agent is shorter than that of the CC agent, we decided to
compare the average pass time of all agents (average human,
CC agent, A3C agent, ICM agent, random agent) participat-
ing in this experiment. The results are shown in Table 1.

After the human player, the CC agent finished the game in
the longest time. ICM is the best among all the players, as it
hardly makes any mistakes and can play through the game in
the shortest time. It is worth noting that the A3C agent com-
pleted the game at a similar speed to the ICM agent and their
average mistakes are close. The CC agent, although based on
ICM, made many more mistakes than the A3C agent and the
ICM agent. Based on this data, we can conclude that our re-
ward function makes the behavior of the CC agent different
from that of the ICM agent.

Video Ratings
To verify that our algorithms perform in a more human-like
manner than the ICM algorithm, we performed a user study.
With 100 participants we received 1,500 data points in total
(i.e., 15 videos rated by every participant). Table 2 shows
the result of our study.

Video 1 Video 2 Video 3
CC 7 (5) 7 (6) 7 (5)

ICM 5 (6) 6 (6) 4.5 (6)
A3C 5 (6.25) 6 (6) 7 (5)

Human 7 (5.5) 7 (5) 7 (5)
Random 3 (8) 4 (8) 3 (8)

Table 2: Median of ratings (0 to 10), in Mdn (IQR)

A3C Human ICM Random CC
A3C 1 0.025 0.18 1.9e-5 0.16
Human 0.025 1 0.002 2.9e-10 0.16
ICM 0.18 0.002 1 7.1e-4 0.03
Random 1.9e-5 2.9e-10 7.1e-4 1 1.05e-7
CC 0.16 0.16 0.03 1.05e-7 1

Table 3: Details of the post hoc dunn test

Each cell shows the median score of the video indicated
by the participants. From this table, it can be seen that the
human has the highest median score and the random agent
has the lowest median score. Except for the human and the
random agent, the CC agent received the same median score
as the human agent. However, the A3C agent scored higher
than the ICM agent. This is contrary to our expectations. Al-
though the difference between the two scores is not large, it
shows that the vast majority of participants think that the
A3C agent has more human characteristics than the ICM
agent.

As for the significance of the data, we first tested the nor-
mality assumption. The result showed that the data were
not normally distributed. Therefore, we decided to use the
Kruskal-Wallis test instead of ANOVA. The Kruskal-Wallis
test showed that there was a difference between the score
of each agent, H(4) = 50.29, p < .001. Post-hoc Dunn tests
with a two-stage FDR adjustment were used to compare all
groups. The difference between the CC agent and Human
was not significant, p = .15. However, other comparisons
showed significant results after two-stage FDR adjustment
(p <.01). The details of the post-hoc Dunn test and box-
plots can be found in Table 3. To test the effect size, we used
the epsilon squared test. The result gave us the effect size =
.0335, which corresponds to a “weak” effect.

Figure 3: Boxplots of the user study data.
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Keyword
Number

of occurrence
(133 in total)

Distribution
(CC|ICM |

Human|A3C|Random)
Mistakes 59 (44%) 19|11|16|13|0

Normal speed
and reaction 41 (31%) 9|11|15|5|1

Poor skill 14 (11%) 1|5|2|1|5
Hesitation 8 (6%) 4|3|0|1|0

Others 11 (8%) 4|4|3|0|0
*Others involve overaggressive, unpredictable, and different game

patterns.

Table 4: The frequency of top qualitative keywords that iden-
tify that the player is a Human.

Keyword
Number

of occurrence
(341 in total)

Distribution
(CC|ICM |

Human|A3C|Random)
Fast speed

and reaction 127 (37%) 26|40|18|42|1
Useless

Movement 105 (31%) 10|9|1|2|83
Perfect skill 50 (15%) 5|14|13|18|0

Ignore
game content 39 (11%) 9|8|9|13|0

Jitterness 12 (4%) 0|0|0|0|12
Others 8 (2%) 1|2|3|2|0

*Others involve constant speed, purpose and inconsistent skill.

Table 5: The frequency of top qualitative keywords that iden-
tify that the player is an AI.

Open Responses
We also analyzed the participants’ open responses. We
first discarded answers that were not useful such as “this is
human” or “I don’t know why but I think it is a robot,” and
then considered the 474 useful responses to find an answer
as to why participants believe the player is a human or
not. Through qualitative analysis, keywords were identified
and coded in the responses. Table 4 and Table 5 show the
frequency of the top qualitative keywords for identifying a
player as human or AI, respectively.

From the tables, we can see that participants considered
“mistakes” as an important criterion for judging whether a
player is human. In Super Mario Bros., if a player makes fre-
quent mistakes, such as falling into a pit or hitting a brick,
participants perceive the player as a human being. On the
other hand, participants believed that human players would
not have extremely fast reactions and speed. Thus, if the
player played the game at a slower speed and had a slow
reaction, participants thought the player was a human. In the
previous sections, we found that the CC agent made more
mistakes than the ICM agent. In addition, the average com-
pletion time of the CC agent is longer. Both aspects (i.e.,
more mistakes and longer completion time) may explain the
higher ratings of the CC agent. It also explains why the rat-

ing of the ICM agent is lower than the A3C agent.
Aside from fast reactions and speed, we can see from Ta-

ble 5 that too many useless moves make participants think
the player is an AI. However, most of these responses come
from the responses to random agents. Since the actions of
random agents are randomly selected from all valid actions,
useless movement is expected. Nevertheless, some partici-
pants judged that the player is an AI based on the jump ac-
tion of the ICM agent and the CC agent at the beginning of
the game. The jump action is useless because Mario stands
on the ground at the beginning of the game.

Interestingly, many participants considered the player’s
interaction with the game environment as a basis for judg-
ment. About 40 responses pointed out that collecting gold
coins, collecting mushrooms, and killing enemies are actions
that human players take, but since the player in the video
only focuses on completing the game, the player is likely to
be an AI. Therefore, future research should focus on agents
that actively interact with the game environment.

Discussion
Speed, Reaction, and Skill
To our surprise, apart from the random agent, the ICM agent
has the lowest score in the survey. From the open response
analysis, we know that “speed and reaction” is an indicator
for participants to judge whether the agent is human. If an
agent completes the game too fast, the participants are likely
to think it is AI. Compared to CC and A3C, the ICM agent
can complete the game in the shortest time, which means
the ICM agent is more likely to be considered an AI. Also,
many participants will think that the agent is AI because of
its “perfect skill” characteristics. There were 14 participants
who thought the ICM agent is a perfect player while only
5 participants thought the CC agent played the game per-
fectly. We believe that the curiosity reward greatly improves
the performance of the ICM agent. The ICM agent moves
seemingly pre-calculated and completes the game with an
inhuman speed. In contrast, our reward function lowers the
performance, as demonstrated by the results of the CC agent.

Mistakes and Useless Movement
It seems strange to discuss “mistakes” and “useless move-
ment” together. However, if we look closely at the ran-
dom agent, it makes mistakes too often. Participants per-
ceive these actions as “useless movements.” On the other
hand, participants will not consider human mistakes as use-
less movements. The reason why this happens is: “mistakes”
means the agent is trying to do something useful like jump-
ing through a pit or kill an enemy, but does not succeed.
“Useless movements” then means the agent is doing some-
thing that will not bring any gains, involve any risks, or result
in consequences of any nature to the agent or the environ-
ment. If we look at the CC agent and the ICM agent, both
agents make some useless movements. For example, both
the CC agent and the ICM agent like jumping at the begin-
ning without any purpose. Therefore, a good way to improve
human-likeness is to decrease the frequency of making use-
less movements. Humans making mistakes when playing is
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a natural behavior. Thus, another way to improve human-
likeness is to have agents mimic such behavior, i.e., have
them make mistakes.

Game Content
We got 39 responses about “ignore game content” and 8 re-
sponses about “hesitation.” The reason we discuss the two
together is that “hesitation” means the agent is confused by
the game content around it and does not know what to do
next, while “ignore game content” means the agent has a
purpose and skips game content. Due to the nature of rein-
forcement learning, agents have formed policies that maxi-
mize rewards, and as such, they will only focus on complet-
ing the game rather than interacting with the environment.
Human-like hesitations, such as people hesitating whether
to kill the enemy or eat the mushrooms first, were not seen
in this study. Although we could make the agent actively in-
teract with the environment by modulating the extrinsic re-
ward (for example, increasing the reward for interacting with
mushrooms), this is a departure from our original intention.
Our research focused on making agents more human-like by
designing a new intrinsic reward function. However, future
work should consider how to make the agent interact with
the environment to improve human-likeness.

AI Ethics
Despite the automation we propose, the AI method does not
aim to replace human testers. The main idea is to provide
resources for teams who cannot afford human testers and/or
to save human testers from the burden of repetitive tasks.
Human testers act as consumers of the information the agent
produces. Based on the produced information, human testers
can decide to test parts by themselves that they feel the AI
did not cover correctly, or request the AI to focus on particu-
lar areas of interest. As such, this method facilitates human-
AI collaboration with the objective to gain better outcomes
than a human or AI can achieve on their own (Politowski,
Petrillo, and Guéhéneuc 2021).

Limitations
First, our research was limited due to the lack of support
from the community. At the very beginning, we planned to
use the winner of the Mario AI competition as the bench-
mark (Shaker et al. 2013). However, the competition was
discontinued after 2012, and the winner did not keep the
code of their agent. We tried to find other state-of-the-art
papers for benchmarking, but these papers either used a dif-
ferent version of Super Mario Bros., or their authors only
gave us limited instructions on their implementation. There-
fore, we could not find a suitable algorithmic benchmark of
a human-like agent from existing work with Super Mario
Bros.

Second, we tested our agent in other levels such as 1-2, 1-
3, and 1-4. The experiment showed that our agent does not
avoid obstacles or enemies, and dies at the beginning of the
game. Although it failed to generalize to other levels, our
work demonstrates how people feel about a curiosity-based
human-like agent and what criteria people use to determine

whether an agent is human or not. Based on the outcomes
of this work, we can further redesign our reward function to
improve both its generalization and its human-likeness.

We did not test our agent as a debugging assistant be-
cause our primary goal was to focus on assessing the human-
likeness. Future work may consider such use and be inspired
by leveraging metrics (Machado et al. 2018b) for this kind
of assistance.

Conclusion
Reinforcement learning is currently one of the most success-
ful algorithms in games. It has achieved impressive results
in the GVGAI competition in recent years (Perez-Liebana
et al. 2016). Curiosity is considered an important emotion
for people who are playing games like Super Mario Bros.
As such, attempts to combine curiosity with reinforcement
learning started decades ago for developing so-called “cu-
riosity agents.” We combined both approaches to design a
novel intrinsic reward to create the “Cautious Curiosity”
(CC) agent, an agent that attempts to behave more human-
like. We based the reward function and the resulting CC
agent on (1) a psychological theory that suggests curiosity is
formed by the information gap between “what people know”
and “what people want to know” and (2) a recent study that
showed that the relationship between curiosity and the in-
formation gap is an inverted U-shape curve. Based on com-
paring the CC agent to other methods (random, A3C, ICM,
and average human player) in a Super Mario Bros. environ-
ment with human judges (n = 100), we find that our agent
is the only agent who received similar ratings compared to
the average human player. Although much further scrutiny
is required (including generalization to other Super Mario
Bros. levels and other games), a key contribution is that we
advanced the area of human-like agents based on the use
of psychological theory. We demonstrate promising results
that with the proposed reward function, an agent can play
a computer game similarly to a human, while maintaining
its competitiveness and being more believable compared to
other agents.
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