
Praxish: A Rational Reconstruction of a Logic-Based DSL
for Modeling Social Practices

James Dameris*, Rosaura Hernandez Roman*, Max Kreminski
Santa Clara University

{jdameris, rhernandez2, mkreminski}@scu.edu

Abstract

The Versu framework is historically notable for its full-
featuredness as a suite of tools for creating highly responsive
interactive dramas. However, it has also been lost for nearly
a decade, and a similarly approachable and flexible simula-
tionist interactive narrative authoring framework has not yet
emerged to take its place. We therefore aim to introduce an
open-source rational reconstruction of the Versu framework,
drawing on publicly available documentation of Versu’s de-
sign and implementation to assemble a successor system with
similar architecture and capabilities. Here, we present the
first component of this system: Praxish, a reconstruction of
the low-level exclusion logic language atop which the rest of
Versu’s functionality is based.

Introduction
Versu (Evans and Short 2014a) was an ambitious author-
ing framework intended to enable the creation of highly re-
sponsive interactive dramas. It was created by the interac-
tive narrative systems equivalent of a supergroup, consisting
of Emily Short (the narrative designer behind such notable
works of highly responsive interactive fiction as Galatea);
Richard Evans (the AI lead for The Sims 3); and Graham
Nelson (the creator of the Inform series of domain-specific
languages for interactive fiction authoring). Versu began de-
velopment in 2010 and was acquired in 2012 by Linden Lab
(the makers of Second Life), where development continued
until the project was cancelled in 2014 (Reed 2021).

Several papers and blog posts documenting the Versu
framework were released, and a handful of example games
made with Versu (including the Regency-era murder mys-
tery A Family Supper (Figure 1) and the late Roman Em-
pire thriller Blood & Laurels) were briefly made available
on iPad. Today, however, both Versu itself and its exam-
ple games are effectively lost: the games cannot be played
on modern versions of the iPad operating system, and the
framework has never been released, with Linden Lab declin-
ing to sell it back to its original creators or otherwise allow
its continued development (Reed 2021).

Unusually among interactive narrative frameworks, Versu
was intended to support both a strongly simulationist ap-

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proach to authoring (in which fine-grained computational
models of social situations and character motivations were
allowed to drive the story in potentially unexpected direc-
tions) and a detailed, high-quality textual rendering of the
story that emerged from gameplay. Players of Versu games
could be allowed to drop into the shoes of any character
in the story; different non-player characters could be made
to play different narrative roles as the player desired, with
the character’s underlying personality driving them to make
appropriate-seeming decisions in a wide variety of situa-
tions; and characters could ideally even be transplanted from
one story to another, all without compromising prose qual-
ity. Additionally, Versu’s content language Prompter (Nel-
son 2014) aimed to make it possible for even inexperienced
programmers to write simulationist stories. This unusual set
of features, combined with the framework’s apparent suc-
cess at meeting these goals in a handful of medium-scale
text games, causes Versu to stand out as something of a high-
water mark for interactive drama to this day.

We believe that both intelligent narrative technologies re-
searchers and interactive narrative designers would benefit
from the public availability of a system like Versu: the for-
mer from its uniqueness as a point in the design space of AI-
supported frameworks, the latter from its utility as a suite
of tools for crafting responsive stories. For this reason, we
are working to release a strongly Versu-inspired authoring
framework as a freely available and open-source piece of
software. The reconstruction of the entire framework (which
consists of several distinct and individually nontrivial soft-
ware components) is no small task, and so we are currently
taking a piecemeal approach: building a complete recon-
struction of Versu one significant component at a time, with
the most foundational components prioritized first.

In this paper, we apply the methodology of rational recon-
struction (Tearse et al. 2012) to the Praxis logic language
atop which the rest of the Versu framework is based. Ra-
tional reconstruction involves thoughtfully reconstructing a
piece of software from its technical description to gain in-
sight into what makes it work, as well as into what about it
can be improved. In addition, the output of the reconstruc-
tion process is a piece of software which can be used as a
foundation for future research and development, both by us
and by others—an especially important result in this context
due to the unavailability of Versu itself.

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

407

Figure 1: A screenshot of the Versu example game A Family
Supper, taken from (Evans and Short 2014b). The story so
far is laid out like a play script, and what each character is
currently thinking about can be viewed by interacting with
the character portraits at the bottom of the screen.

Our recreation of Praxis is called Praxish. Praxish is im-
plemented in dependency-free vanilla JavaScript and can
consequently be deployed in a wide variety of contexts,
including frontend-only mobile and desktop web browser
games, as well as in a standalone desktop executable or on
the server side via Node.js. Additionally, Praxish is open
source.1 Like Praxis, Praxish is a relatively low-level lan-
guage that will eventually serve as the compilation target for
a higher-level and more approachable content authoring lan-
guage akin to Versu’s Prompter; however, it also implements
a sufficiently full set of features that recognizably Versu-like
storyworlds can be created in only the preliminary version of
Praxish that exists today. (Figure 2 shows which Versu com-
ponents have been recreated in Praxish in some form.)

Research Process
Rational reconstruction begins with a thorough review of
existing documentation and materials related to the soft-
ware being reconstructed. The canonical write-up of Versu
is a 2014 article in the journal IEEE Transactions on Com-
putational Intelligence and AI in Games (Evans and Short
2014a), while the longest and most detailed explication of
Versu’s features can be found in an informally published ar-
ticle that was presented at Imperial College London (Evans
and Short 2014b). Beyond these articles, we also reviewed
the full breadth of documentation available on the Versu

1https://github.com/mkremins/praxish

website (Short 2014), including a slide deck that gives sub-
stantial additional detail on the Praxis language in particu-
lar (Evans 2014), and played Blood & Laurels on an iPad
(belonging to a friend of the Versu developers) that has not
been updated since the game was released.

In the process, we found that the most distinctive feature
of Versu relative to other narrative-oriented social simulation
frameworks (especially at the Praxis layer) is its focus on
the separation of content into multiple distinct and compos-
able social practices. A social practice provides actions that
the various participating agents can choose to perform and
tracks the state of a particular social situation, such as a din-
ner party, a flirtatious side conversation, a game of tic-tac-
toe, or a bartender dealing with orders from multiple differ-
ent customers—all of which could coexist in the same physi-
cal space, suggesting appropriate actions to the participating
agents in each practice without requiring every practice to be
aware of all the others. Practices in Versu were specifically
intended to be role-agnostic (Evans and Short 2014b)—i.e.,
to allow any participating character to be played either by an
autonomous agent or a human player—and to be potentially
reusable across different interactive stories or even entire
storyworlds, such that some practices might be equally use-
ful for stories set in realistic, fantasy, and science fictional
settings. This grouping of potential character actions into
cleanly composable and reusable social practices is there-
fore a primary goal for our work on Praxish.

We then set about an iterative process of development in-
volving the gradual construction of two example storyworlds
and the framework features needed to realize these story-
worlds. After reconstructing the most foundational compo-
nent of the whole framework (the logic database), we split
into two teams and attempted to author social practices sep-
arately, developing two distinct intermediate JSON formats
for representing practice types. We discussed the differences
and similarities between these two formats, merged them
into a single format, wrote code to support all of the Praxis
language features used in these example practices, and then
repeated this two-step process of divergent content authoring
and convergent framework code authoring for several itera-
tions, eventually ending up with the set of framework fea-
tures discussed here. Notably, this resulted in two distinct
example storyworlds with conceptually similar but some-
what divergent practice definitions; we discuss these a bit
more in the “Case Studies” section below.

Overall, we believe that this process of repeated diver-
gence and reflective convergence resulted in a more robust
framework— one that accommodates a wider range of use
cases than if we had attempted to construct only a single
framework and example storyworld from day one.

Implementation
Praxish consists of three major components: the underlying
logic database, which handles the storage, querying, and up-
dating of storyworld state; the social practice layer, which
handles the specification and maintenance of the rules that
govern character behavior in a particular storyworld; and the
characters layer, which handles the specification and perfor-
mance of the characters present in a particular story.

408

Figure 2: A copy of the Versu system diagram from (Evans
and Short 2014a), with a green overlay indicating which
components we have reimplemented in Praxish.

Logic Database
The logic database is Praxish’s most fundamental compo-
nent. It stores ground sentences of exclusion logic (Evans
2010)2 (i.e., sentences that contain no variables), permits the
insertion and deletion of sentences, and can be queried via
Prolog-style unification (Siekmann 1989) of the various sen-
tences in the database with a provided open sentence (i.e., a
sentence containing at least one variable).

Ultimately, the majority of higher-level Praxish function-
ality consists of running queries against the logic database
to discover which actions can be performed by a particular
agent and updating the database to reflect any changes asso-
ciated with the action an agent has chosen to perform.

Data Format As in Praxis, a Praxish sentence is any of:

2Exclusion logic was later rebranded by Evans as eremic
logic (Evans 2016). We use the older name here for consistency
with the Versu documentation.

X ::= S |S.X |S!X

...where S denotes a symbol (either a capitalized
Variable or a lower-case constant). Sentences are
stored in the database as trees of constant symbols.

The dot connector . asserts that the tree on the left-
hand side has the subtree on the right-hand side. For
instance, the sentence bedroom.furniture.bed as-
serts that bedroom has one or more subtrees, includ-
ing bedroom.furniture; which itself has one or
more subtrees, including bedroom.furniture.bed.
This sentence could coexist in the database with sen-
tences like patio, bedroom.occupant.trip, and
bedroom.furniture.desk, allowing for the specifica-
tion of a hierarchical world model.

The exclamation point connector ! is like the dot con-
nector, but asserts that the left-hand side has only a sin-
gle subtree, namely that specified by the right-hand side.
Inserting first bedroom.lockState!locked, followed
by bedroom.lockState!unlocked, into the database
will result in only the second sentence being retained. How-
ever, all other subtrees of bedroom will remain unaltered:
for instance, bedroom.furniture is unchanged.

Querying via Unification The database can be queried
by unification of its sentences against an open sentence
that contains one or more capitalized variables. Suppose we
query with the open sentence Room.occupant.Person
(which contains two variables, Room and Person) a
database that contains the following sentences:

bedroom.furniture.bed
bedroom.occupant.trip
bedroom.lockState!unlocked
patio.occupant.grace

This yields two sets of variable bindings: {Room:
bedroom, Person: trip} and {Room: patio,
Person: grace}.

Updating the Database The database accepts two basic
update commands: insert and delete. Insertion gener-
ally adds a single sentence to the database, but may delete
existing sentences representing removed subtrees if a sub-
tree is overwritten by an inserted sentence that contains the
exclamation point (!) connector. For instance, if the database
initially looks like the following:

jukebox.color!red
jukebox.playState.song!allStar
jukebox.playState.songPart!beginning
jukebox.playState.nextUp!closingTime

...then inserting jukebox.playState!broken will
cause the database to look like the following, replacing
all information about the jukebox’s playState with the
opaque symbol broken (without affecting any other stored
information):

jukebox.color!red
jukebox.playState!broken

409

Deletion, meanwhile, can be used to remove either a sin-
gle sentence or all sentences that share a specific prefix. For
instance, if the database initially looks like the following:

practice.debate.ben.pattie
practice.debate.ben.pattie.whoseTurn!pattie
practice.debate.ben.pattie.topic!agents
practice.greet.trip.gonzalo

...then deleting practice.debate.ben.pattie
will cause the database to look like the following:

practice.greet.trip.gonzalo

...essentially discarding all information related to the on-
going debate between Ben and Pattie, while preserving ev-
erything else.

Deletion in exclusion logic is specifically intended to al-
low for the easy implementation of lifetimes for bundled
data. For instance, many social practices (including conver-
sations, games, and so on) store temporary information that
is needed to organize the behavior of participating agents
while the practice (or a particular temporary state of the
practice) remains active, but that can safely be cleaned up
as soon as the practice concludes. The ability to easily clean
up this transitory state with a single delete command is
key to keeping the database manageable when many prac-
tices are active in parallel.

Ultimately, almost all state updates at higher layers of
the Praxish stack are eventually implemented in terms of
insert and delete commands issued to the underlying
logic database.

Social Practices
The next layer of Praxish provides affordances for author-
ing structured social practices, which guide the behavior of
characters (both player and non-player) by providing these
characters with a set of actions they can perform. From a
technical perspective, practices are similar to finite state ma-
chines: each practice instance encapsulates some state that
will be cleaned up when the practice instance is removed;
actions offered by a particular practice are typically made
available only when the practice is in a particular state; and
taking an action offered by a particular practice will typi-
cally advance that practice’s state in some way.

Like Praxis, Praxish implements a constitutive view of so-
cial practices. Unlike the regulative view, in which social
practices shape a person’s behavior by restricting what ac-
tions they can take, practices in the constitutive view shape a
participant’s action possibilities in an additive way: the only
meaningful actions that characters can take are those pro-
vided by the practices they are participating in (Evans 2016).
In other words, the set of actions available to a character in
Praxish is exactly the union of the sets of actions provided by
each of the practices in which that character is a participant.

Practice Format Practices are defined as JSON objects
with several required and several optional keys. At mini-
mum, a practice must have:

• A string id that uniquely identifies this practice type

{
id: "greet",
name: "[Greeter] is greeting [Greeted]",
roles: ["Greeter", "Greeted"],
actions: [{

name: "[Actor]: Greet [Other]",
conditions: [

"eq Actor Greeter",
"eq Other Greeted"

],
outcomes: [

"delete practice.greet.Actor.Other"
]

}]
}

Figure 3: A basic practice definition in its entirety. This prac-
tice has two roles (Greeter and Greeted) and provides
a single action, which allows the greeter to greet the greeted
and deletes the practice instance that provides it when per-
formed. An instance of this practice between the characters
trip and gonzalo would be identified in the database by
the prefix practice.greet.trip.gonzalo.

• A list of string roles, containing at least one entry, that
contains the names of the practice’s uniquely identifying
instance variables

• A list of actions containing at least one action definition,
specifying the actions that this practice provides to its
participants (format detailed further below)

Optionally, a practice may also have:
• A human-readable string name describing the practice,

which may contain variable substitutions from the prac-
tice’s roles

• A list of static data sentences, which are inserted into the
database under the practiceData.PracticeID
prefix when the practice definition is registered

• A list of init commands to run when an instance of the
practice is spawned, generally used to insert additional
instance-level data into the database

• A list of zero or more functions, each of which is made
available to the call command when the practice defi-
nition is registered

For an example of a basic practice definition that provides
a single action, see Figure 3.

Action Conditions Every action definition consists of two
major parts: a list of conditions that must be simultaneously
fulfilled for the action to be available, and a list of outcomes
that are executed when the action is performed by an agent.
If the conditions for an action can be fulfilled in multiple
different ways at the same time, then multiple different ver-
sions of the action are made available for the acting agent to
choose between.

In considering whether a particular action definition
should result in any concrete action possibilities for the cur-
rently acting character, the action instantiator first estab-
lishes bindings for all of the role variables from the prac-
tice that provides the action (for instance, Greeter and

410

Greeted in the greet practice outlined in Figure 3) and
for the special variable Actor (which always indicates the
ID of the currently acting character). It then attempts to unify
the action’s conditions with one another subject to the initial
variable bindings, establishing at least one set of internally
consistent bindings for the initially unbound variables in the
action’s conditions. For every set of bindings that can be es-
tablished, a single instance of the action is made available.

In the current version of Praxish, several different condi-
tion types are allowed:

• Basic propositional conditions, which check that a cer-
tain sentence exists in the database

• Equality conditions, which check that two arguments
(typically variables) are equal

• Negated conditions, which check that another condition
does not hold

The original Praxis language implemented a slightly
wider range of condition types, including disjunctive con-
ditions, conditions that evaluate mathematical expressions
such as greater-than, and conditions containing universal
quantifiers. This range of conditions was inspired by those
available within PDDL (McDermott 2000), and we even-
tually intend for our framework to support this full range
of features, but mathematical expressions and universally
quantified conditions are both left as (relatively straightfor-
ward) priorities for future work, since we found no immedi-
ate need for them in the example storyworlds that we created
so far. Disjunctive conditions can already be implemented in
terms of multiple different actions with similar but slightly
disjoint conditions and identical player-visible names; this
adds authoring burden, but because we intend for Praxish
to be a compilation target for a higher-level and more ap-
proachable authoring language in the future (and because
we found little need for disjunction in authoring our exam-
ple content), we found that no new Praxish-level features are
needed to support disjunction at this time.

Action Outcomes An action’s outcomes are simply a list
of commands to execute in order when the action is per-
formed. Commands include basic insert and delete
commands that update the underlying logic database di-
rectly, as well as a call command that can be used to call a
named function with zero or more parameters. As described
in the following section, the call command can be used to
implement conditional execution of action effects via func-
tions that execute different commands depending on the val-
ues of their parameters.

The insert command can also be used to spawn new
practice instances. Inserting a sentence into the database
of the form practice.PracticeID.RoleBindings
(for instance, practice.greet.trip.gonzalo in
the case of a simple greeting practice) will cause a new in-
stance of the named practice to be spawned with the pro-
vided role bindings, potentially running the corresponding
practice’s instance initializer (which can perform additional
database updates) in the process. In this way, actions in
one practice can spawn subpractices that are used to fur-
nish characters with responses or reactions to an action that

was just performed: for instance, asking a question to a spe-
cific character in a group conversation practice might spawn
a subpractice that provides the targeted character with sev-
eral different ways of answering (or pointedly refusing to
answer) the question that was just asked.

Callable Functions Functions behave similarly to actions,
but can be invoked via the call command at any time (par-
ticularly within the effects of an action or the body of an-
other function) to perform a sequence of parametrized com-
mands. The following call command, for instance:

call setShouldRespond battler beatrice

...would invoke the setShouldRespond function (per-
haps provided by some sort of group conversation practice)
with the parameters battler and beatrice—i.e., the
character who is now socially obliged to respond to another
character’s direct question and the asker to whom a response
is owed.

Functions are also capable of conditionally executing ef-
fects. This is because they contain not just a single list of
conditions and a single list of effects, but an ordered list of
cases, each of which has its own separate list of conditions
that must be satisfied and effects that will be run if these con-
ditions are met. Execution of a function proceeds down the
list of cases, trying to find a case whose conditions all hold;
as soon as an appropriate case is found, the body of the case
is executed with the bindings established by the function’s
parameters and the case’s conditions, and the search process
stops. If no matching case is found, the function does not
execute any code.

For example, a function intended to check the state of a
tic-tac-toe board after every move and update the game’s
overall status might have several cases:

• One that matches a victory by horizontal row, and marks
the game over with the appropriate player as the victor if
one is found

• One that matches a victory by vertical column

• One that matches a victory by diagonal (from the top left
to the bottom right)

• One that matches a victory by diagonal (from the top
right to the bottom left)

• One that matches a tied board, and marks the game over
with no player as the winner

This function could then be called in the effects of every
action that updates the board state to ensure that endgame
conditions are always marked as soon as they are met.

These case-based functions (which were not present in
Praxis) are inspired by, and behave similarly to, pattern-
matching functions in functional programming languages
like Haskell (Wadler 1987). They allow actions to exe-
cute conditional effects without the addition of any new
conditional-execution features (beyond unification, which is
already used to determine which actions are possible) to the
core Praxish language.

411

Characters
In parallel to the social practice layer, an additional set of
Praxish language features supports the definition and perfor-
mance of non-player characters. This is the most preliminary
of Praxish’s three existing components and the most likely
to change in future versions of the language, but neverthe-
less already implements a significant portion of the character
definition functionality provided by Praxis.

Character Format Characters in the present version of
Praxish are defined as JSON objects with several allowed
keys, all of which are optional except the id:

• An id string uniquely identifying this character
• A human-readable name string, substituted for the id in

text presented to the player
• A list of zero or more goals, each consisting of a list

of conditions and an associated scalar utility score (de-
scribed further below)

• A boundToPractice string indicating the ID of a social
practice to which the character is “bound”, if any (de-
scribed further below)

Utility-Based Action Selection Non-player characters in
Praxish behave by default as reactive utility-based agents
that perform a single step of lookahead on the available ac-
tions (essentially simulating the immediate consequences of
each available action) before deciding what action to per-
form. Agents choose the action with the highest available
utility score to perform; if multiple actions are tied for high-
est score, one of these is chosen uniformly at random.

Utility scores are assigned to actions on the basis of char-
acter goals. A character goal consists of two components:
a set of conditions that must all be simultaneously true for
the goal to be satisfied, and a scalar utility score that the
character “earns” when this goal is satisfied. For instance, a
romantic comedy character kaguya who wants to impress
her crush by ordering the same drink as them at the bar might
have a goal represented as follows:

{utility: 5,
conditions: [
"practice.bar.B.patron.kaguya.order!Drink",
"kaguya.ship.Crush.evaluation.crush",
"Crush.preferences.favoriteDrink!Drink"]}

...and consequently would derive 5 utility from any action
that results in her placing an order for the drink Drink at
any arbitrary bar B where the Drink in question is also the
favorite drink of a character she views as a Crush.

The overall utility of an action is determined by summing
together the utility scores of every character goal that the
action would cause to be satisfied. Consequently, characters
will generally prefer to take actions that satisfy multiple of
their goals at once if such actions are available.

Because goal satisfaction is evaluated via unification in
the same way as action or function case conditions, a sin-
gle goal can be satisfied in multiple different ways. When
this is the case, the character earns additional utility for each
instance of the goal that is satisfied.

Practice-Bound Agents Sometimes it is useful to include
agents in a storyworld that are not traditional human-like so-
cial actors, but that are still capable of taking a narrow range
of autonomous actions. Examples include both drama man-
agers (which should take only metanarrative actions, per-
haps intervening at certain key moments to advance the story
to its next high-level plot beat or to adjust the motivations of
a central character) and diegetic automata that should not
participate in the vast majority of social practices (such as a
jukebox, which should only take actions that involve playing
through a song selected by another agent).

In Praxish, these kinds of behaviors are implemented by
practice-bound agents: agents that are restricted to taking
only actions provided by a specific named practice. A char-
acter definition may specify (via the boundToPractice key)
the string ID of a practice to which this character should be
bound, and the character will thereafter be unable to perform
actions provided by any practices besides the specified one.
This is a novel feature not available in the original Praxis
language, and we discuss its implications in greater detail in
the “Key Differences from Praxis” section below.

Player Characters Any agent may be substituted by a hu-
man player. Whenever an agent played by the player is al-
lowed to act, the player is asked to directly select an action
for the agent to perform from the complete list of actions
available to that agent.

Key Differences from Praxis
Though Praxish began as a one-to-one reimplementation of
the original Praxis language from available documentation,
we soon encountered several points at which it made sense
to deviate from Praxis slightly in functionality. This section
briefly discusses our key deviations from Praxis and the mo-
tivation behind each.

Conditionality via Pattern-Matching Functions
The original Praxis language provides an if command that
can be used in an action’s outcomes (or in the body of a
function) to check the value of a conditional, then execute
a list of body commands if the conditional evaluates to true.
However, because part of our vision for Praxish is that it will
eventually serve as the compilation target for a higher-level
and more approachable content language, we would prefer
to minimize the number of distinct language features that
are supported at the Praxish layer and to push less critical
features up the stack to higher-level layers of our framework.

Consequently, we deviate from Praxis in providing only
a single Praxish-level conditional primitive: the pattern-
matching behavior exhibited in action preconditions, ex-
tended to the behavior of callable functions. A function that
matches on its parameters and executes a different case de-
pending on these parameters’ values can be used to imple-
ment arbitrarily complicated conditional effects without ne-
cessitating the addition of a separate if command, and a
higher-level authoring tool or language can directly compile
conditional effects in action definitions down to the invoca-
tion of an equivalent anonymous function if we decide that
we want to implement something like if later on.

412

Practice-Bound Agents
A need for autonomous agents that do not participate fully
in normal human social practices (including extradiegetic
drama managers and diegetic automata) arose multiple times
during our authoring of example content. Though these
agents can be implemented by adding an extra condition to
almost all actions (such that the vast majority of actions in a
storyworld check whether the acting agent is a normal char-
acter rather than an automaton before allowing the action to
proceed), in practice the need to manually insert these con-
ditions substantially increases the authoring burden (Jones
2023) on practice authors. Manual insertion of actor type
preconditions also limits portability of practices from one
storyworld to the next, since there is no universal way to de-
clare to the system that certain agents should not be treated
as normal characters. Therefore, though it adds to the overall
complexity of the core Praxish language, we still found the
addition of a practice-bound agents feature to be worthwhile
due to how much authoring burden it alleviates.

Practice-bound agents should also be excluded from se-
lection as targets for normal social interactions, since they
don’t represent typical embodied characters. For instance,
characters usually shouldn’t try to flirt with the jukebox
or pursue a rivalry with the drama manager.3 We initially
believed that this would require us to explicitly exclude
practice-bound agents from selection as targets of actions
outside their bound practice: a nontrivial problem, given
that the targets of an action are not explicitly tracked by a
language-level feature in Praxish in the way that the cur-
rently acting agent is tracked by the Actor variable. For-
tunately, however, we discovered that the natural style of
practice authoring (in which agents must generally take an
explicit action to enter a practice before they can participate
in it, or else must be inserted into a specific role within the
practice when the practice is first spawned) tends to exclude
practice-bound agents from appearing as potential targets for
other practices’ actions as well, even without any additional
language-level functionality or practice authoring conven-
tions. Because a practice-bound agent will never initiate its
own participation in other practices, it will generally not be
subject to actions by other agents in other practices either.

In a Praxish-based game that permits players to select
which character to play as, developers may allow players
to select a practice-bound agent as the player character. This
enables the creation of unusual social simulation-driven play
experiences such as Juke Joint (Ryan et al. 2016), in which
the player plays as a haunted jukebox with very limited af-
fordances for interaction, and Cozy Mystery Construction
Kit (Kreminski et al. 2019), in which one of the players is
cast in the role of a drama manager who takes exclusively
extradiegetic rather than in-character actions.

No Typechecking
Praxis was a statically typed language that enforced type
annotations (provided by content authors) on the symbols
that could be bound to certain roles, both in social practices

3That said, we would love to play a game in which it makes
sense to do either of these things.

and as arguments to callable functions. Praxish, on the other
hand, makes no attempt to implement typechecking or type
annotations, largely for the sake of language simplicity and
ease of implementation. Though we believe that typecheck-
ing would eventually be nice to have as an assistance fea-
ture for content authors, we plan to implement typechecking
later in the higher-level authoring tools rather than include it
in the lower-level Praxish language, at least for now.

Case Studies
As discussed in the “Research Process” section above, we
split into two content authoring teams during the research
process and created two distinct but similar example story-
worlds while developing Praxish. Both feature the same gen-
eral setting (a bar that contains a jukebox and some space for
playing tabletop games) and both feature some shared social
practices, though they differ in the details.

Each storyworld also presents a slightly different user in-
terface. One, created to test autonomous character behavior,
simply simulates and prints out a sequence of autonomous
character actions in the browser console to illustrate the non-
deterministic and interleaved progression of the various so-
cial practices active in the world. The other, created to test
player interaction, allows the player to create several named
characters, then illustrates simple round-robin turn-taking in
which the player is repeatedly allowed to choose the next
action of each character.

Together, these example storyworlds (both available as
part of this paper’s associated software artifact) demonstrate
a wide variety of Praxish functionality:

• The greet practice demonstrates how practices provide
actions only to their participants; how multiple instances
of the same practice type can exist simultaneously be-
tween different sets of characters; and how a practice can
remove itself from the database once it concludes.

• The tendBar practice demonstrates role asymmetry
within practices (the bartender has access to a very dif-
ferent set of actions than the other characters), as well
as the capacity for characters to independently join and
leave practices by walking up to and away from the bar.
Two characters in the non-interactive demo also exhibit
preferences for specific kinds of drinks, while the bar-
tender has a preference for serving one of the customer
characters over the other.

• In the non-interactive demo, the ticTacToe practice
makes extensive use of a callable pattern-matching func-
tion to determine whether an endgame state has been
reached every time a character makes a move.

• In the non-interactive demo, the jukebox, which plays
through a requested song autonomously once another
character makes a request, is a practice-bound agent:
it can take actions, but only those provided by the
jukebox practice to which it is bound, and it will never
be selected as the target for normal social interactions.

• In the interactive demo, the fight practice demon-
strates both how practices can be spawned by other prac-
tices, as well as how multiple different causes can all lead

413

to the same effect: there are several different ways for
characters to become angry at one another, but all of them
can result in a bar fight if the angered character decides
to escalate to a physical attack.

Both example storyworlds contain only a few hundred
lines of practice and character definition JSON, split across
four distinct practice types in the non-interactive demo and
six in the interactive demo. We found that our pace of con-
tent authoring dramatically accelerated as framework fea-
tures solidified, eventually enabling the development of mul-
tiple complex practices per day.

Related Work
We are aware of two prior non-Versu projects that made use
of features from the Versu AI architecture: the now-defunct
Character Engine by Spirit AI (a company whose found-
ing team included Versu’s Emily Short) made use of Praxis-
like social practices to structure agent behaviors, while the
experimental AI-based game MKULTRA (Horswill 2018)
was built around an exclusion logic database. Unfortunately,
the Character Engine framework is now unavailable, and
MKULTRA does not replicate features of the Versu archi-
tecture beyond the foundational database layer.

More broadly, there exist a number of logic-based
domain-specific languages for specifying the behavior of
characters in narrative-oriented social simulations. These all
differ substantially from Praxish in terms of compositional-
ity: where Praxish (like Praxis before it) aims to cleanly sep-
arate social behaviors into distinct social practices that can
be reused from one story to the next, instantiated multiple
times within a single story, and potentially even ported from
one storyworld to another, other systems typically lump to-
gether all of the actions that are possible for characters to
take into a single storyworld definition that does not consist
of multiple readily separable practice definitions.

Ceptre (Martens 2015) is a logic language for interac-
tive storytelling based on linear rather than exclusion logic,
which provides a different set of solutions to the problems
of modeling stateful social situations. Actions in Ceptre
(called rules) may produce and consume resources that in-
fluence which actions are and are not available, and rules are
grouped into stages that can be used to represent different
high-level social contexts or successive states of a progress-
ing social practice. However, the story may not be in mul-
tiple different stages at the same time, so stages cannot be
used to cleanly separate social behaviors into composable or
reusable practices as Versu practice definitions permit. Addi-
tionally, Ceptre does not provide any built-in mechanism for
intelligent decision-making by non-player characters when
multiple actions are possible. Ceptre does offer an approach-
able graphical authoring tool (Card and Martens 2019) that
may serve as inspiration for our own future work on higher-
level authoring tools for Praxish.

The Comme il Faut line of systems (McCoy et al. 2014),
including successor systems Ensemble (Samuel et al. 2015)
and Kismet (Summerville and Samuel 2020), are all based
on a two-stage model of character decision-making. Charac-
ters in these systems first form high-level volitions toward

one another (generally relationship status intents such as
“start dating” or “become rivals”), with their propensity to
pursue specific volitions calculated via storyworld-specific
influence rules, and then take actions that are specified to
advance these volitions. These volitions, however, are rela-
tively limited: unlike in Praxish, characters cannot intend ar-
bitrarily complicated sets of logical conditions, limiting the
expressive flexibility of character goals. Nevertheless, En-
semble in particular is associated with a graphical author-
ing tool that may further influence our own future work on
Praxish-based authoring tools.

Finally, the recently released social simulation game City
of Gangsters (Zubek et al. 2021) is backed by a logic lan-
guage called BotL that is largely used for reactive querying
and state updates. Queries are periodically executed against
the state of the world to discover whether certain logical pat-
terns are met, in a fashion similar to story sifting (Kreminski,
Wardrip-Fruin, and Mateas 2023), and relationship states for
certain characters are updated if they are. Unlike the other
systems discussed here (including Praxish), BotL is not re-
sponsible for handling the complete character action selec-
tion loop in CoG, and nothing like the definition of distinct,
composable and reusable social practices is attempted. How-
ever, CoG does provide an interesting alternative take on
how social norms could be encoded in a logic language for
narrative-oriented simulation.

Conclusion and Future Work
We have presented Praxish: an open-source rational recon-
struction of the Praxis logic language, which served as the
foundation for the ambitious and now-defunct proprietary
interactive narrative authoring framework Versu. Praxish can
be used to define interactive storyworlds in terms of multi-
ple distinct, composable, reusable and role-agnostic social
practices that can operate in parallel to provide characters
with a wide variety of action possibilities, as well as highly
expressive character goals that drive reactive utility-based
action selection by non-player characters.

In the future, we plan to continue our Versu reconstruction
efforts by introducing a higher-level and more approachable
authoring language that compiles down to Praxish, akin to
Versu’s Prompter (Nelson 2014). This may be accompanied
by other approachable authoring tools, including tools for
creating NPCs, that go beyond Versu’s original affordances.

We also plan to create one or more larger storygames in
Praxish as a case study. In particular, we aim to try reproduc-
ing a game that is similar in scale and storyworld to either A
Family Supper, Blood & Laurels, or another Versu example
game, to achieve and eventually demonstrate feature-parity
with the original Versu framework. These efforts may be ac-
companied by one or more authoring studies (Hargood and
Green 2023) intended to evaluate the usability of Praxish
and our other authoring tools for content authors.

Acknowledgements
Thanks to Jacob Garbe for preserving, and allowing us to
play, a working installation of the Versu example game
Blood & Laurels.

414

References
Card, A.; and Martens, C. 2019. The Ceptre Editor: A Struc-
ture Editor for Rule-Based System Simulation. In 2019
IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 133–137. IEEE.
Evans, R. 2010. Introducing Exclusion Logic as a Deontic
Logic. In DEON, volume 10, 179–195. Springer.
Evans, R. 2014. Praxis: A Logic-Based DSL for Model-
ing Social Practices. https://versublog.files.wordpress.com/
2014/05/praxis.pdf. Accessed: 2023-08-18.
Evans, R.; and Short, E. 2014a. Versu—a simulationist sto-
rytelling system. IEEE Transactions on Computational In-
telligence and AI in Games, 6(2): 113–130.
Evans, R. P. 2016. Computer models of constitutive social
practice. Fundamental Issues of Artificial Intelligence, 391–
411.
Evans, R. P.; and Short, E. 2014b. The AI Architecture of
Versu. https://versublog.files.wordpress.com/2014/05/versu.
pdf. Accessed: 2023-08-18.
Hargood, C.; and Green, D. 2023. The authoring tool evalua-
tion problem. In The Authoring Problem: Challenges in Sup-
porting Authoring for Interactive Digital Narratives, 303–
320. Springer.
Horswill, I. 2018. Postmortem: MKULTRA, an experimen-
tal AI-based game. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 14, 45–51.
Jones, J. D. 2023. Authorial Burden. In The Authoring
Problem: Challenges in Supporting Authoring for Interac-
tive Digital Narratives, 47–63. Springer.
Kreminski, M.; Acharya, D.; Junius, N.; Oliver, E.; Comp-
ton, K.; Dickinson, M.; Focht, C.; Mason, S.; Mazeika, S.;
and Wardrip-Fruin, N. 2019. Cozy Mystery Construction
Kit: prototyping toward an AI-assisted collaborative story-
telling mystery game. In Proceedings of the 14th Interna-
tional Conference on the Foundations of Digital Games.
Kreminski, M.; Wardrip-Fruin, N.; and Mateas, M. 2023.
Authoring for story sifters. In The Authoring Problem: Chal-
lenges in Supporting Authoring for Interactive Digital Nar-
ratives, 207–220. Springer.
Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, volume 11, 51–57.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social story worlds with
Comme il Faut. IEEE Transactions on Computational Intel-
ligence and AI in Games, 6(2): 97–112.
McDermott, D. M. 2000. The 1998 AI Planning Systems
Competition. AI Magazine, 21(2): 35–35.
Nelson, G. 2014. Prompter: A Domain-Specific Language
for Versu. https://versublog.files.wordpress.com/2014/05/
graham versu.pdf. Accessed: 2023-08-18.
Reed, A. A. 2021. 2013: A Family Supper. https://if50.
substack.com/p/2013-a-family-supper. Accessed: 2023-08-
18.

Ryan, J.; Brothers, T.; Mateas, M.; and Wardrip-Fruin, N.
2016. Juke Joint: characters who are moved by music.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 12,
72–78.
Samuel, B.; Reed, A. A.; Maddaloni, P.; Mateas, M.; and
Wardrip-Fruin, N. 2015. The Ensemble engine: Next-
generation social physics. In Proceedings of the Tenth Inter-
national Conference on the Foundations of Digital Games
(FDG 2015), 22–25.
Short, E. 2014. How Versu works. https://versu.com/about/
how-versu-works/. Accessed: 2023-08-18.
Siekmann, J. H. 1989. Unification theory. Journal of Sym-
bolic Computation, 7(3-4): 207–274.
Summerville, A.; and Samuel, B. 2020. Kismet: a small so-
cial simulation language. In ICCC-WS 2020: Joint Work-
shops of the International Conference on Computational
Creativity.
Tearse, B.; Mawhorter, P.; Mateas, M.; and Wardrip-Fruin,
N. 2012. Lessons learned from a rational reconstruction of
Minstrel. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 26, 249–255.
Wadler, P. 1987. Views: A way for pattern matching to co-
habit with data abstraction. In Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, 307–313.
Zubek, R.; Horswill, I.; Robison, E.; and Viglione, M. 2021.
Social modeling via logic programming in City of Gang-
sters. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 17, 220–226.

415

