Recommendation Technologies
for Configurable Products

Andreas Falkner, Alexander Felfernig, and Albert Haag

W State-of-the-art recommender systems sup-
port users in the selection of items from a pre-
defined assortment (for example, movies,
books, and songs). In contrast to an explicit def-
inition of each individual item, configurable
products such as computers, financial service
portfolios, and cars are represented in the form
of a configuration knowledge base that de-
scribes the properties of allowed instances.
Although the knowledge representation used is
different compared to nonconfigurable products,
the decision support requirements remain the
same: users have to be supported in finding a
solution that fits their wishes and needs. In this
article we show how recommendation tech-
nologies can be applied for supporting the con-
figuration of products. In addition to existing
approaches we discuss relevant issues for future
research.

Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

target product is composed from a set of predefined parts

in a way that is consistent with a given set of constraints
(Stumptner 1997). Similar to knowledge-based recommenda-
tion (Burke 2000) configuration is a process where users specify
(and often adapt) their requirements and the configuration sys-
tem provides feedback. Requirements specifications range from
feature value definitions to textual queries specified on an infor-
mal level. Feedback is provided, for example, in terms of further
questions that need to be answered, solutions (configurations),
explanations of solutions, and proposals for relaxations of the
user requirements in situations where no solution can be found.

A major difference between configuration systems and rec-
ommender systems in general is the way in which product
knowledge is represented. Configuration systems are operating
on a configuration knowledge base (Stumptner 1997), which
describes the properties of all allowed instances. In contrast to
configuration systems, recommender systems are operating on
the basis of an assortment of explicitly defined solution alter-
natives. The reason for using a configuration knowledge base is
the large number of solution alternatives (possible configura-
tions), which make an explicit representation infeasible.
Although the used knowledge representations are different, the
decision support goal is quite the same for both types of sys-
tems: users have to be proactively supported in finding a solu-
tion that fits their wishes and needs.

Configuration systems often achieve this goal only partially
since the amount and complexity of options presented by the
configurator outstrip the capability of a user to identify an
appropriate solution (configuration). Users are unable to find
the features they would like to specify, they are unsure about
their preferences regarding complex technical product proper-
ties, and they do not know how best to adapt their requirements
in the case of inconsistencies (if no solution can be identified).
Even experienced sales persons show a tendency of recom-

Conﬁguration is a basic form of design activity where the

Articles

FALL 2011 99

Articles

V={v; :type, v, :pdc, vs:fuel, v4:skibag, vs:4-wheel, vg:color}

D={ dom(type)={city, limo, combi, xdrive},
dom(pdc)={yes, no},
dom(fuel)={1.7, 2.6, 4.2},
dom(skibag)={yes, no},
dom(4-wheel)={yes, no},

dom(color)={red, blue, grey, black}}

c1: 4-wheel=yes = type = xdrive,
cy: skibag=yes = type # city,
c3: fuel=1.7 = type = city,
c4: fuel=2.6 = type # xdrive,
Cs: type=combi= skibag = yes,
Cs: type=limo = pdc = yes}

c7: type = city, cg: fuel = 1.7, co: 4-wheel = no,

C1o: pdc = yes, cqq: color=black}

Figure 1. Example of a Configuration Task.

mending configurations they already know from
previous sales dialogues and thus are potentially
overlooking solutions that would better fit the
wishes and needs of a customer (Tiihonen and
Felfernig 2010). The goal of this article is to show
how recommendation technologies can improve
this situation.

In commercial environments (Haag and Rie-
mann 2011, Fleischanderl et al. 1998) we can
observe an increasing demand for functionalities
that proactively support users throughout the con-
figuration process. These environments already
integrate basic functionalities such as the recom-
mendation of feature values (Haag and Riemann
2011) or the recommendation of specific compo-
nent connections (Fleischanderl et al. 1998). By
the majority the recommendations are knowledge-
based in the sense that they are determined on the
basis of explicit rules or constraints (Felfernig and
Burke 2008).

The idea of applying recommendation tech-
niques to support configuration scenarios becomes
increasingly popular (Coester et al. 2002, Ardis-
sono et al. 2003, Tithonen and Felfernig 2010).
Examples are the recommendation of features and
feature values (Coester et al. 2002, Tithonen and
Felfernig 2010), the recommendation of relax-
ations (Felfernig et al. 2009), and the reuse of cas-
es for the determination of new configurations
(Tseng, Chang, and Chang 2005). The reuse of cas-
es is and has been intensively investigated by the
CBR community (Mantaras et al. 2005).

The remainder of this article is organized as fol-
lows. First, we introduce basic concepts of knowl-
edge-based configuration. In the following we pro-

100 AI MAGAZINE

vide an overview of existing approaches to inte-
grate recommendation and configuration tech-
nologies. Finally, we conclude the article with a
discussion of future research issues.

Product Configuration

As a basis for the following discussions we intro-
duce the definitions of a configuration task and a
corresponding configuration (solution)—both are
based on Felfernig et al. (2004). The definitions are
based on the assumption that a configuration task
is represented as a basic constraint-satisfaction
problem, or CSP (Stumptner 1997). Note that
industrial configuration environments are based
on advanced constraint-based representations
such as generative constraint satisfaction (Fleischan-
derl et al. 1998) where the number of variables
(components) is not fixed but generated on
demand during search or dynamic constraint satis-
faction (Haag and Riemann 2011, Mittal and
Falkenhainer 1990) where each variable is prede-
fined and has an activation status (only if active,
the variable is taken into account during search).
For a detailed discussion of different approaches to
configuration knowledge representation see
Stumptner (1997).

Definition (Configuration Task).

A configuration task can be defined as a CSP (V, D,
C) where V= {v,, v,, ..., v} represents a set of finite
domain variables and D = {dom(v,), dom(v,), ...,
dom(v,)} represents the set of corresponding vari-
able domains. Furthermore, C = P, U C, represents
a set of constraints where Py, = {¢,, ¢,, ..., ¢} r€p-
resents the product knowledge and Cy, = {c,,.,, .0/
..., ¢,} represents a set of requirements. The tuple
(V, D, Pyp) is denoted as configuration knowledge
base.

The example of a configuration task in figure 1
stems from the automotive domain. The variables
in this simple example are car type, availability of a
parking guidance system, average fuel consumption in
gallons per 100 miles, availability of a skibag, avail-
ability of a 4-wheel functionality, and the car color.
Users of a configurator can specify their require-
ments on the basis of Cj.!

On the basis of this characterization of a config-
uration task we introduce the definition of a con-
figuration. A configuration (configuration result or
solution) can be interpreted as a bill of materials
(BOM), which consists of a list of all components
and subcomponents that are part of a product.

Definition (Configuration)

A configuration is an instantiation I = {v, =i}, v, =
iy ..., v, = i,} where i, is one of the elements of
dom(v,). Users are interested in valid configura-
tions (solutions), that is, configurations that are

session vi: type

v2: pdc

vs: fuel

va: skibag vs: 4-wheel ve: color

Table 1. Variables v; Specified by a User in Session s.

The values of s, x v; denote the order in which variables have been specified by the user.

complete (each variable has an assigned value) and
consistent (the assignments are consistent with the
constraints in C). I = {type=city, fuel=1.7,4-wheel=no,
pdc=yes, color=lack, skibag=no} is an example for a
valid configuration where skibag=no has been
selected by the configurator.

Recommendation Technologies for
Configurable Products

Users of a configurator application often need
advice in order to be able to answer questions such
as which variables (features)? to specify next?
Which values to adapt in situations where no solu-
tion can be found? Which values to select—specifi-
cally in situations where users lack detailed prod-
uct knowledge? In the following section we will
show how recommendation technologies can be
applied for answering these questions.

Recommending Features

Recommendation technologies can help to reduce
overheads related to feature selection in different
ways: on the one hand features can be explicitly
excluded if not needed in a certain context; on the
other hand they can be ranked such that the most
relevant ones are easily accessible.

Inclusion and Exclusion of Features

In a car configurator we could exclude the question
regarding skibag if the user has specified the car
type combi since cars of type combi have a skibag
included. An example from the financial services
domain is the following: if the age of a user is
above a certain limit, no pension product related
questions should be asked. If the user is primarily
interested in low-risk investments, no questions
related to the inclusion of foreign currencies and
shares should be posed.

The exclusion from a dialogue of features that
are not relevant in the current configuration con-
text can be implemented, for example, on the basis

of process flows that define in which order which
questions are posed to the user (Felfernig and
Burke 2008). This process-based selection of rele-
vant questions can be interpreted as a very simple
type of knowledge-based recommendation where
constraints represent the preconditions for select-
ing questions. Beside the inflexibility in terms of
not being able to focus on questions relevant for a
specific user this approach triggers additional
knowledge engineering efforts.

Ranking of Features

Besides their explicit inclusion or exclusion, fea-
tures can be ranked according to their importance
for the user. It is a major requirement that state-of-
the-art intelligent systems are flexible and proac-
tive in the way they support users in specifying
their requirements and selecting relevant features
(Pu and Chen 2008). Various approaches to feature
recommendation have already been developed—
see, for example Mirzadeh and Ricci (2007) and
Thompson, Goker, and Langley (2004). We will
now sketch the approaches of collaborative, popu-
larity-based, entropy-based, and utility-based fea-
ture recommendation.

Table 1 represents a simple interaction log that
indicates in which session which variables (fea-
tures) have been selected by the user in which
order. For example, in session s, variable v, has
been selected first, then v, and v, and finally v,.
The entry O denotes the fact that the user did not
specify a value due to, for example, missing tech-
nical product knowledge or low interest.

Collaborative Feature Selection

One approach to predicting relevant features is to
apply the concepts of collaborative filtering (Her-
locker et al. 2004). If we assume that the user in the
current session has already selected and specified
the variables v, and v,, the most similar sessions (4-
nearest neighbors) would be {s;, s,, s,, s;} and v,
would be recommended as the next variable to be
specified since it had been selected by the majori-
ty of the nearest neighbors.

Articles

FALL 2011 101

Articles

session vi:type va:pdc s fuel

va: skibag vs: 4-wheel vs: color

Table 2. Log of Successfully Completed Configuration Sessions.

Value of the variable v in the session s,.

Popularity-Based Feature Selection

Another feature selection approach is to rank fea-
tures (v;) according to their popularity, which can
be defined as the share of user selections of vari-
able v, in relation to the total number of variable
selections (see equation 1). This measure is simple
(it does not require complex calculations) and pri-
marily takes into account features users want to
specify.

 #selected({v,})
- #selected({v,...v,})

popularity (v;) (€]

Both collaborative and popularity-based feature
selection help to identify questions of relevance for
the user but do not take into account minimality
in terms of the number of questions needed
(Mirzadeh and Ricci 2007). We will now sketch
how to reduce the number of questions and at the
same time take into account feature relevance.

Entropy-Based Feature Selection

Entropy is used to determine the smallest number
of bits needed for transmitting information units
with a certain occurrence distribution. The higher
the entropy the higher is the degree of information
content. The idea of applying entropy for feature
selection is to select high-entropy features that
minimize the overall number of questions needed
to successfully complete a configuration session.
The entropy of a feature (variable v,) can be deter-
mined using equation 2 where p . is the occurrence
probability of value a; € dom(v)).

entropy (v,) = —Z ‘,'d:g;"(v') pa;+10g, (pai) @)

For determining the entropy of a feature, we
have to exploit the information contained in a log
of already successfully completed configuration
sessions (see table 2). A configuration log does not
include all possible solutions.? Still, it is a valuable
basis for ranking features with respect to their
capability of reducing the number of solutions of
interest for the user (Tithonen and Felfernig 2010).
If the goal is to reduce the set of potential solu-

102 Al MAGAZINE

tions, 4-wheel is not a good candidate for asking a
question (entropy: 0.0). The feature fuel should be
used (entropy: 1.37).

The entropy measure does not take into account
the relative importance of features, which means
that users could be confronted with questions they
are not interested in. Consequently, the basic
entropy measure should only be applied in situa-
tions where we do not have to deal with user pref-
erences regarding the specification of features.
Especially in the context of configuration process-
es, entropy has to be combined with other meth-
ods that take into account the aspect of feature rel-
evance (such as collaborative and popularity-based
ranking).

Utility-Based Feature Selection

This feature selection approach combines the
advantages of popularity-based and entropy-based
feature selection (see equation 3).

utility (v,) = entropy (v;) popularity (v;) 3)

An empirical evaluation by Mirzadeh and Ricci
(2007) shows that utility-based feature selection
outperforms the entropy and popularity-based
approaches in terms of minimizing the number of
questions needed in a dialogue.

Recommending Explanations

Quite often users specify requirements (Cp) that are
inconsistent with the product knowledge (Py,).
One possible way to avoid such situations is to
allow the user to enter only one requirement at a
time and to prevent the specification of values that
do not allow the calculation of a solution. This
approach is very limited and does not allow the
user to learn about the underlying product assort-
ment and existing trade-offs between product
properties (Pu and Chen 2008); furthermore, such
approaches prevent the manufacturer from learn-
ing new customer requirements.

An alternative is to present minimal explanations

(diagnoses) (Reiter 1987, Felfernig et al. 2009) or
maximal relaxations (Petit, Bessiere, and Regin
2003; O’Sullivan et al. 2007). Minimal explana-
tions are minimal sets of requirements that have to
be adapted or deleted such that a solution can be
identified. A maximal relaxation is always the com-
plement of a minimal explanation. The following
scenario shows how explanations can support
users in a configuration session.

Minimal Explanation

Let us assume that the user has specified a set of
requirements (C,’) that are inconsistent with the
product knowledge (Pyp).*

Cy = { ¢;: type=limo, ¢4: fuel=1.7, ¢,: 4-wheel=yes,

€19 pdc=no, c,;: color=black}

In such a situation explanations are presented
(see table 4) and the user can select a correspon-
ding adaptation (repair). For example, A,={c,,c,}
has only one associated adaptation, which is
(type=xdrive, fuel=4.2). Repair alternatives can be
determined with the help of a constraint solver
(Herbrard et al. 2005, Tiihonen and Felfernig
2010), that is, the user is not forced to figure out
consistent repairs on his or her own. If many repair
alternatives exist and not all of them can be calcu-
lated (for performance reasons), the user should
also have the option of adapting his or her require-
ments without being forced to select one of the
proposed repairs.

Next we will discuss different approaches to the
determination of minimal explanations. We will
first introduce the basic concept of model-based
diagnosis (Reiter 1987) and then explain the con-
cept of preferred explanations, which represent rec-
ommendations for explanations.

Model-Based Diagnosis

Explanations (diagnoses) are based on the resolu-
tion of minimal conflict sets calculated by algo-
rithms such as QUICKXPLAIN (Junker 2004). A
minimal explanation is a minimal set of con-
straints that have to be deleted or adapted in order
to make Cj, consistent with Py,. Resolving a mini-
mal conflict is achieved by deleting at least one
constraint from the corresponding conflict set. The
definition of a customer requirements explanation
problem and the corresponding explanation are
based on Felfernig et al. (2004).

Definition (CR Explanation Problem).

A customer requirements explanation problem
(Cps Pyp) consists of a set of customer requirements
(Cp) and the corresponding product knowledge

(Pyp)-
Definition (CR Explanation).

A customer requirements explanation for a CR
explanation problem (C,, Py,) isaset A C Cys.t. Cp

Articles

ID Conflict Set

CSi {c7,cs}
CS; {c7,co}
CS3 {cs,co}
CSs {c7,c10}

Table 3. Minimal Conflict Sets
in the Working Example.

ID Explanation

Repair Alternatives
(type=xdrive, fuel=4.2)
(type=city, 4-wheel=no)

(fuel=2.6, 4-wheel=no, pdc=yes)
(fuel=4.2, 4-wheel=no, pdc=yes)

A1 {c7, cs}
Az {c7, co}

A3 {cs, c9, C10}

Table 4. Explanations Derived from Conflict Sets.

— A U Py, is consistent. A is minimal if there does
not exist an explanation A” with A" C A.

Definition (Conflict Set)

A conflict set CS C C, induced by the product
knowledge P, is a set of requirements such that CS
U Py, is inconsistent. CS is minimal if there does
not exist a conflict CS" with CS” C CS.

Table 3 shows all minimal conflict sets CS; in C}’
induced by the product knowledge P,,. For a
detailed discussion of the determination of mini-
mal conflict sets we refer the reader to Junker
(2004).

The minimal explanations for CS, ..CS, are
shown in table 4. A, and A, are minimal cardinality
explanations, which are the first ones returned by
algorithms based on breadth-first search (Reiter
1987). A, is a minimal explanation but not a min-
imal cardinality explanation (for example, |A,| <
1A,

Max-CSP and Max-SAT

An alternative to the determination of explana-
tions using model-based diagnosis (Reiter 1987) are
specialized Max-CSP (Petit, Bessiere, and Regin
2003) and Max-SAT (Argelich et al. 2008) solvers.
These solvers determine maximum-cardinality
constraint sets that allow the calculation of a solu-
tion—such sets do not have consistent supersets.
The complement of such a constraint set is a min-

FALL 2011 103

Articles

cr:type
40%

cii:color
12%

co:4-wheel
15%

cs:fuel
20%

(mZpdC
13%

Table 5. Relative Importance of Requirements.

A1
Az

ID Explanation Utility Ranking
{c7, cs} {c7, cs} = 1.66 3
{c7, co} {c7, co} = 1.82 2
{cs, co, C10} {cs, co, c10} = 2.08 1

A3

Table 6. Utility-Based Ranking of Explanations.

¢ ¢ ¢ Ranking

Table 7. Ranking of Explanations with FASTDIAG.

imal cardinality explanation. A detailed discussion
of existing Max-CSP and Max-SAT approaches is
out of the scope of this article. Further details of
the underlying concepts and algorithms are dis-
cussed, for example, in Argelich et al. (2008).

Preferred Explanations

Inconsistent customer requirements often entail a
large number of alternative explanations (Felfernig
et al. 2009). Consequently, techniques are needed
that enable the calculation of preferred explanations,
that is, explanations with a high probability of
being accepted by the user. O’Sullivan et al. (2007)
propose the concept of representative explanations
where each constraint contained in the complete
set of explanations is also contained in at least one
of the explanations shown to the user. DeKleer
(1990) introduces a probability-based approach to
the determination of preferred explanations (diag-
noses), that is, explanations with a high probabili-
ty of explaining the faulty behavior of a system. A

104 AI MAGAZINE

similar approach has been proposed by Felfernig et
al. (2009), who show how to apply the similarity
between requirements and the configurations
stored in an interaction log (see table 2) for the
identification of preferred explanations.

A simple example of the application of utility
functions (Felfernig, Schubert, and Zehentner
2011) to guide the search for preferred explana-
tions will be sketched in the following. Table 5
shows importance values assigned to each user
requirement. Such values can be specified by a user
but as well be learned from a user interaction log
(Arslan et al. 2002). The function used in our
example is shown in equation 4.

1

utlllty({cl Gy }) = Z < importance(c;) (4)

The ranking of explanations is sketched in table
6. Note that there is no need for calculating all
existing explanations since the utility function
(equation 4) can be applied as a best first search
node expansion strategy (Felfernig, Schubert, and
Zehentner 2011). The function is monotonically
decreasing, which guarantees optimality of best
first search.

The first explanation presented to the user would
be A, (it has the highest utility). Empirical studies in
the domains of computer and financial services
configuration have shown that explanation rank-
ings based on the criteria of utility, probability, and
similarity clearly outperform prediction approach-
es based on the criteria of minimal cardinality
(Felfernig, Schubert, and Zehentner 2011). If there
is a need to incorporate utility functions that are
representing interdependences between variables,
this can lead to the proposal of nonminimal expla-
nations due to nonmonotonicity.

Another approach to the determination of pre-
ferred explanations is FASTDIAG (Felfernig, Schu-
bert, and Zehentner 2011). This algorithm calcu-
lates preferred explanations based on a total
ordering of the constraints in C;. Two explana-
tions A, and A, (subsets of C, = {c,, ..., ¢,}) can be
compared lexicographically as follows: A _is given
preference compared to A, iff 38: ¢; € A, - A and A,
Nicgq - b =47, N {csq, -ory €). A simple exam-
ple is depicted in table 7 where the assumed total
constraint ordering is ¢, > ¢g> ¢4 > ¢, > ¢;;, that is,
¢, is a very important requirement and ¢,, is the
requirement with the lowest importance. If we
compare the explanations A, = {¢,, ¢,} and A, = {cg,
Cq, €10}, A is the preferred one since {c,, ¢,} — {¢g, ¢,
ciof = {7} and A, N {} = Ay N {}. Intuitively, the
importance of ¢, in A, is higher than all other con-
straints in A, therefore A, is the preferred explana-
tion. In the given scenario the FASTDIAG algo-
rithm would automatically calculate the
explanation A,.

Note that this idea of a preferred explanation

perfectly fits industrial requirements, since users of
constraint-based applications typically prefer to
keep important requirements as is and to change
the less important ones (Junker 2004). The predic-
tive quality of FASTDIAG in terms of precision has
been analyzed in (Felfernig, Schubert, and Zehent-
ner 2011) with computer and financial service
portfolio configuration data sets. The evaluation
results do not show significant differences in terms
of predictive quality. However, FASTDIAG run
times for the first-n explanations (n =1, 5, 10, 20)
are significantly lower compared to standard hit-
ting-set-based approaches (Felfernig, Schubert, and
Zehentner 2011). Due to these properties the algo-
rithm perfectly supports interactive scenarios with
the need of presenting the most relevant (pre-
ferred) explanations.

Weighted Max-CSP and Max-SAT

Another alternative for the determination of pre-
ferred explanations are specialized weighted Max-
CSP (Petit, Bessiere, and Regin 2003) and weighted
Max-SAT solvers (Argelich et al. 2008). Each con-
straint has an assigned importance value, and the
search goal is to identify minimal cost solutions
where costs are defined as the sum of the impor-
tance values of the constraints part of the explana-
tion. A detailed discussion of weighted Max-CSP
and Max-SAT algorithms can be found, for exam-
ple, in Petit, Bessiere, and Regin (2003) and
Argelich et al. (2008).

Recommending Feature Values

Feature value recommendations give users a better
understanding of the dependencies between
requirements and the possible settings of other
variables (Coester et al. 2002). For users who are
not experts in the product domain such recom-
mendations provide hints about reasonable instan-
tiations of variables. They also support the idea
that users should specify the most important
requirements from their point of view and let the
configuration system find meaningful completions
(complete configurations). Typical questions
answered by feature value recommendations are:
Which feature values have been selected by users
with similar requirements? What are popular com-
pletions of partial configurations similar to my
requirements? In the following we will discuss
related recommendation approaches.

Different types of feature value recommenda-
tions can help to improve the quality of user sup-
port in configuration sessions. Static recommenda-
tions do not take into account the context of the
current user; for example, the feature value for
skibag is set to no because most of the users are not
interested in the equipment. Rule-based recommen-
dations are taking into account the context of the

current user by interpreting a set of rules; for exam-
ple, if the selected car type is xdrive, then the feature
value for skibag should be set to yes. The major dif-
ference compared to a constraint in the product
knowledge is that recommended feature values do
not need to be accepted by the user. Another
approach to the recommendation of feature values
is to determine the k-nearest neighbor configura-
tions (kNN—taken from already completed config-
uration sessions) that are similar to the current set
of user requirements and to determine recommen-
dations on the basis of majority voting (Coester et
al. 2002). For the identification of k-nearest neigh-
bors we can exploit similarity functions that esti-
mate similarity depending on the type of a feature
(McSherry 2003).

Examples for such similarity functions are more-
is-better (for example, the higher the energy effi-
ciency of a car the better), less-is-better (for exam-
ple, the lower the price of a car the better), and
nearer-is-better (the nearer the size of the steering
wheel to the required size the better). The follow-
ing aspect has to be taken into account when
selecting a similarity function: in contrast to basic
CSPs more complex representations of a configu-
ration task (Fleischanderl et al. 1998) include con-
nection structures (port connections) and cardi-
nalities of subcomponents. This additional
information has to be taken into account by the
similarity function. A more detailed discussion of
such functions can be found, for example, in
Tseng, Chang, and Chang (2005).

Formula 5 shows the basic approach to the
determination of a feature value recommendation
for the variable v, on the basis of majority voting
where a. is the j" value in dom(v;) and v, denotes
the value of v, of the configuration in the session s,
€ S (table 2).

majority (v,) = arg MaX; ;1 dom(y,)

)(‘:hvik :ai> 5)

If we assume that the current user has already spec-
ified values for the variables type (type = city) and
pdc (pdc = yes) and we exploit the 2-nearest neigh-
bors (sessions s, and s, of table 2) for determining
a feature value recommendation for the variable
color, the predicted value would be black. An analy-
sis of probability-based approaches to determining
personalized feature value recommendations can
be found in Coester et al. (2002), Felfernig and
Tiihonen (2010), and Haag and Riemann (2011).
In principle, all of the mentioned approaches
can be exploited for recommending completions
for configurations. However, we want to empha-
size that (with the exception of rule-based
approaches) feature recommendation approaches
cannot guarantee the consistency between a fea-
ture value recommendation, the given require-
ments, and the underlying product knowledge.
Before a feature value is recommended, a consis-

Articles

FALL 2011 105

Articles

tency check is needed (Felfernig and Tiihonen
2010). This situation is well known from case-
based reasoning research: very often retrieved cas-
es have to be adapted in order to be consistent with
the new requirements (Mantaras et al. 2005). An
alternative to the determination of feature value
recommendations consistent with the product
knowledge is to trigger inconsistency handling by
presenting minimal explanations for inconsisten-
cies between requirements and calculated feature
value recommendations (Haag and Riemann
2011).

When presenting configurations or subconfigu-
rations to the user, diversity can play an important
role (Herbrard et al. 2005, Mantaras et al. 2005). It
helps to effectively figure out user preferences by
providing an overview of the available configura-
tions instead of presenting a set of very similar
ones. Algorithms for calculating diverse configura-
tions during solution search are presented in Her-
brard et al. (2005). The authors introduce two basic
approaches. Heuristic search approximates the most
diverse configurations whereas complete methods
can achieve optimal solution sets (maximum
diversity) with the cost of state space explosion as
a result of problem reformulation. The major chal-
lenge for constraint-based applications is that
diversity has to be taken into account during search
whereas case-based applications can apply diversi-
ty metrics on the given set of items (Mantaras et al.
2005).

Issues for Future Research

Issues for future research include recommendation
algorithms for testing and debugging, group-based
configuration, recommender systems in open
innovation, improving knowledge base accessibil-
ity, and group-based knowledge engineering. We
will discuss each of these issues in turn in the fol-
lowing subsections.

Recommendation Algorithms
for Testing and Debugging

In addition to calculating explanations for incon-
sistent requirements, the concepts of model-based
diagnosis (Reiter 1987) can as well be applied to
the identification of faulty constraints in the prod-
uct knowledge (Felfernig et al. 2004). In this con-
text we are interested in minimal sets of faulty con-
straints that have to be deleted from PKB (or
adapted) in order to make the new version of PKB
consistent with a given set of test cases. Similar to
the scenario of inconsistent customer require-
ments, knowledge engineers are often confronted
with a large number of alternative explanations
(diagnoses) and we cannot expect that they are
willing to analyze them all. Open research ques-
tions to be answered in this context are the fol-

106 Al MAGAZINE

lowing: What are good criteria for determining
preferred explanations for faulty constraints in the
product knowledge? How to estimate the relevance
of a test case?

Group-Based Configuration

Another research issue is how best to support con-
figuration processes for groups of users. Example
scenarios are the configuration of holiday trips
and the configuration of software release plans. In
all these scenarios users are cooperatively devel-
oping a configuration. Typical functionalities to
be supported in single-user configuration scenar-
ios (for example, recommending features, recom-
mending explanations, and recommending indi-
vidual feature values) must also be supported in
distributed configuration scenarios. However, fur-
ther research questions have to be answered: How
to achieve consensus between the different users
in the case of inconsistent requirements? What are
the best recommendation algorithms to achieve
this goal? To which extent should the preferences
of users be made visible to other users? On a more
technical level: How can critiquing based recom-
mendation approaches (Pu and Chen 2008) be
applied in distributed configuration scenarios (for
example, for the critiquing of the preferences of
other users)? How can we exploit theories of group
decision making to improve the quality of deci-
sion processes?

Recommender Systems
in Open Innovation

The effective integration of consumer knowledge
into a company’s innovation process—also known
as open innovation—is crucial for a successful new
product development. Innovation process quality
has a huge impact on the ability of a company to
achieve sustainable growth. Innovations are very
often triggered by consumers who are becoming
active contributors in the process of developing
new products. Platforms such as sourceforge.net or
ideastorm.com confirm this trend of progressive
customer integration. These platforms exploit
community knowledge and preferences to come
up with new requirements, ideas, and products. In
this context, the size and complexity of the gener-
ated knowledge (informal descriptions of require-
ments and ideas as well as knowledge bases
describing new products on a formal level) out-
strips the capability of community members to
find solutions consistent with their personal pref-
erences. Example questions to be answered in this
context are: Who are the community members
with similar preferences, ideas, and requirements?
Which ideas should be further developed into
product prototypes? What are the preferred prod-
uct prototypes of the community?

Improving Knowledge Base Accessibility

This is a crucial issue for all processes related to
knowledge base development and maintenance.
Highly experienced knowledge engineers have a
different knowledge base navigation and adapta-
tion behavior and thus should be supported differ-
ently compared to less experienced personnel.
Research topics in this context are, for example,
intelligent knowledge base visualization and navi-
gation support. Example questions to be answered
are the following: Which constraints should be
additionally inspected after a sequence of already
completed adaptation operations? Which infor-
mation can be omitted in certain maintenance
contexts? Similar to the engineering of conven-
tional software systems, knowledge-based systems
are in the need of refactoring support. Example
questions to be answered are: Which constraints
are redundant or will never be active in a configu-
ration session? Which structural changes of the
knowledge base should be recommended in order
to improve its understandability? In this context
we need to have a more detailed look at the under-
lying cognitive aspects, for example, which con-
straint structures are more understandable and
which type of constraint structuring helps to
improve the understanding of the knowledge
base?

Group-Based Knowledge Engineering

The support of group-based configuration process-
es has already been mentioned as an issue for
future research. In the same line, the engineering
of knowledge bases can be interpreted as a collab-
orative process between domain experts (product
designers, sales representatives, marketing, and so
on) and knowledge engineers. Both are often only
familiar with specific aspects of the product respec-
tively the corresponding formalization in PKB (for
example, the hardware or the software of a
telecommunication switch). Furthermore, engag-
ing stakeholders in knowledge engineering
processes triggers conflicting interests regarding
the product assortment that should be offered to
the customer. Example questions to be answered in
this context are the following: Which constraints
should be part of the knowledge base? Which fea-
ture values should be recommended to a specific
user in which context? How to achieve consensus
between contradicting stakeholder preferences?

Conclusions

In this article we provide an overview of recom-
mendation approaches that help to improve the
overall usability of configuration systems. Exam-
ples are the recommendation of features that will
be of interest for the user, the recommendation of

explanations that help the user to solve the “no
solution could be found” problem, and the recom-
mendation of feature values. On the basis of a dis-
cussion of existing approaches we introduced
research questions that should be answered in
order to further advance the state of the art in
knowledge-based configuration.

Acknowledgments

The work presented in this article has been con-
ducted within the scope of the project WECARE
(820128) funded by the Austrian Research Promo-
tion Agency. We want to thank Deepak Dhungana
and Stefan Starke from Siemens for their valuable
comments that helped us to improve this article.

Notes

1. Note that industrial configurator applications are
based on much larger knowledge bases, which include
hundreds of variables and constraints. A detailed discus-
sion of the structural properties of such knowledge bases
can be found, for example, in Tiihonen (2010).

2. In complex configuration scenarios, features represent
decision criteria that can be specified by the user—in con-
trast to other variables describing technical details of no
interest for the user. For our purposes we use the terms
feature and variable synonymously.

3. To stabilize probability calculations in the case of a
small number of entries in a configuration log, an m-esti-
mate (Mitchell 1997) can be applied.

4. Note that C;” does not include a specification of skibag,
that is, the user has no preference regarding this feature.

References

Ardissono, L.; Felfernig, A.; Friedrich, G.; Goy, A.; Jan-
nach, D.; Petrone, G.; Schaefer, R.; Zanker, M. 2003. A
Framework for the Development of Personalized, Distrib-
uted Web-Based Configuration Systems. Al Magazine
24(3): 93-110.

Argelich, J.; Cabiscol, A.; Lynce, 1.; and Manya, F. 2008.
Modeling Max-CSP as Partial Max-SAT. In Proceedings of
the 11th International Conference on Theory and Applications
of Satisfiability Testing, Lecture Notes in Computer Science
4996, 1-15. Berlin: Springer.

Arslan, B.; Ricci, F,; Mirzadeh, N.; and Venturini, A. 2002.
A Dynamic Approach to Feature Weighting. In Data Min-
ing III. Ashurst, UK: WIT Press.

Burke, R. 2000. Knowledge-Based Recommender Systems.
Library and Information Systems 69(32): 180-200.

Coester, R.; Gustavsson, A.; Olsson, R.; and Rudstroem,
A. 2002. Enhancing Web-Based Configuration with Rec-
ommendations and Cluster-Based Help. Paper presented
at the Workshop on Recommendation and Personaliza-
tion in ECommerce, Malaga, Spain, 3-4 June.

DeKleer, J. 1990. Using Crude Probability Estimates to
Guide Diagnosis. Al Journal 45(3): 381-391.

Felfernig, A., and Burke, R. 2008. Constraint-Based Rec-
ommender Systems: Technologies and Research Issues. In
Proceedings of the ACM International Conference on Elec-

Articles

FALL 2011 107

Articles

tronic Commerce, 17—26. New York: Association for Com-
puting Machinery.

Felfernig, A.; Friedrich, G.; Jannach, D.; and Stumptner,
M. 2004. Consistency-Based Diagnosis of Configuration
Knowledge Bases. Al Journal 152(2): 213-234.

Felfernig, A.; Schubert, M.; Friedrich, G.; Mandl, M.; Mai-
ritsch, M.; and Teppan, E. 2009. Plausible Repairs for
Inconsistent Requirements. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, 791-796.
Menlo Park, CA: AAAI Press.

Felfernig, A.; Schubert, M.; and Zehentner, C. 2011. An
Efficient Diagnosis Algorithm for Inconsistent Constraint
Sets. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 26(1): 1-10.

Fleischanderl, G.; Friedrich, G.; Haselboeck, A.; Schreiner,
H.; and Stumptner, M. 1998. Configuring Large Systems
Using Generative Constraint Satisfaction. IEEE Intelligent
Systems, Special Issue on Configuration 13(4): 59-68.

Haag, A., and Riemann, S. 2011. Product Configuration
as Decision Support: The Declarative Paradigm in Prac-
tice. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 25(2): 131-142.

Herbrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T.
2005. Finding Diverse and Similar Solutions in Con-
straint Programming. In Proceedings of the 20th AAAI Con-
ference on Artificial Intelligence, 372-377. Menlo Park, CA:
AAAI Press.

Herlocker, J.; Konstan, J.; Terveen, L.; and Riedl, J. 2004.
Evaluating Collaborative Filtering Recommender Sys-
tems. ACM Transactions on Information Systems 22(1): 5-
53.

Junker, U. 2004. QUICKXPLAIN: Preferred Explanations
and Relaxations for Over-Constrained Problems. In Pro-
ceedings of the 19th AAAI Conference on Artificial Intelli-
gence, 167-172. Menlo Park, CA: AAAI Press.

Mantaras, R.; McSherry, D.; Bridge, D.; Leake, D.; Smyth,
B.; Craw, S.; Faltings, B.; Maher, M.; Cox, M.; Forbus, K.;
Keane, M.; Aamodt, A.; and Watson, 1. 2005. Retrieval,
Reuse, Revision, and Retention in Case-Based Reasoning.
Knowledge Engineering Review 20(3): 215-240.

McSherry, D. 2003. Similarity and Compromise. In Case-
Based Reasoning Research and Development, Proceedings of
the Sth International Conference on Case-Based Reasoning,
Lecture Notes in Computer Science 2689, 291-30S.
Berlin: Springer.

Mirzadeh, N., and Ricci, F. 2007. Cooperative Query
Rewriting for Decision Making Support. Journal of Applied
Artificial Intelligence 21(10): 895-932.

Mitchell, T. Machine Learning. 1997. New York: McGraw
Hill.

Mittal, S., and Falkenhainer, B. 1990. Dynamic Con-
straint Satisfaction Problems. In Proceedings of the Sth
National Conference on Artificial Intelligence, 25-32. Menlo
Park, CA: AAAI Press.

O’Sullivan, B.; Papadopoulos, A.; Faltings, B.; Pu, P. 2007.
Representative Explanations for Over-Constrained Prob-
lems. In Proceedings of the 22nd AAAI Conference on Artifi-
cial Intelligence, 323-328. Menlo Park, CA: AAAI Press.
Petit, T.; Bessiere, C.; and Regin, J. 2003. A General Con-
flict-Set Based Framework for Partial Constraint Satisfac-
tion. In Proceedings of the Ninth International Conference on
Principles and Practice of Contraint Programming, Lecture

108 Al MAGAZINE

Notes in Computer Science 2833, 1-14. Berlin: Springer.
Pu, P, and Chen, L. 2008. User-Involved Preference Elic-
itation for Product Search and Recommender Systems. Al
Magazine 29(4): 93-103.

Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artificial Intelligence 23(1): 57-95.

Stumptner, M. 1997. An Overview of Knowledge-Based
Configuration. AI Communications 10(2): 111-125.

Thompson, C.; Goker, M.; and Langley, P. 2004. A Per-
sonalized System for Conversational Recommendations.
Journal of Artificial Intelligence Research 21: 393-428.
Tiihonen, J. 2010. Characterization of Configuration
Knowledge Bases. Paper presented at the ECAI 2010
Workshop on Configuration, Lisbon, Portugal, 16
August.

Tiihonen, J., and Felfernig, A. 2010. Towards Recom-
mending Configurable Offerings. International Journal of
Mass Customization 3(4): 389-406.

Tseng, H.; Chang, C.; and Chang, S. 2005. Applying Case-
Based Reasoning for Product Configuration in Mass Cus-
tomization Environments. Expert Systems with Applica-
tions 29(4): 913-925.

Alexander Felfernig is a professor of applied software
engineering at the Graz University of Technology. In his
research he focuses on different aspects of the application
of recommendation and configuration technologies in
industrial environments. Felfernig is a cofounder of Con-
figWorks and author or coauthor of more than 150
papers in international journals, conferences, and work-
shops, including Recommender Systems—An Introduc-
tion. For his research he received the Heinz Zemanek
Award from the Austrian Computer Society in 2009.

Andreas Falkner holds an MSc and a PhD in computer
science. Being affiliated with Siemens AG Austria since
1992, he has developed product configuration frame-
works and applications for complex technical systems in
various domains such as railway interlocking systems. At
present, he is a senior research scientist and program
manager in the global technology field constraint-based
configurators at Siemens’ Corporate Research and Tech-
nology department.

Albert Haag is a development architect at SAP AG. He
has been involved in designing and implementing the
SAP product configurators since 1992 in various roles
including project lead and group manager. He received a
PhD in computer science from the University of Kaiser-
slautern and a Dipl. in mathematics from the University
of Hamburg. Haag’s research interests include product
configuration applications and truth maintenance sys-
tems.

