
Technologies to support learning and education, such as
intelligent tutoring systems (ITSs), have a long history
in artificial intelligence. AI methods have advanced

considerably since those early days, and so have intelligent
tutoring systems. Today, intelligent tutoring systems are in
widespread use in K–12 schools and colleges and are enhanc-
ing the student learning experience (for example, Graesser et
al. [2005]; Mitrovic [2003]; VanLehn [2006]). As a specific
example, Cognitive Tutor mathematics courses are in regular
use, about two-days a week, by 600,000 students a year in
2600 middle or high schools, and full-year evaluation stud-
ies of Cognitive Tutor algebra have demonstrated better stu-
dent learning compared to traditional algebra courses (Ritter
et al. 2007).

In recent years, a range of types of interactive educational
technologies have also become prominent and widely used,
including homework support and tutoring systems, science
simulations and virtual labs, educational games, online
resources, massive open online courses, and highly interac-
tive web-based courses. Some have experimentally estab-
lished learning benefits (for example, Bowen et al. [2012];
Lovett, Meyer, and Thille [2008]; Roschelle et al. [2010]).
These systems are increasingly being instrumented to collect
vast amounts of “Big Data” and more and more of it is freely
available. DataShop, an open data repository at the Pitts-
burgh Science of Learning Center1 (Koedinger et al. 2011),
currently stores more than 350 data sets that include more
than 200,000 student hours of data from thousands of stu-
dents at an average of 10 seconds per action, yielding more
than 90 million stored student actions.

Articles

FALL 2013 27Copyright © 2013, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

New Potentials for Data-Driven
Intelligent Tutoring System

Development and Optimization

Kenneth R. Koedinger, Emma Brunskill, Ryan S. J. d. Baker,
Elizabeth A. McLaughlin, John Stamper

n Increasing widespread use of educa-
tional technologies is producing vast
amounts of data. Such data can be used
to help advance our understanding of
student learning and enable more intel-
ligent, interactive, engaging, and effec-
tive education. In this article, we dis-
cuss the status and prospects of this
new and powerful opportunity for data-
driven development and optimization
of educational technologies, focusing on
intelligent tutoring systems. We provide
examples of use of a variety of tech-
niques to develop or optimize the select,
evaluate, suggest, and update functions
of intelligent tutors, including proba-
bilistic grammar learning, rule induc-
tion, Markov decision process, classifi-
cation, and integrations of symbolic
search and statistical inference.

Such data can be used to help
advance our understanding of student
learning and create better, more intel-
ligent, interactive, engaging, and effec-
tive education. To do so requires
advances in artificial intelligence and
machine learning and in our theories
of human intelligence and learning,
especially the rich, knowledge-based
learning flexibility that allows humans
to develop expertise in so many com-
plex domains. This work is often being
pursued in the new fields of educa-
tional data mining (Romero and Ven-
tura 2007, Baker and Yacef 2009) and
learning analytics (Long and Siemens
2011).

In this article, we discuss the status
and prospects of this new and power-
ful opportunity for data-driven devel-
opment and optimization of educa-
tional technologies, focusing on
intelligent tutoring systems and illus-
trating techniques especially in the
context of cognitive tutors.

We begin by summarizing and illus-
trating the key functions of an intelli-
gent tutoring system. We then discuss
techniques for using data to develop
ITS functionality without extensive
knowledge engineering efforts and,
ideally, with greater fidelity to student
experience and consequent pedagogi-
cal effectiveness. Explicitly directed at
accurate modeling of student learning,
student engagement, and improved
instruction, we next discuss tech-
niques that optimize ITS functionality.
We conclude with some future possi-
bilities for data-driven ITS develop-
ment and optimization.

A Summary and Illustra-
tion of the Key Functions
of Intelligent Tutoring Sys-

tems
Intelligent tutoring systems both guide
students through a curriculum of
instructional activities in an outer loop
and monitor step-by-step progress on
an activity within an inner loop (Van-
Lehn 2006). As shown in figure 1, the
outer loop starts with selecting and
presenting an activity to the student.
Such activities are often multistep
problems to solve, but may also
include interactions in a simulation,

game, or a dialogue. Figure 2 shows an
example of a complex activity selected
from an algebra curriculum unit on
systems of linear equations where stu-
dents use table, graphical, and symbol-
ic representations to model a problem
scenario and answer questions about it
(Ritter et al. 2007). Once an activity is
selected, the inner loop takes over and,
as shown in figure 1, persists until the
student has completed the activity.
Within the inner loop, a tutor must
decipher and evaluate each student
action given the context of prior
actions and a cognitive model of stu-
dent reasoning and performance. For
example, in figure 2b, the student has
been filling in the table and most
recently entered a mathematical
expression (.13t) in a column he or she
previously labeled “Current cost” and
using her choice of t to represent time.
The tutor uses the cognitive model to
evaluate this action (in the context of
a plan) and determines it is incorrect
(it should be .13t + 14.95). In addition
to evaluating student actions (the left
branch of the inner loop in figure 1),
an intelligent tutor can also suggest a
next action when a student is stuck
(the right branch). This suggestion
may come in the form of a series of as-
needed hints that get increasingly spe-
cific. In figure 2c, the student gets
stuck on question 4 of the problem
and clicks the hint button (2d). The
tutor replies with an initial general
hint to enter an equation (within the
equation solving tool). To perform the
evaluate and suggest functions, the
tutor uses a cognitive model that rep-
resents possible solutions to the activi-
ty, infers how a student’s input may
relate to common misunderstandings,
and predicts what feedback or hints
will best help the student complete the
activity. Figure 3 illustrates how a cog-
nitive model can be used, through a
plan recognition algorithm called
model tracing (Ritter el al. 2007), to
both evaluate a student’s responses
and suggest hints.

The results of model tracing of stu-
dent input as he or she completes the
activity are used to update (bottom of
the outer loop in figure 1) an estimate
of the student’s skills and knowledge
in the target domain. This information
is then used to aid in activity selection

Articles

28 AI MAGAZINE

(top of the outer loop). While many
representations of student knowledge
are possible, a simple yet effective
model involves representing the cur-
riculum by a set of skills and concepts,
known as knowledge components
(KCs). Then student knowledge is rep-
resented by the probability that the
student has mastered each KC. These
probability estimates can be updated
by using a probabilistic model of stu-
dent learning, such as by knowledge
tracing (Corbett and Anderson 1995),
which is essentially Bayesian filtering
performed on a two-state hidden
Markov model (HMM). Figure 2e
shows an estimate of the student’s
understanding of the five knowledge
components used in this curriculum
unit. These estimates are used to select
the next activity for the student.

Machine Learning and
Data-Driven ITS
Development

Historically, most intelligent tutoring
systems have been built through
extensive knowledge engineering and,
ideally, cognitive task analysis to devel-
op models of student and expert skill
and performance. These models are
then used to generate hints and feed-
back (inner loop of figure 1). In partic-
ular, two classes of effective tutors, cog-
nitive tutors (for example, Ritter et al.
[2007]) and constraint-based tutors
(for example, Mitrovic [2003]), rely on
knowledge representations, “produc-
tion rules” or “constraints,” that
require extensive programming,
expertise, and often empirical research
to develop. In contrast, data-driven
methods can enable more rapid devel-
opment of new intelligent tutoring
systems. We now present different
data-driven symbolic and statistical
machine-learning approaches for auto-
mated or semiautomated development
of the key components and function-
alities of intelligent tutoring systems as
illustrated in figures 1–3.

SimStudent: Developing
Cognitive Models by
Demonstration and Tutoring
SimStudent is a theory of student
learning instantiated in a software tool

Articles

FALL 2013 29

that facilitates the development of cognitive models.
A primary use is to allow non-AI-programmers to
“program by tutoring” to create the central cognitive
model component of an ITS. In this approach,
authors first use cognitive tutor authoring tools
(CTAT) (Aleven et al. 2009) to create a graphical user
interface that students will use to solve tasks (for
example, a table of rows for steps in an algebra equa-
tion solution). The author iteratively enters tasks into
the interface (for example, an equation to solve) and
then evokes SimStudent to solve each task. Initially,

Student action

Task
done

Unit
 done

no

yes

Inner loop

Outer loop

Cognitive
model

Individual
student
model

Student hint request

Evaluate

Update model

Suggest next
action

Select activity
and present

no

yes

Figure 1. Key Functions of Intelligent Tutoring Systems.

Select, evaluate, suggest, and update (in rectangles) are supported by cognitive model and individual student model components (in round-
ed rectangles). They operate inside an across-activity “outer loop” and a within-activity “inner loop.” Traditionally developed through
knowledge engineering, these functions are increasingly being developed and optimized through data-driven machine learning.

SimStudent has no relevant productions, so asks the
author to demonstrate a step. The demonstration is
used to induce a candidate production rule for
accomplishing the step. On uture steps, previously
induced production rules (which may be overly gen-
eral) are used to generate candidate next steps and
the author gives yes-no feedback on the correctness
of the step. When the author states the step is incor-
rect, SimStudent relearns the production rule given
the past history of demonstrations and feedback it
has received and tries again until it either gets posi-

production system serves as the cognitive model
component of an ITS that is used for all of its func-
tions: evaluate, suggest, update, and select. SimStu-
dent has been applied to learn cognitive models in
many domains including algebra equation solving,
stoichiometry, multicolumn addition and subtrac-
tion, tic-tac-toe, and fraction addition.

Hint Factory
The Hint Factory is a method of automatically gen-
erating context-specific hints by using previously col-
lected student data (Barnes and Stamper 2008). The
method is designed to be as specific as possible,
derived on demand, and directed to the student’s
problem-solving goal, to provide the right type of
help at the right time. In particular, the Hint Factory
uses student attempt data to automatically evaluate

tive feedback or runs out of options. In the latter case,
it asks the author for a demonstration of that step
and induces a new production rule.

SimStudent employs multiple AI and machine-
learning techniques to learn a rule-based production
system (Li et al. 2012). Example problem and solu-
tion steps (for example, algebra equations) are used
by probabilistic context-free grammar learning to
generalize a hierarchical state representation that
production rules manipulate. The if part of each pro-
duction rule is acquired using a version space search
for generalizing information retrieval paths and
inductive logic programming for learning precondi-
tions, which refine correctness and search control.
The then part of production rules is acquired by an
inductive search of function compositions that are
consistent with prior action records. The acquired

Articles

30 AI MAGAZINE

a
b

d

e

e

c

Figure 2. A Problem Within the Algebra Cognitive Tutor.

This screen shot (with blowups) provides a concrete example of model tracing (a–d) and knowledge tracing (e) as implemented in an ITS.
In (a) the student reads the problem statement and in (b) performs actions (filling in cells in table), which the tutor evaluates in compari-
son to the cognitive model and then provides feedback. (c) Later, the student reads question 4 and is stuck, (d) so she requests a hint. The
cognitive model is run forward to generate a reasonable next step given the current solution state and the tutor suggests a corresponding
hint (to set up an equation). (e) Student model updates are made based on student performance and these are used to select the next prob-
lem.

student actions and to suggest next steps, that is, to
provide hints within a problem. It achieves the inner
loop of figure 1.

The Hint Factory provides direct, data-driven feed-
back in an environment where students can choose
from a large space of actions to perform and many
are correct. In order to deliver hints and feedback,
the Hint Factory first constructs a graph of states and
actions that represents all previous student
approaches to a particular problem. Here the state
describes what the student sees on the screen and the
actions are what the student does. The state-action
graph is transformed into a Markov decision process
(MDP). An MDP is defined by its state set S, action set
A, transition probabilities T, and a reward function R
(Sutton and Barto 1998). A simple reward function is
to provide a small negative reward for all nonsolu-
tion states: this encourages reaching the solution as
efficiently as possible. Then the MDP is used to gen-
erate hints with the Hint Factory. The goal of using
an MDP is to determine the best policy (that is, the
best path through this graph) that corresponds to
solving the given problem. This is achieved by cal-
culating a value, the expected discounted sum of the
rewards to be earned by following an optimal policy
from state s, calculated recursively using value itera-
tion. Once value iteration is complete, the optimal
solution in the MDP corresponds to taking an
expertlike approach to solving the given problem,

Articles

FALL 2013 31

3(2x – 5) = 9

6x – 15 = 9

2x – 5 = 3

6x – 5 = 9

Cognitive Model

Evaluate

Update
(individual student model)

Suggest

If goal is solve a(bx + c) = d
Then rewrite as abx + c = d

If goal is solve a(bx + c) = d
Then rewrite as abx + ac = d

If goal is solve a(bx + c) = d
Then rewrite as bx + c = d/a

Hint message: “Distribute a
across the parentheses.”

Bug message: “You need
 to multiply c by a also.”

Evaluate

Hint message: “Divide both
sides of the equation by a.”

[anything else]

Known? = 45%

Known? = 85% chance

Figure 3. Example of the Use of Production Rules.

Production rules are used in a cognitive model (left-most boxes) for model tracing and knowledge tracing, which are specific implementa-
tions of the inner and outer loops in figure 1. In model tracing, the productions are used to evaluate student actions as correct (green or
light gray arrows) or incorrect (red or dark gray arrows) with possible “bug” feedback (bottommost box) and to suggest possible next actions
with associated hints (top right boxes). Knowledge tracing uses the evaluation of student actions in a Bayesian update of the individual stu-
dent model of the chance a rule is known, which in turn is used to select future problems adapted to student needs.

where from each state the best action to take is the
one that leads to the next state with the highest
expected reward value (Barnes and Stamper 2008).
The Hint Factory uses these values when a student is
in a particular state to choose the next best state from
which to generate a hint. When the hint button is
pressed, the hint provider searches for the current
state in the MDP and checks that a successor state
exists. If it does, the successor state with the highest
value is used to generate a hint sequence. A hint
sequence refers to hints that are all derived based on
the same current state. For each state, four distinct
hints are generated. If a student requests a hint, then
makes an error, and requests a hint again, the next
hint generated is the next one in the current
sequence. Once a student performs a correct step, the
hint sequence is reset.

Barnes and Stamper (2008) demonstrated the fea-
sibility of this approach on historical data, showing
that extracted MDPs with the proposed hint-generat-
ing functions could provide correct next-step hints
toward the problem solution more than 80 percent of
the time. In a pilot study, Barnes and Stamper aug-
mented a tutor to teach propositional logic with the
Hint Factory and showed that students were able to
solve more logic proof problems when hints were
included. An example of the Hint Factory imple-
mented in the logic tutor can be seen in figure 4. The
figure shows a partially completed proof on the left

Detector Approach: Science
Inquiry Tutor Example
In more ill-defined domains, it can be difficult to cre-
ate an explicit cognitive model through typical
knowledge-engineering processes, and it can be dif-
ficult even to conceptualize what an “item” or “prac-
tice opportunity” is. In recent years, data-driven
approaches have proven useful for these domains as
well. Machine learning has been used to develop the
inner-loop evaluate functionality of an ITS in more
ill-defined domains. In these cases, a “detector” or
classifier is trained using human labels of desired and
undesired student actions within an open-ended
simulation or performance environment. The work
of Sao Pedro et al. (2010) on developing a tutor for
scientific inquiry illustrates this approach. In this
approach, humans hand-labeled student data from
use of a set of science microworlds, using text-based
replays of segments of student interaction logs. The

and a small graph of previous attempts in the upper
right. The states are represented with the numbers in
circles. The start state is state 0, and the current stu-
dent has completed the four steps shown in the low-
er right (filled-in states 1–4 in the graph). Error states
are highlighted.

Since the Hint Factory is data driven, the system
can be bootstrapped with expert solutions (Stamper,
Barnes, and Croy 2010). The Hint Factory can evolve,
providing at least some automatically generated hints
initially and improving as additional expert and stu-
dent problem attempts are added to the model.

The Hint Factory and MDP methods have also
been used to augment tutors in other domains. Fos-
sati and colleagues (2009) have used these MDP
methods in the iList linked list tutor to deliver
“proactive feedback” based on previous student
work. Work is ongoing to build a Hint Factory to pro-
vide hints for novices in an open computer program-
ming environment (Jin et al. 2012).

Articles

32 AI MAGAZINE

State 0: (FvG)>H,IvF,~I&J,H
State 1:(FvG)>H,IvF,~I&J, H, ~I
State 2:(FvG)>H,IvF,~I&J, H, ~I, F
State 3:(FvG)>H,IvF,~I&J, H, ~I, F, Error
State 4: :(FvG)>H,IvF,~I&J, H, ~I, F, FvG

DS

MP

HS

ADD

ADD-B

MP

SIMP

DS

ADD

11

10

SIMP

MP‐B

MP

5

9

6

7

8

0

1

2

4
3

Figure 4. Partial Proof with Hint Factory Added.

On the left is a partially completed proof in the logic tutor with the Hint Factory added. The student started with three given premises and
the conclusion (State 0) and has performed four steps (states 1–4), whose state descriptions are in the lower right. The upper right shows a
solution graph aggregated from past student solutions. The current student solution is traced against this graph; see the filled in circles for
states 0–4. By comparing the student’s current state (4) with the goal state (which is state 5), the Hint Factory can give students hints toward
the next best state that is on path to the solution. In this case the student can reach the goal state by completing one more step (MP). When
a student presses the hint button, a hint message is generated such as “Try using Modus Ponens(MP).”

labels indicated whether an appropriate or inappro-
priate science inquiry strategy was present in the
replayed segment, including designing controlled
experiments, testing the stated hypothesis, and hap-
hazard inquiry. Hand labels were validated for inter-
rater reliability across multiple coders and then used
as training labels for automated detectors of student
science inquiry skill, using standard classification
algorithms. The algorithm used a set of engineered
features relevant to the timing and semantics of stu-
dent actions, including features representing consis-
tency and the number of times a specific action
(such as changing variables or running the same
experiment) occurred. The automated detectors
were validated for effectiveness for new students
and microworlds on different science topics and
were found to be reasonably effective under these
conditions. The detectors require some accumula-
tion of data before they can respond effectively, but
Sao Pedro and colleagues found the detectors could
make accurate inferences about a specific student’s
inquiry skill after that student had run the simula-
tion three times (each run takes under a minute),
enabling reasonably rapid intervention. These
detectors have now been built into automated inter-
ventions administered by a pedagogical agent,
which evaluates student actions, identifies inappro-
priate strategies, and gives students feedback and
advice on how to conduct more effective experi-
mentation.

Other Future Possibilities
for Automated ITS Construction
Another interesting issue is automated problem gen-
eration to provide suggested activities in the outer
loop of figure 1. Recent work by Singh, Gulwani, and
Rajamani (2012) drew upon results on generalized
polynomial identity testing to automatically gener-
ate, from a given example algebra proof problem, a
set of new similar but nontrivially different algebra
proof problems. This and related techniques for
automatically generating interesting related prob-
lems would help decrease the time required by
domain experts, reduce concerns of cheating, and, in
principle, lead to more finely constructed examples
specifically designed to address a student’s current
misunderstanding.

Machine Learning and
Data-Driven ITS Optimization

In addition to using data-driven methods to enable
more rapid development of new intelligent tutoring
systems, these methods can also be used to optimize
the effectiveness of existing tutoring systems as we
discuss in this section.

Optimizing the Cognitive Model
Recently, Koedinger, McLaughlin, and Stamper

Articles

FALL 2013 33

(2012) introduced an automated search process for
optimizing cognitive model representations of stu-
dent skill by hypothesizing alternative knowledge
representations and testing them against data. Their
approach was implemented using a version of the
Learning Factors Analysis (LFA) algorithm (Cen,
Koedinger, and Junker 2006). LFA makes use of the Q
matrix representation (Tatsuoka 1983), a map of
skills or knowledge components to tasks (for exam-
ple, observed steps in problems). The KCs in a Q
matrix are a latent variable simplification of the pro-
duction rules or constraints in a cognitive model. LFA
searches over Q matrices to find the one that best pre-
dicts student learning data, where that data is organ-
ized as success rate on knowledge components over
time (encoded as number of opportunities to prac-
tice). The statistical prediction model is logistic
regression with parameters for each student, KC, and
KC by practice opportunity. Like a stepwise regres-
sion, LFA starts with a large set of candidate predic-
tor variables (the so-called P matrix), which are
hypothesized learning factors that may influence stu-
dent performance difficulty or learning rate. Unlike
stepwise regression, LFA uses specific symbolic oper-
ators (split, merge, and add) to create new variables
(new knowledge component columns) thereby gen-
erating a huge space of possible Q matrices.

The version of LFA used in Koedinger, McLaugh-
lin, and Stamper (2012) was run on 11 data sets in
DataShop where human analysts had created alter-
native possible cognitive models (in the form of Q
matrices) for that data. Instead of creating the P
matrix directly by hand (as was done in prior LFA
applications), here the P matrix is computed as the
union of previously generated Q matrices associated
with a data set created by learning scientists or
domain experts. In this way DataShop facilitates a
simple version of scientist crowdsourcing. LFA was
then seeded with the simplest possible Q matrix, a
single skill for all problem steps, and the split opera-
tor was used to generate new Q matrices. Figure 5
shows a simple example of a Q-matrix factor (Sub)
being split by a P-matrix factor (Neg-result) resulting
in the generation of a new model (Q’) with two new
KCs (Sub-Pos and Sub-Neg) replacing the old Sub KC.
The LFA algorithm uses the input from a P matrix in
a best first search process guided by a heuristic for
model prediction accuracy (for example, the Akaike
information criterion, AIC). It outputs a rank order
of the most predictive Q matrices and, for each, the
parameter estimates for student proficiency, KC diffi-
culty, and KC learning rate.

Koedinger, McLaughlin, and Stamper (2012)
applied the LFA algorithm to 11 data sets represent-
ing five domains and various technologies. Discov-
ered models were compared to prior models using
the root mean square error (RMSE) of predicted ver-
sus observed student correctness from a 10-fold item-
stratified cross validation. In all 11 data sets the best

application of circle area (given the area, find the
radius) is a separate skill from forward application. It
is not only harder, but there is evidence that forward
application practice does not transfer to backward
application (or vice versa). However, for other area
formulas, backward application is not a distinguish-
able skill. For these formulas, backward application is
no harder than forward, and practice in one direction
does transfer to better performance in the other. The
unique feature of circle-area backwards is the need to
evoke a square root operation. LFA thus produces
practical recommendations for tutor optimization, in
this example, (1) to change the update and selection
functions to require separate mastery of forward and
backward application of circle area but collapse this
distinction for other area formulas and (2) to change
the evaluate and suggest functions to specialize feed-
back and hint messages to the discovered challenge
of seeing the relevance of square root. More general-
ly, LFA has implications for theories of human learn-
ing providing an empirical methodology that
demonstrates that student transfer of learning is
often more narrow or broad than expected.

Better Statistical Student Models
The previous section described a method to auto-
matically optimize the cognitive model, that is, the
representation of the underlying curriculum content.
Given such a representation, we can use statistical
models to estimate and track student learning over
the curriculum, as in the outer loop in figure 1. Some
early, but still very successful, models of student
learning, such as knowledge tracing (Corbett and
Anderson 1995), used identical model parameters for
all students. In such generic models the estimate of
an individual’s student progress still adapts to the

machine-generated model outperformed both the
original (in-use) model and the best hand-generated
model. Because discovered models have much over-
lap with existing models, the overall improvement in
prediction, while reliable, is small. However, differ-
ences between discovered and existing models pro-
vide a basis for meaningful improvements in tutor
behavior, as we now describe.

One data set (Geometry9697) was used to illustrate
how to interpret discovered models and guide tutor
modification. Specific improvements of a discovered
model over an original model were measured by per-
cent reduction in cross-validated RMSE referenced to
the original model’s KCs. As expected, the original 15
KCs were largely unchanged by experts or LFA where,
in fact, the discovered models replicate the base mod-
el. A substantial prediction error reduction was found
in the 3 remaining KCs (5.5 to 11.1 percent). The
improvement found in two of these was mostly cap-
tured in the hand-generated model and only slightly
refined by LFA. However, the one remaining KC, cir-
cle-radius, realized a sizeable reduction from both the
original to best-hand model (6 percent) and from the
best-hand to best-machine model (4 percent). This
discovery of LFA represents a genuine machine-based
discovery not directly anticipated by human analysts.

A close look at the problem steps associated with
the splits made to the original model revealed a dis-
tinction between forward versus backward applica-
tion of a formula (for example, finding A in A = 1/2bh
versus finding b) that was unique to the circle area
formula (that is, A = r2). The performance rate dif-
ference (80 percent forward versus 54 percent back-
ward), parameter estimate differences (higher slopes
and intercepts), and learning curve shape (smoother
and declining) led LFA to discover that backward

Articles

34 AI MAGAZINE

2*8–30 => 16-30 1 0 0 0 0 0
16–30 => -14 0 1 1 0 0 1
30–2*8 => 30-16 1 0 0 1 0 0
30–16 => 14 0 1 0 0 1 0

Q P Q' split [Q,Neg result]

Neg Order
Problem Step Mult Sub result of Op Sub-Pos Sub-Neg

Figure 5. Example of a Q Matrix Being Split by a P-Matrix Faxtor.

The Q matrix and P matrix are mapped to problem steps. The resulting Q’ matrix is created when Sub in the Q matrix is “split” by Neg-result
from the P matrix.

individual’s responses, but the parameters used to
compute this estimate are the same for all students.

Other statistical models explicitly include a stu-
dent variable with one parameter estimated per stu-
dent. The additive factor, performance factor, and
instructional factors analysis models (Chi et al. 2011)
are all logistic regression models that include a single
student parameter, which serves as a fixed offset in
performance prediction. Similarly, Pardos and Hef-
fernan (2010) extended the knowledge-tracing mod-
el to allow for different, student-specific initial prob-
abilities of knowing the material. However, up to
recently, almost no models attempt to account for
wider possible variations among students, such as
learning rates. Corbett and Anderson (1995) did
describe fitting individual weights to each of the
knowledge-tracing parameters, but this was done as
a correction to the population parameters, rather
than a direct parameter optimization for each stu-
dent’s data. In contrast, recent work by Lee and
Brunskill (2012) allowed all parameters of a two-
state, two-observation hidden Markov model (the KT
student model) to vary by student and fit models for
individual students directly. The authors were inter-
ested in whether significant variation in the differ-
ent student model parameters existed among stu-
dents, and if such differences existed, if they had
significant implications for instruction.

In this work, Lee and Brunskill fit a separate
knowledge-tracing model to each student’s data.
This involved fitting four parameters: initial proba-
bility of mastery, probability of transitioning from
unmastered to mastered, probability of giving an
incorrect answer if the student has mastered the skill,
and probability of giving a correct answer if the stu-
dent has not mastered the skill. Each student’s mod-
el is fit using a combination of expectation maxi-
mization (EM) combined with a brute force search. It
is well known that fitting a HMM suffers from an
identifiability problem (for example, Beck and
Chang [2007]) and that the resulting parameters may
be implausible, such as if the probability of guessing
correctly is higher than giving the right answer if the
skill is mastered (Beck and Chang 2007). In addition,
EM is only guaranteed to find a local optimum. To
address identifiability, Baker et al. (2010) proposed
performing a brute force search over a discretized set
of parameters, which is computationally feasible in
this model as there are only four parameters. Brute
force search can also be used to enforce parameter
plausibility, by constraining the search to a range of
values considered plausible. This is the approach tak-
en by Lee and Brunskill who used brute force search
over the observation parameters to ensure plausibil-
ity, and used EM to compute the initial probability
and learning probability. Lee and Brunskill also fit a
single generic model to the combined set of all stu-
dents’ data.

Typically the quality of a student model is meas-

Articles

FALL 2013 35

ured by a model’s fit of the observed data, or its abil-
ity to predict student performance on a held out data
set. Common methods include Bayesian information
criterion (BIC) and cross-validated root mean square
error. However, a key use of student models is to
inform a tutor’s instructional decisions: deciding the
next activity to give to a student. Motivated by this,
Lee and Brunskill proposed to evaluate modeling
parameters on an individual level by whether this
resulted in a significant change in the instructional
decisions that would be made. Typically KT models
are used in a mastery learning setting, where a tutor
provides additional practice opportunities for a skill
until the student’s probability of mastering that skill
(as tracked using the KT model) reaches a prespeci-
fied threshold (for example Corbett and Anderson
[1995]). Given the same number of practice opportu-
nities and a fixed trajectory of a student’s responses,
different model parameters will result in different
probabilities of mastery. Therefore different model
parameters could vary the amount of practice oppor-
tunities given to a student.

Lee and Brunskill evaluated whether the expected
number of needed practice opportunities for a stu-
dent to reach the mastery threshold varied signifi-
cantly depending on whether a generic set of model
parameters was used to evaluate mastery, or if model
parameters fit to that individual’s data were used.
Computing this number can be viewed as policy
evaluation in a continuous-state Markov decision
process, where the state is the current probability of
mastery, and the policy is to provide another practice
opportunity if the state is below a threshold, or oth-
erwise to halt teaching that skill. Lee and Brunskill
performed this policy evaluation using a forward
search algorithm. Note that in both cases the model
parameters used to generate a student’s responses was
the individual model, since in real situations the stu-
dent would be generating his responses based on his
own internal knowledge and progression. The differ-
ence is in whether those observed responses are
assumed (by the tutor) to have been generated using
the set of generic model parameters or the individ-
ual’s own parameters (see figure 6).

This approach was used to analyze data from more
than 200 students using the ASSISTments system
(Pardos and Heffernan 2011). Lee and Brunskill
found that the fit individual parameters had a wide
spread, and that the resulting parameters provided a
significantly better fit of the observed data compared
to a generic model (likelihood ratio test, p < 0.0001).
Their results also showed that more than 20 percent
of students would be expected to be given at least
twice as many expected practice opportunities if the
generic model was used compared to if their individ-
ual parameters were used, and 17 percent of students
would be at ≤ 60 percent probability of mastery (com-
pared to the threshold of 95 percent) when the gener-
ic model would declare the students as having mas-

inform instruction. More interesting is to consider
how hierarchical models of student parameters
might be trained and shared across multiple students
and used to inform instruction. Such approaches
could also be applicable beyond mastery learning
approaches to teaching.

Modeling Engagement, Affect
Beyond the relatively well-defined construct of stu-
dent knowledge, data-driven methods can also be
used to model and adapt to constructs that have been
historically difficult to define and model. One such
area is individual differences in student engagement
and affect (emotion in context — Corno [1986]).
Engagement has long been seen as a critical factor in
learning (compare with Corno and Mandinach
[1983]), but in past decades has been seen as very dif-
ficult to operationalize in real time (Corno and Man-
dinach 1983), being a fairly ill-defined construct that
can be seen as encompassing several constructs (for
example several forms of engagement). However,
automated detectors of engagement and affect have
recently become an effective way to infer these con-
structs as a student is using online educational soft-
ware such as intelligent tutoring systems.

One of the key challenges to making automated

tered the material. This suggests that a significant
number of students might be advanced before they
have fully understood the material, or prevented
from learning new material when ready, if a generic
model of learning rate is used.

An implication of Lee and Brunskill’s work is that
model parameters that are fit to individual learning
rates should yield better estimates of student learn-
ing and enable improved instruction. However, an
interesting open question is how to perform this
analysis in an online fashion. Lee and Brunskill’s
work was performed as a retrospective analysis.
When tutors interact with real students, the tutors
must perform this model fitting during tutoring.
Indeed, this is a challenge for any model with student
parameters. When only fitting a single parameter per
student to specify the offset, prior researchers (Cor-
bett and Anderson 1995, Pardos and Heffernan 2010)
have proposed using the student’s response on the
first practice opportunity to fit a model. However,
this approach will not suffice for fitting parameters
that depend on the student’s learning rate across
skills. If prior diagnostic information exists about the
student, or if these parameters are similar across
many skills, then this model fitting could be per-
formed in early stages, while using a generic model to

Articles

36 AI MAGAZINE

Generic
model

parameters

Individual
model

parameters

Figure 6. The Difference Between Generic Model Parameters and the Individual’s Own Parameters

Standard tutors use generic model parameters when selecting activities (left). On the right, the tutor knows the current stu-
dent’s specific parameters.

detectors of engagement and affect feasible for wide-
spread use in intelligent tutoring systems has been
the development of models that can infer these types
of constructs solely from the types of interaction
data readily available in the contexts where the soft-
ware is used. Although reasonably effective models
can be constructed using physical sensors such as
cameras and posture sensors (see Calvo and D’Mello
[2010] for review) these sensors can be challenging
to deploy at scale in schools, due to issues of cost and
breakage in these settings. However, multiyear
efforts to understand and engineer the types of fea-
tures associated with engagement and affect in inter-
action data have begun to produce automated detec-
tors that are reliable and effective for these
situations.
One of the first automated detectors of engagement
was Baker, Corbett, and Koedinger’s (2004) automat-
ed detectors of gaming the system, a disengaged
behavior where students attempt to succeed in an
educational task by systematically taking advantage
of the intelligent tutor’s feedback and help rather
than by thinking through the material. In intelligent
tutors, gaming the system can include misuse of
hints to obtain answers or systematic guessing.
Ground-truth training labels for this behavior can be
obtained through systematic field observations (Bak-
er, Corbett, and Koedinger 2004) or text replays
(pretty-printed representations of student logs,
designed to be easy to read; Baker and De Carvalho
[2008]), checked across observers for inter-rater reli-
ability. Then classification algorithms such as J48
decision trees are used to infer what actions the stu-
dent was engaging in during the period of time
labeled as gaming the system. Features such as
repeated fast errors on poorly known skills were
found to be indicative of gaming. The automated
detectors were validated for effectiveness for new stu-
dents and tutor lessons on different topics (within
the same year-long mathematics curriculum), and
were found to be reasonably effective (A’/AUC over
0.8) under these conditions. The automated detec-
tors were first developed in the context of tutors for
middle school mathematics, but detectors of gaming
have now also been developed for other curricula by
the same and other research groups.

A second disengaged behavior modeled in this
fashion is off-task behavior, when the student com-
pletely disengages from the learning task, for
instance by talking to another student about an
unrelated topic. Though this behavior manifests in
usage logs as inactivity, it can be inferred from the
actions that occur immediately before and after. The
first detector of this behavior, by Baker (2007),
achieved a correlation of 0.55 between each stu-
dent’s predicted frequency of off-task behavior and
the behavior’’s frequency as noted by field observers,
with cross-validation conducted at the student level.
Baker’s detector relied solely upon semantic actions

Articles

FALL 2013 37

within the interface and timing data. Cetintas and
colleagues (2010) found that detection could be
made more effective by also considering data from
mouse movements.

A third disengaged behavior modeled in this fash-
ion is careless errors, where a student knows the rel-
evant skills to answer a question but produces an
incorrect answer nonetheless. We infer training
labels for detectors of this behavior by using the
probability that a student knew the skill at a specific
time computed from both student knowledge models
(as discussed earlier) and data from future actions.
For example, an error produced when a student had
a 90 percent chance of knowing a skill, followed by
two correct actions, is much more likely to represent
a careless error than errors produced under different
conditions. Once the training labels are obtained,
detectors are developed to predict this behavior with-
out using data from the future. Detectors developed
in this fashion have been validated to transfer not
only to new students, but to students from different
countries (San Pedro, Baker, and Rodrigo 2011).
Detectors of this type have been developed for intel-
ligent tutors for both mathematics and science
inquiry skill.

In addition to disengaged behaviors, a range of
affective states have been modeled in intelligent
tutoring systems (compare with Calvo and D’Mello
[2010]), in recent years solely from student interac-
tion with intelligent tutoring systems. The first such
example is D’Mello et al. (2008), which modeled stu-
dent affect in the AutoTutor intelligent tutoring sys-
tem in a laboratory study. D’Mello and colleagues
achieved better than chance agreement to ground-
truth labels provided by human video coders, distin-
guishing students’ frustration, boredom, confusion,
and flow from each other. Conati and Maclaren
(2009) and Sabourin, Mott, and Lester (2011) used a
combination of interaction data and questionnaire
data to infer a range of affective states. More recent
work by Baker and colleagues (2012) found that bet-
ter agreement to ground-truth labels could be
achieved by explicitly using data from automated
detectors of student disengaged behaviors when pre-
dicting affect. In specific, guessing was indicative of
boredom and confusion, and failing to read hints was
a negative predictor of engaged concentration.

In recent years, these detectors have been embed-
ded into automated interventions that respond in
various fashion to attempt to reengage students and
mitigate the effects of negative affect. For example,
an automated agent that addresses gaming behavior
has been developed, based on an automated detector
of gaming (Baker et al. 2006). This agent gave stu-
dents supplementary exercises on material bypassed
through gaming and displayed displeasure when the
student games. In a classroom study in the USA, this
agent reduced gaming by half and improved gaming
students’ learning relative to the control condition

(Baker et al. 2006). Recent work has also leveraged
automated assessments of uncertainty (for example,
Forbes-Riley and Litman [2011]), and affective states
(compare with D’Mello et al [2009]; Arroyo et al.
2011), with promising results. For instance, D’Mello
and colleagues (2009) found that supportive mes-
sages, given when negative affect occurred, improved
affect for struggling students, while shake-up mes-
sages improved affect for more successful students.

Optimizing Instruction
A key aspect of the tutoring process is selecting the
next activity to give to a student. This process can be
considered as an optimization problem: what activi-
ty should be selected next, based on an estimate of
what the student understands, in order to maximize
some aspect of student learning, such as learning
gains or engagement. This view allows the activity
selection problem to draw on advances in sequential
decision making under uncertainty. Early work by
Beck, Woolf, and Beal (2000) and Murray, VanLehn,
and Mostow (2004) used reinforcement learning and
myopic decision utility maximization to inform
instruction.

More recently, Chi et al. (2011) modeled physics
tutoring as a Markov decision process to inform
which type of activity to provide at certain junctures:
whether to elicit student performance of a step (to
practice the underlying skill) or tell the student how
to perform the step (as an example to learn from),
and whether to ask a student to justify a particular
step of reasoning or to skip the request for justifica-
tion. Chi et al. considered a rich set of features to
model the student’s state and performed automatic
feature selection by identifying features associated
with policies leading to high learning gains in a train-
ing set. Chi et al. found that an MDP policy that used
these features and optimized to maximize expected
learning gains resulted in higher empirical learning
gains in a new lab student experiment compared to
an MDP policy designed to minimize learning gains.
The focus of Chi et al.’s work was on seeing if the
tutorial policy used during microstep tutoring could
influence learning gains, so this control policy was a
reasonable comparison. However, the authors call for
future work and, in particular, there is a need to see
whether MDPs provide a significant benefit over oth-
er stronger control methods for making instruction-
al decisions.

Recently several researchers (for example Brunskill
and Russell [2010]; Brunskill et al. [2010]; Rafferty et
al. [2011]) have taken an alternate approach of mod-
eling the student state as being partially observable,
making instructional decisions an instance of par-
tially observable MDP (POMDP) planning. Many cur-
rent tutoring systems do model student state as being
partially observable, but such approaches often take
(quite successfully) a myopic approach to planning.
When there are multiple different activities, and

there exists prerequisite structure about the skills in
the curriculum, a myopic approach is not optimal.
Performing POMDP planning in such domains is
generally computationally challenging, since a cur-
riculum may consist of many skills, each of which
may be known or not known, and the skills are not
independent. However, Brunskill and Russell (2010)
provided an efficient algorithm for planning in such
domains that have prerequisite structure, and
showed in simulations that the resulting solutions
could be substantially better than myopic approach-
es. Brunskill et al. (2010) also used POMDP planning
to inform problem selection for students sharing a
very simple groupware mathematical game. Their
classroom pilot found that tailoring activities to indi-
vidual students led to less instances of a single stu-
dent consistently winning, suggesting potential ben-
efits for engagement.

Although these initial findings are encouraging,
there remains significant work to be done on opti-
mizing instructional design. More comparisons need
to be made to existing state of the art approaches.
There also exists more machine-learning and artifi-
cial intelligence research to be done to handle the
huge state, action, and observation (or feature) spaces
involved and to close the loop of informing model
design by instructional policies. To accomplish this
work, partnerships between learning science and
machine-learning researchers are likely to be particu-
larly effective. Learning sciences researchers bring
new and existing methods from psychology or edu-
cation that can be built upon or used as strong com-
parisons to new approaches that may be developed in
tandem with machine-learning researchers expert in
algorithms for analyzing and optimizing policies for
large, many-featured domains (such as education).

Conclusions
In recent years, there has been increasing work to
leverage data to optimize and redesign intelligent
tutoring systems. Within this article, we discuss a
range of recent work illustrating this potential in a
range of areas. Many of the examples are drawn from
work with cognitive tutors, a mature platform used
by large numbers of students, but as discussed
throughout the article, there are relevant examples in
a number of other research groups and platforms as
well. The kinds of data-driven development and opti-
mization techniques we have illustrated are relevant
for both inner and outer loop functions of intelligent
tutoring systems. Some of this work enhances exist-
ing functionality. For example, when Learning Fac-
tors Analysis is given student learning data from use
of an ITS, it generates an improved cognitive model
that better matches student performance. The
improved cognitive model can be used to optimize
the suggest, update, and select functions of the tutor.
Similarly, Lee and Brunskill (2012) used student ITS

Articles

38 AI MAGAZINE

Articles

FALL 2013 39

data to build a better student model that improves
the update function, which in turn could improve
the effectiveness of the select function.

Beyond this, entirely new functionality can be sup-
ported through data-driven approaches. When auto-
mated detectors of student engagement and affect are
developed, it then becomes possible to evaluate these
aspects of the student in real-time, information that
can be used to select different activities for the stu-
dent — for example, through selecting alternate exer-
cises designed to reengage students or mitigate the
negative impacts on learning that disengagement
and negative affect can cause. When the Hint Facto-
ry is given data on a dense set of alternative solution
paths for a problem, it can perform the suggest func-
tion of generating next-step hints. When SimStudent
is given data on problem solution demonstrations
and feedback on its solution attempts, it learns new
knowledge representation structures, particularly
domain representations and production rules. These
produce the cognitive model component of an ITS
that is used for all of its functions: evaluate, suggest,
update, and select.

As a whole, then, there are several ways that data
can enhance the functionality of intelligent tutoring
systems, leading to more personalized instruction.
This work remains in early stages; every year, new
approaches and uses for tutor data emerge, and new
applications for enhancing intelligent tutors become
possible. We have framed a set of challenges and
some preliminary solutions toward the vision of ful-
ly optimized and personalized learning. The recent
excitement and growth in online learning has the
potential to produce the data needed to pursue this
vision. The effectiveness of online courses can be
vastly improved, but it will require going beyond
compelling lecture videos and short follow-up ques-
tions to address learning by doing. Missing from
today’s most popular online courses and learning
resources are complex problem-solving tasks, more
open-ended interfaces, and AI back ends that can
interpret students’ step-by-step progress on these
complex tasks. These changes will enrich the data
and the opportunities for data-driven improvement.
In general, meeting the challenges inherent in the
vision of personalized learning will require richer
data sources and advances in AI. Doing so could rev-
olutionize educational practice.

Acknowledgements
Thanks to the National Science Foundation #SBE-
0836012 for funding of LearnLab at the Pittsburgh
Science of Learning Center (http://learnlab.org).

Note
1. See learnlab.org/datashop.

References
Aleven, V.; McLaren, B.; Sewall, J.; and Koedinger, K. R.
2009. Example-Tracing Tutors: A New Paradigm for Intelli-

gent Tutoring Systems. International Journal of Artificial Intel-
ligence in Education 19(2): 105–154.

Arroyo, I.; Woolf, B. P.; Cooper, D. G.; Burleson, W.; and
Muldner, K. 2011. The Impact of Animated Pedagogical
Agents on Girls’ and Boys’ Emotions, Attitudes, Behaviors,
and Learning. In Proceedings of the 11th IEEE Conference on
Advanced Learning Technologies. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Baker, R. S. J. d. 2007. Modeling and Understanding Stu-
dents’ Off-Task Behavior in Intelligent Tutoring Systems. In
Proceedings of the ACM CHI 2007 Conference on Human Fac-
tors in Computing Systems, 1059–1068. New York: Association
for Computing Machinery.

Baker, R. S.; Corbett, A. T.; and Koedinger, K. R. 2004.
Detecting Student Misuse of Intelligent Tutoring Systems.
In Proceedings of the 7th International Conference on Intelligent
Tutoring Systems, Lecture Notes in Computer Science 3220,
531–540. Berlin: Springer.

Baker, R. S. J. d.; Corbett, A. T.; Koedinger, K. R.; Evenson, S.
E.; Roll, I.; Wagner, A. Z.; Naim, M.; Raspat, J.; Baker, D. J.;
and Beck, J. 2006. Adapting to When Students Game an
Intelligent Tutoring System. In Proceedings of the 8th Inter-
national Conference on Intelligent Tutoring Systems, Lecture
Notes in Computer Science 4053, 392–401. Berlin: Springer.

Baker, R. S. J. d.; Corbett, A. T.; Gowda, S. M.; Wagner, A. Z.;
MacLaren, B. M.; Kauffman, L. R.; Mitchell, A. P.; and
Giguere, S. 2010. Contextual Slip and Prediction of Student
Performance After Use of an Intelligent Tutor. In Proceedings
of the 18th Annual Conference on User Modeling, Adaptation,
and Personalization, Lecture Notes in Computer Science
6075, 52–63. Berlin: Springer.

Baker, R. S. J. d., and De Carvalho, A. M. J. A. 2008. Label-
ing Student Behavior Faster and More Precisely with Text
Replays. Paper presented at the 1st International Confer-
ence on Educational Data Mining, 20–21 June.

Baker, R. S. J. d.; Gowda, S. M.; Wixon, M.; Kalka, J.; Wagn-
er, A. Z.; Salvi, A.; Aleven, V.; Kusbit, G.; Ocumpaugh, J.; and
Rossi, L. 2012. Sensor-Free Automated Detection of Affect in
a Cognitive Tutor for Algebra. Paper presented at the 5th
International Conference on Educational Data Mining,
Chania, Greece, 19–21 June.

Baker, R. S. J. d., and Yacef, K. 2009. The State of Education-
al Data Mining in 2009: A Review and Future Visions. Jour-
nal of Educational Data Mining 1(1): 3–17.

Barnes, T., and Stamper, J. 2008. Toward Automatic Hint
Generation for Logic Proof Tutoring Using Historical Stu-
dent Data. In Proceedings of the 9th International Conference on
Intelligent Tutoring Systems, 373–382. Berlin: Springer.

Beck, J. E., and Chang, K.-M. 2007. Identifiability: A Funda-
mental Problem of Student Modeling. In Proceedings of the
11th International Conference on User Modeling, Lecture Notes
in Computer Science. Berlin: Springer.

Beck, J.; Woolf, B.; and Beal, C. 2000. Advisor: A Machine
Learning Architecture for Intelligent Tutor Construction. In
Proceedings of the 17th AAAI Conference on Artificial Intelli-
gence (AAAI), 552–557. Menlo Park, CA: AAAI Press.

Bowen, W. G.; Chingos, M. M.; Lack, K. A.; and Nygren, T.
I. 2012. Interactive Learning Online at Public Universities:
Evidence from Randomized Trials. New York: Ithaka S+R.
(www.sr.ithaka.org/sites/default/files/ reports/sr-ithaka-
interactive-learning-online-at-public-universities.pdfand-
nid=464)

Brunskill, E., and Russell, S. 2010. Rapid: A Reachable Any-

Articles

40 AI MAGAZINE

time Planner for Imprecisely-Sensed Domains. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence. Red-
mond, WA: AUAI Press.

Brunskill, E.; Garg, S.; Tseng, C.; Pal, J.; and Findalter, L.
2010. Evaluating an Adaptive Multi-User Educational Tool
for Low-Resource Regions. Paper presented at the Interna-
tional Conference on Information and Communication
Technologies and Development, London, UK, 13–16
December.

Calvo, R. A., and D’Mello, S. K. 2010. Affect Detection: An
Interdisciplinary Review of Models, Methods, and Their
Applications. IEEE Transactions on Affective Computing 1(1):
18–37.

Cen, H.; Koedinger, K. R.; and Junker, B. 2006. Learning Fac-
tors Analysis: A General Method for Cognitive Model Eval-
uation and Improvement. In Proceedings of the 8th Interna-
tional Conference on Intelligent Tutoring Systems, 164–175.
Berlin: Springer.

Cetintas, S.; Si, L.; Xin, Y.; and Hord, C. 2010. Automatic
Detection of Off-Task Behaviors in Intelligent Tutoring Sys-
tems with Machine Learning Techniques. IEEE Transactions
on Learning Technologies 3(3): 228–236.

Chi, M.; VanLehn, K.; Litman, D.; and Jordan, P. 2011. An
Evaluation of Pedagogical Tutorial Tactics for a Natural Lan-
guage Tutoring System: A Reinforcement Learning
Approach. International Journal of Artificial Intelligence in Edu-
cation 21(2): 83–113.

Conati, C., and MacLaren, H. 2009. Empirically Building
and Evaluating a Probabilistic Model of User Affect. User
Modeling and User-Adapted Interaction 19(3) 267–303.

Corbett, A. T., and Anderson, J. R. 1995. Knowledge Tracing:
Modeling the Acquisition of Procedural Knowledge. User
Modeling and User-Adapted Interaction 4(4) 253–278.

Corno, L. 1986. The Metacognitive Control Components of
Self-Regulated Learning. Contemporary Educational Psycholo-
gy 11(4): 333–346.

Corno, L., and Mandinach, E. B. 1983. The Role of Cogni-
tive Engagement in Classroom Learning and Motivation.
Educational Psychologist 18(2): 88–108.

D’Mello, S. K.; Craig, S. D.; Fike, K.; and Graesser, A. C. 2009.
Responding to Learners’ Cognitive-Affective States with
Supportive and Shakeup Dialogues. In Human-Computer
Interaction. Ambient, Ubiquitous and Intelligent Interaction, ed.
J. A. Jacko, 595–604. Berlin: Springer.

D’Mello, S. K.; Craig, S. D.; Witherspoon, A. W.; McDaniel,
B. T.; and Graesser, A. C. 2008. Automatic Detection of
Learner’s Affect from Conversational Cues. User Modeling
and User-Adapted Interaction 18(1–2): 45–80.

Forbes-Riley, K., and Litman, D. 2011. Benefits and Chal-
lenges of Real-Time Uncertainty Detection and Adaptation
in a Spoken Dialogue Computer Tutor. Speech Communica-
tion 53(9–10): 1115–1136.

Fossati, D.; Di Eugenio, B.; Ohlsson, S.; Brown, C.; Chen, L.;
and Cosejo, D. 2009. I Learn from You, You Learn from Me:
How to Make Ilist Learn from Students. In Proceedings of
14th International Conference on Artificial Intelligence in Edu-
cation, 186–195. Amsterdam: IOS Press.

Graesser, A. C.; Chipman, P.; Haynes, B.; and Olney, A. M.
2005. Autotutor: An Intelligent Tutoring System with
Mixed-Initiative Dialogue. IEEE Transactions on Education
48(4): 612–618.

Jin, W.; Barnes, T.; Stamper, J.; Eagle, M.; Johnson, M.; and

Lehmann, L. 2012. Program Representation for Automatic
Hint Generation for a Data-Driven Novice Programming
Tutor. In Proceedings of the Eleventh International Conference
on Intelligent Tutoring Systems, 304–309. Berlin: Springer.

Koedinger, K. R.; Baker, R. S. J. d.; Cunningham, K.;
Skogsholm, A.; Leber, B.; and Stamper, J. 2011. A Data
Repository for the EDM Community: The PSLC DataShop.
In Handbook of Educational Data Mining, ed. C. Romero, S.
Ventura, M. Pechenizkiy, and R. S. J. d. Baker. Boca Raton,
FL: CRC Press.

Koedinger, K. R.; Mclaughlin, E. A.; and Stamper, J. C. 2012.
Automated Student Model Improvement. Paper presented
at the 5th International Conference on Educational Data
Mining, Chania, Greece, 19–21 June.

Lee, J. I., and Brunskill, E. 2012. The Impact on Individual-
izing Student Models on Necessary Practice Opportunities.
Paper presented at the 5th International Conference on
Educational Data Mining, Chania, Greece, 19–21 June.

Li, N.; Schreiber, A.; Cohen, W.; and Koedinger, K. R. 2012.
Efficient Complex Skill Acquisition Through Representation
Learning. Advances in Cognitive Systems 2(December): 149-
166.

Long, P., and Siemens, G. 2011. Penetrating the Fog: Analyt-
ics in Learning and Education. Educause Review 46(5): 31–40.

Lovett, M.; Meyer, O.; and Thille, C. 2008. The Open Learn-
ing Initiative: Measuring the Effectiveness of the OLI Learn-
ing Course in Accelerating Student Learning. Journal of Inter-
active Media in Education (May).

Mitrovic, A. 2003. An Intelligent SQL Tutor on the Web.
International Journal of Artificial Intelligence in Education 13(2–
4): 197–243.

Murray, B.; VanLehn , K.; and Mostow, J. 2004. Looking
Ahead to Select Tutorial Actions: A Decision-Theoretic
Approach. International Journal of Artificial Intelligence in Edu-
cation 14(3–4): 235–278.

Pardos, Z. A., and Heffernan, N. T. 2010. Modeling Individ-
ualization in a Bayesian Networks Implementation of
Knowledge Tracing. In Proceedings of the 18th International
Conference on User Modeling, Adaptation and Personalization,
Lecture Notes in Computer Science, 255–266. Berlin:
Springer.

Rafferty, A.; Brunskill, E.; Griffiths,T.; and Shafto, P. 2011.
Faster Teaching by POMDP Planning. In Proceedings of 15th
International Conference on Artificial Intelligence in Education.
Amsterdam: IOS Press.

Ritter S.; Anderson, J. R.; Koedinger, K. R.; and Corbett, A.
2007. Cognitive Tutor: Applied Research in Mathematics
Education. Psychonomic Bulletin and Review 14(2): 249–255.

Roschelle, J.; Shechtman, N.; Tatar, D.; Hegedus, S.; Hop-
kins, B.; Empson, S.; Knudsen, J.; and Gallagher, L. 2010.
Integration of Technology, Curriculum, and Professional
Development for Advancing Middle School Mathematics:
Three Large-Scale Studies. American Educational Research
Journal 47(4): 833–878.

Romero, R., and Ventura, S. 2007. Educational Data Mining:
A Survey from 1995 to 2005. Expert Systems with Applications
33(1): 135–146.

Sabourin, J.; Mott, B.; and Lester, J. 2011. Modeling Learner
Affect with Theoretically Grounded Dynamic Bayesian Net-
works. In Proceedings of the 4th International Conference on
Affective Computing and Intelligent Interaction, Lecture Notes
in Computer Science, 286–295. Berlin: Springer.

Articles

FALL 2013 41

San Pedro, M. O. C.; Baker, R.; and Rodrigo, M. M. 2011.
Detecting Carelessness Through Contextual Estimation of
Slip Probabilities Among Students Using an Intelligent
Tutor for Mathematics. In Proceedings of 15th International
Conference on Artificial Intelligence in Education, 304–311.
Amsterdam: IOS Press.

Sao Pedro, M. A.; Baker, R. S. J. d.; Montalvo, O.; Nakama,
A.; and Gobert, J. D. 2010. Using Text Replay Tagging to Pro-
duce Detectors of Systematic Experimentation Behavior Pat-
terns. Paper Presented at the 3rd International Conference
on Educational Data Mining. Pittsburgh, PA, 11–13 June.

Singh, R.; Gulwani, S.; and Rajamani, S. 2012. Automatical-
ly Generating Algebra Problems. In Proceedings of the Twen-
ty-Sixth AAAI Conference on Artificial Intelligence. Palo Alto,
CA: AAAI Press.

Stamper, J.; Barnes, T.; and Croy, M. 2010. Enhancing the
Automatic Generation of Hints with Expert Seeding. In Pro-
ceeding of the 10th International Conference on Intelligent Tutor-
ing Systems, Vol. II, 31–40. Berlin: Springer.

Sutton, S., and Barto, A. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: The MIT Press.

Tatsuoka, K. K. 1983. Rule Space: An Approach for Dealing
with Misconceptions Based on Item Response Theory. Jour-
nal of Educational Measurement 20(4): 345–354.

VanLehn, K. 2006. The Behavior of Tutoring Systems. Inter-
national Journal of Artificial Intelligence in Education 16(3):
227–265.

Ken Koedinger is a professor in the Human-Computer
Interaction Institute and the Psychology Department at

Carnegie Mellon University. He directs LearnLab.org, which
leverages cognitive and computational approaches to sup-
port researchers in investigating the instructional condi-
tions that cause robust student learning.

Emma Brunskill is an assistant professor in the Computer
Science Department at Carnegie Mellon University. She is
also affiliated with the Machine Learning Department. Her
research lies in artificial intelligence and machine learning,
where she focuses on novel methods to automatically make
good sequences of decisions under uncertainty. She is par-
ticularly interested in applications of this work to intelligent
tutoring systems and healthcare.

Ryan S. J. d. Baker is the Julius and Rosa Sachs Distin-
guished Lecturer at Columbia University Teachers College.
He is also president of the International Educational Data
Mining Society and uses data mining methods to study stu-
dent engagement and robust learning in educational soft-
ware.

Elizabeth A. McLaughlin is a research associate at the
Human-Computer Interaction Institute at Carnegie Mellon
University. Her research interests include cognitive science
and the application of cognitive science principles to edu-
cational technology.

John Stamper is a member of the research faculty at the
Human-Computer Interaction Institute at Carnegie Mellon
University. He is also the technical director of the Pittsburgh
Science of Learning Center DataShop (pslcdatashop.org).
His primary areas of research include educational data min-
ing and intelligent tutoring systems.

