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Most current user interface technologies in the med-
ical radiology domain take advantage of the inher-
ent advantages paper provides over digital docu-

ments. Making medical diagnosis with paper documents is
intuitive and smoothly integrates with reading the written
diagnostic comments again at a later stage when it comes to
the patient treatment process. Therefore, many radiology
practices have used paper reporting over the last 20 years or
more. However, this situation is not optimal in the digital
world of database patient records, which have many advan-
tages over current filing systems when it comes to search and
navigation in complete patient repositories called radiology
information systems. In fact, modern hospital processes
require a digitization of patient reports. Until now, there is no
solution available that potentially combines the virtues of
paper reporting in a paper-centered practice and the real-time
digitization of the paper contents — although there exist
many empirical studies that domain experts prefer paper to
digital media when it comes to reporting processes. A digital
pen-based interface should enable radiologists to create high-
quality patient reports more efficiently and in parallel to
their patient examination task.

The current practice in hospitals is that a radiologist’s dic-
tated or written patient report is transcribed by hospital staff
and sent back to the radiologist for approval. (Speech recog-
nition is used more and more to reduce transcription tasks.)
The turnaround time is 2–30 hours and the process ineffi-
cient. In order to improve the general medical scenario, we
implemented a first prototype for radiology findings with
several unique features: (1) a real-time digitization into PDF
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n Future radiology practices assume that
the radiology reports should be uniform,
comprehensive, and easily managed. This
means that reports must be readable to
humans and machines alike. In order to
improve reporting practices in breast imag-
ing, we allow the radiologist to write struc-
tured reports with a special pen on paper
with an invisible dot pattern. In this way,
we provide a knowledge-acquisition system
for printed mammography patient forms
for the combined work with printed and
digital documents. In this domain, printed
documents cannot be easily replaced by
computer systems because they contain
free-form sketches and textual annota-
tions, and the acceptance of traditional PC
reporting tools is rather low among the doc-
tors. This is due to the fact that current
electronic reporting systems significantly
add to the amount of time it takes to com-
plete the reports. We describe our real-time
digital paper application and focus on the
use case study of our deployed application.
We think that our results motivate the
design and implementation of intuitive
pen-based user interfaces for the medical
reporting process and similar knowledge
work domains. Our system imposes only
minimal overhead on traditional form-fill-
ing processes and provides for a direct,
ontology-based structuring of the user
input for semantic search and retrieval
applications, as well as other applied arti-
ficial intelligence scenarios, which involve
manual form-based data acquisition.
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documents of both text and graphical contents such
as sketches; (2) real-time handwriting or gesture
recognition and real-time feedback on the recogni-
tion results on a computer screen; and (3) the map-
ping of the transcribed contents into concepts of sev-
eral medical ontologies. We evaluated the first
prototype in 2011 at the university hospital in Erlan-
gen, Germany. After its technical improvements, we
conducted a second more formal evaluation in 2012,
in the form of a clinical trial with real radiologists in
the radiology environment and with real patients.

In our improved scenario implementation and
evaluation presented in this article, we use a pen-
based interface and a new “real-time interactive”
paper-writing modality. We extend the interactive
paper for the patient reporting approach with an
even more specific approach for mammography (the
examination of the human breast). The goal of breast
imaging is the early detection of breast cancer and
involves physical examination, X-ray mammogra-
phy, ultrasound, as well as magnetic resonance imag-
ing (MRI).

The design should therefore not only integrate
physical documents and the doctor’s (physical)
examination task into an artificial intelligence (AI)
application, but also the direct feedback about the
recognized annotations to avoid turnover times and
additional staff. In contrast to our approach, tradi-
tional word and graphic processors require a key-
board and the mouse for writing and sketching. Even
advanced speech-recognition engines for clinical
reporting cannot provide a good alternative. First,
the free-form transcriptions do not directly corre-
spond to medical concepts of a certain vocabulary;
second, the description of graphical annotations is by
far more complex and prone to misunderstandings
than a sketch-based annotation. In our scenario, the
direct, fast, and flexible digital pen solution is an
optimal extension of the analog paper reporting
process, which has been highly optimized by trial-
and-error over the last 50 years. In this article, we
present our prototype and compare its performance
and robustness to (electronic and AI based) data-
entry solutions that exist today.

Background
The THESEUS Radspeech project (Sonntag 2013)
focuses on the knowledge-acquisition bottleneck of
medical images: we cannot easily acquire the neces-
sary image semantics of medical images that ought
to be used in the software application as it is hidden
in the heads of the medical experts. One of the select-
ed scenarios aims for improved image and patient
data search in the context of patients that suffer from
cancer. During the course of diagnosis and continual
treatment, image data is produced several times using
different modalities. As a result, the image data con-
sist of many medical images in different formats,

which additionally need to be associated with the
corresponding patient data, and especially in the
mammography case, with a physical examination. In
addition, in the current mammography practice the
reporting results are often inaccurate because pre-
specified standardized terminologies for anatomy,
disease, or special image characteristics are seldom
used.

That’s why we base our development on a special
mammography form where radiologists can encircle
special characteristics and add free text commands
that can only be filled in with medical terms of a pre-
specified medical vocabulary or free-form sketches.
Thus, we are concerned with a semantic tagging task,
which is the primary reporting task of the radiologist.
According to the results of the evaluation, we advo-
cate the usage of both digital and physical artifacts.
From an ecological perspective, the key for providing
a successful interface lies in the seamless integration
of artificial intelligence into the distributed cognition
task of the user — to draw sketches and annotate
radiology terms while the patient is present or the
doctor skims the radiology pictures. Regarding the
fact that the user and the intelligent system should
have a collaborative goal (Sonntag 2012) to allow for
a dedicated integration of AI technology, we followed
the Cognitive Work Analysis (CWA) approach, which
evaluates first the system already in place and then
develops recommendations for future design
(Vicente 1999). The resulting evaluation is then
based on the analysis of the system’s behavior in the
actual medical application context. Cognitive task
analysis (CTA) is also related as it underlines that
advances in technology have increased, not
decreased, mental work in working environments
while doing a specific work-related task (Militello and
Hutton 1998).

For example, all radiology doctors in our evalua-
tion confirm that they can better focus on the patient
while writing with a pen instead of using a comput-
er. We should therefore support the digital interac-
tion with printed documents to report in a digital
form and to allow a radiologist to control the recog-
nition results on the fly. The potential of a digital ver-
sion is the possibility of a real-time processing (and
sharing) of the handwriting and the recognition
results. The advantage of a digital pen version over a
tablet PC is for example the high tracking perform-
ance for capturing the pen annotations without
restricting the natural haptic interaction with a phys-
ical pen or the need for additional tracking devices.

Related Work
Primary data collection for clinical reports is largely
done on paper with electronic database entry later.
Especially the adoption of real-time data-entry sys-
tems (on desktop computers) has not resulted in sig-
nificant gains in data accuracy or efficiency. Cole et
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al. (2006) proposed the first comparative study of dig-
ital pen-based data input and other (mobile) elec-
tronic data-entry systems. The lack of availability of
real-time accuracy checks is one of the main reasons
digital pen systems have not yet been used in the
radiology domain (Marks 2004). It is a new concept
that extends other attempts to improving stylus
interaction for electronic medical forms (Seneviratne
and Plimmer 2010).

Only recently, a variety of approaches have been
investigated to enable an infrastructure for real-time
pen-driven digital services: cameras, pen tablets
(www.wacom.com), ultrasonic positioning, RFID
antennas, bar-code readers, or Anoto’s technology
(www.anoto.com). The Anoto technology, which we
use, is particularly interesting because it is based on
regular paper and the recording is precise and reli-
able. In order to become interactive, documents are
made compatible with Anoto at print time by aug-
menting the paper with a special Anoto dot pattern.
In addition, for example iGesture (Signer, Kurmann,
and Norrie 2007) can be used to recognize any pen-
based gestures and to translate them into the corre-
sponding digital operations. For the recognition of
the contents of the form’s text fields and primitive
sketch gestures, either the commercial Vision Objects
or the Microsoft handwriting recognition engines
(Pittman 2007) can be used.

Many digital writing solutions that specialize in
health care with Anoto (see Anoto’s Industry Case
Studies online) are available, but these systems are
“one-way” (that is, the results can only be inspected
after the completion of the form, thus no interaction
is possible) and do not use a special terminology for
the terms to be recognized or support any gestures. In
our scenario, we developed a prototype with these
extensions that is able to process the input in real
time and to give immediate feedback to the user.
While using the interactive paper, we address the
knowledge-acquisition bottleneck problem for image
contents in the context of medical findings/struc-
tured reporting. A structured report (Hall 2009) is a
relatively new report-generation technique that per-
mits the use of predetermined data elements or for-
mats for semantic-based indexing of image report ele-
ments. In other related work, for example, the input
modality of choice is a tablet PC (Feng, Viard-
Gaudin, and Sun 2009). While a tablet PC supports
handwritten strokes, writing on it does not feel the
same as writing on normal paper. Another difference
is that the physical paper serves as a certificate.

Scenario Implementation
The digital pen annotation framework is available at
the patient finding workstation and the examination
room. The radiologists finish their mammography
reports at the patient finding station where they can
inspect the results of the digital pen process. With the

radiologist’s signature, a formal report is generated
according to the mammography annotations. The
sketches the expert has drawn are also included in
the final digital report (see figure 1). Anoto’s digital
pen was originally designed to digitize handwritten
text on normal paper and uses a patented dot pattern
on a very fine grid that is printed with carbon ink on
conventional paper forms. We use the highest reso-
lution dot pattern (to be printed with at least 600 dpi)
to guarantee that the free-form sketches can be digi-
tized with the correct boundaries. To use the high-
resolution dot pattern, the Bluetooth receiver is
installed at the finding station; this ensures an almost
perfect wireless connection. Please note that we use
the digital pen in a new continuous streaming mode
to ensure that the radiologist can inspect the results
on screen at any time; our special Anoto pen research
extension accommodates a special Bluetooth sender
protocol to transmit pen positions and stroke infor-
mation to the nearby host computer at the finding
station and interpret them in real time.

In the medical finding process, standards play a
major role. In complex medical database systems, a
common ground of terms and structures is absolute-
ly necessary. For annotations, we reuse existing refer-
ence ontologies and terminologies. For anatomical
annotations, we use the foundational model of
anatomy (FMA) ontology (Mejino, Rubin, and Brink-
ley 2008). To express features of the visual manifes-
tation of a particular anatomical entity or disease of
the current image, we use fragments of RadLex (Lan-
glotz 2006). Diseases are formalized using the Inter-
national Classification of Diseases (ICD-10) (Möller
et al. 2010). In any case, the system maps the hand-
writing recognition (HWR) output to one ontological
instance. Images can be segmented into regions of
interest (ROI). Each of these regions can be annotat-
ed independently with anatomical concepts (for
example, “lymph node”), with information about
the visual manifestation of the anatomical concept
(for example, “enlarged,” “oval,” “unscharf/diffuse,”
“isoechogen,” which are predefined annotation fields
to be encircled), and with a disease category using
ICD-10 classes (for example, “Nodular lymphoma” or
“Lymphoblastic”). However, any combination of
anatomical, visual, and disease annotations is
allowed and multiple annotations of the same region
are possible to complete the form.

Digital Pen Architecture
The pen architecture is split into the domain-inde-
pendent Touch & Write system (Dengel, Liwicki, and
Weber 2012) and the application level. In Touch &
Write, we have conceptualized and implemented a
software development kit (SDK) for handling touch
and pen interactions on any digital device while
using pure pen interaction on paper. The SDK is
divided into two components: the Touch & Write
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Core and the application-specific part (see figure 2).
The core part always runs on the interaction com-
puter (laptop or desktop) as a service and handles the
input devices (in this scenario the Anoto pen). The
SDK contains state-of-the-art algorithms for analyz-
ing handwritten text, pen gestures, and shapes.
Shape drawings are sketches using simple geometric
primitives, such as ellipses, rectangles, or circles. The
shape detection is capable of extracting the parame-
ters for representing the primitives such as the cen-
troid and radius for a circle. By contrast, pen gestures
trigger a predefined action when performed in a cer-
tain area of the form, such as selecting or deselecting
a term, or changing the ink color. Furthermore, the
SDK implements state-of-the-art algorithms in mode
detection (Weber et al. 2011), which we will, due to
their importance, describe in greater detail.

First, the Digital Pen establishes a remote connec-
tion with the pen device through Bluetooth. Then it
receives information on which page of the form the
user is writing and its specific position at this page in
real time. This information is collected in the Ink
Collector until the user stops interacting with the
paper form. For the collection of the pen data, a sta-
ble connection is sufficient. The Anoto pen uses the
Bluetooth connection for the transmission of the
online data. Furthermore, it has an internal storage,
to cache the position information, until the trans-

mission can be completed. Here is a potential bottle-
neck, which could cause a delay in the interaction —
a too great distance of the pen to the Bluetooth don-
gle could interrupt the connection. Because of the
caching mechanism, no data get lost and can be col-
lected when the connection is stable again.

Second, the Online Mode Detection is triggered.
Mode detection is the task of automatically detecting
the mode of online handwritten strokes. Instead of
forcing the user to switch manually between writing,
drawing, and gesture mode, a mode-detection system
should be able to guess the user’s intention based on
the strokes themselves. The mode detection of the
Touch & Write Core distinguishes between hand-
writing, shapes drawing, and gestures that trigger the
further analysis of the pen data. To classify the input,
a number of features such as compactness, eccentric-
ity, closure, and so forth, are calculated. These fea-
tures are used in a multiclassification and voting sys-
tem to detect the classes of handwritten information,
shape drawings, or pen gestures. The system reaches
a recognition rate of nearly 98 percent — see also
Weber et al. (2011). Mode detection is essential for
any further automatic analysis of the pen data and
the correct association of the sequential information
in the Interpretation Layer. In fact, online mode
detection provides for domain practicality and the
reduction of the cognitive load of the user.

Figure 1. Hand-Drawn Sketches and Free Text Annotations.
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Third, depending on the results of the mode detec-
tion either the Handwriting Recognition or the Ges-
ture Recognition is used to analyze the collected
stroke information. For the handwriting recognition
and the shape detection the Vision Objects MyScript
Engine1 is used. The pen gestures are recognized
using the iGesture framework (Signer, Kurmann, and
Norrie 2007), which uses an extended version of the
widely used single- and multistroke algorithm pre-
sented in Rubine (1991). The result of the analysis is
distributed through the Event Manager component.
Both the iGesture framework and the Vision Objects
engine are capable of providing immediate results;
the user receives the results of the analysis and feed-
back on screen in less than a second. Figure 1 illus-
trates a current combination of written and hand-
drawn annotations.

The application has to register at the Event Man-
ager in order to receive the pen events. There is a gen-
eral distinction between the so-called low-level
events and high-level events. Low-level events

include raw data being processed like positions of the
pen. High-level events contain the results of the
analysis component (for example, handwriting
recognition results, detected shapes, or recognized
gestures.)

On the application level the events are handled by
the Interpretation Layer, where the meaning of the
detected syntactic handwritten text and pen gestures
is analyzed depending on the position in the paper
form. Finally, the application layer provides the visu-
al feedback depending on the interpretation of the
events, the real-time visualization of the sketches,
gestures, and handwritten annotations.

As in Hammond and Paulson (2011) and Steimle,
Brdiczka, and Mühlhäuser (2009), we differentiate
between a conceptual and a syntactic gesture level.
On the gesture level, we define the set of domain-
independent gestures performed by the (medical)
user. Besides the handwriting, these low-level strokes
include circles, rectangles, and other drawn strokes.
It is important to note that our recognizers assign

Articles

30 AI MAGAZINE

Figure 2. Architecture of the Pen Interaction Application.
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domain-ignorant labels to those gestures. This allows
us to use commercial and domain-independent soft-
ware packages for the recognition of primitives on
the syntactic level. On the conceptual level, a
domain-specific meaning and a domain-specific label
are assigned to these gestures (see next section). In
our specific mammography form context, the posi-
tion on the paper defines the interpretation of the
low-level gesture.

The resulting screen feedback of the interactive
paper form for structured mammography reports (see
figure 3) spans over two full pages and its division
into different areas is a bit more complicated as illus-
trated in this article. The interpretation example (see
figure 4, bottom) shows different interpretations of a
circle in free text areas, free-form sketch areas, and
the predefined annotation vocabulary fields. In the
mammography form implementation of 2011, we
did not take much advantage of predefined interpre-
tation grammars and tried to recognize all gestures in
a big free text area. The current design of 2012/2013,
which is evaluated here, accounts for many of these
unnecessary complications for the recognition
engine. It takes full advantage of the separation of
the form into dedicated areas with dedicated text and
gesture interpretation grammars.

Pen Events and 
Online Mode Detection

Pen events are declared by basic notations introduced
here. A sample

is recorded by a pen device where (xi, yi) is a point in
two-dimensional space and ti is the recorded time

r
si = (xi ,yi ,ti )

stamp. A stroke is a sequence S of samples,

where n is the number of recorded samples. A
sequence of strokes is indicated by

where m is the number of strokes. The area A covered
by the sequence of strokes D is defined as the area of
the bounding box that results from a sequence of
strokes.

For a low-level pen event, the following raw data
are provided by our new recognizer API taking the
pen’s global screen coordinates and force as input:
pen id (a unique ID for the pen device); (x, y) (the rel-
ative x, y screen coordinate and time stamp [sample
si]); force (normalized pen pressure measured by the
pen device); velocity (x, y) (the velocity in x and y
direction); acceleration (the acceleration); and type
(the type indicates whether the event is a pen down,
pen move, or pen up event).

High-level events contain the results of the pen
analysis component (for example, handwriting
recognition results, detected shapes, or recognized
gestures). An event for the handwriting contains
strokes (the sequence of strokes D on which the
analysis is being applied); bounding box (a rectangle
that defines the area A of the strokes D); and results
(the handwriting recognition results, that is, a list of
words and their alternatives in combination with
confidence values).

Shape events are composed of strokes (the sequence
of strokes D on which the analysis is being applied);
and shapes (the list of the detected shapes and their
parameters).

Currently, the shape detection detects circles,

S= {
r
si | i ![0,n"1],ti < ti+1}

D= {Si | i ![0,m"1]},

Figure 3. Real-Time Interactive Paper Screen Display for Structured Mammography Reports.
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ellipses, triangles, and quadrangles. If none of these
geometries are detected with high confidence, a poly-
gon is approximated. Gesture events are composed of
strokes (the sequence of strokes D on which the analy-
sis is being applied), gesture type (the type of the ges-
ture), and confidence (the aggregated gesture confi-
dence value).

On the application level, the meaning of the
detected syntactic event, for example, handwritten
symbols and pen gestures, is analyzed according to
the position in the paper form and domain-specific
recognition grammars for areas. The usage of prede-
fined (medical) stroke and text grammars are exclu-
sively specified on the Application Layer. Finally, the
visualization layer provides the visual feedback
depending on the interpretation of the events, the
real-time visualization of the sketches, gestures, and
handwritten annotations.

Of course, the interaction with the text and sketch
based interface should be intuitive, and a manual
switch between drawing, handwriting, or gestures
modes must be avoided. Thus it becomes necessary to
distinguish between such different modes automati-
cally. In the mammography form, we distinguish
between three major modes: handwriting, drawing,
and gesture mode. Our online mode detection is

based on the method proposed by Willems, Rossig-
nol, and Vuurpijl (2005). We will introduce basic
notations for the mode detection. In addition to
strokes, the centroid µ is defined as

where n is the number of samples used for the classi-
fication, the mean radius µr (standard deviation) as

and the angle φsi as

Figure 5a shows an example of a recorded area
together with its bounding box and the calculated
centroid; figure 5b shows the extracted angle, which
is only available from online detections. Table 1 con-
tains a listing of the online features used for the clas-
sification of the mode. As long as the user is writing
or drawing (continuous stylus input according to a
time threshold), the strokes are recorded in a cache.
As a result, the feature values are calculated for stroke
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Figure 4. Gesture Set and Three Dominant Interpretations.
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sequences D by calculating individual stroke infor-
mation and summing up the results. Whenever the
detection is triggered, the feature vectors are com-
puted from the cached data and the classification is
performed in real time.

To classify the input, a number of features such as
stroke length, area, compactness, curvature, and so
forth, are calculated. Each mode of pen interaction,
such as drawing, handwriting, or gestures, has its
characteristics. Thus the extracted features should
represent them and make the modes separable. For
example, handwritten text tends to be very twisted
and compact; hence the values of compactness and
curvature are quite high in comparison to drawing
mode where more primitive shapes are prevalent.
Many distinctive features are based on the online fea-
ture angle φ.

Evaluation
The following five preparation questions for improv-
ing the radiologist’s interaction with the computer of
the patient finding station arise: (1) How is the work-
flow of the clinician; can we save time or do we try to
digitize at no additional costs? (2) What kind of
information (that is, free-form text, attributes, and
sketches) is most relevant for his or her daily report-
ing tasks? (3) At what stage of the medical workflow
should reported information items be controlled (by
the clinician)? (4) Can we embed the new intelligent
user interface into the clinician’s workflow while
examining the patients? (5) Can we produce a com-
plete and valid digital form of the patient report with
one intelligent user interface featuring automatic
mode detection?

Four different data-input devices were tested: the
physical paper used at the hospital, our Mammo Dig-
ital Paper (AI-based), the iSoft PC mammography
reporting tool (2012 version),2 and an automatic
speech-recognition and reporting tool (Nuance Drag-
on Medical, 2012 version, AI-based).3 We are mostly
interested in a formal evaluation of ease of use and
accuracy so that we do not disrupt the workflow of
the clinician (according to the CWA/CTA proce-
dures). Additional test features of Mammo Digital
Pen are the following: (1) Multiple Sketch Annota-
tions: the structured form eases the task of finding
appropriate annotations (from FMA, ICD-10, or
RadLex); some yes/no or multiple choice questions
complete the finding process. Multiple colors can be
selected for multiple tissue manifestations. (2) Anno-
tation Selection and Correction: the user is able to use
multiple gestures, for example, underline or scratch
out a concept in the free text fields. Then he or she
has the possibility to select a more specific term (dis-
played on the computer screen) or refine/correct a
potential recognition error. This makes the paper
interaction really interactive and multimodal. We
also use the iGesture framework to select the colors
on a virtual color palette printed on the physical
forms (in color); the user can circle a new paint-pot to
get this color’s ink to sketch and annotate in a spe-
cific color.

Evaluating AI-Based and 
Traditional Methods
In the formal clinical evaluation study, we observed
two senior radiologists with experience in breast
imaging in the mammography scenario with real
patients. Additional seven radiologists were able to

Figure 5. A Recorded Area Together with Its Bounding Box and the Calculated Centroid.

(a) Bounding box and centroid of all samples. (b) Angle φ between three samples.
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Table 1. Online Features.

ID Feature Description Note 

0 Number of Strokes 

1 Length si denotes a sample.

2 Area 
 

3
 

Perimeter Length
Length of the path 
around the convex 
hull. 

4
 

 

5 Eccentricity
a and b denote the
length of the major
or minor axis of the
convex hull,
respectively.    

 

6
 

Principal Axes

7
 

Circular Variance
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mean distance of
the samples to the
centroid r. 

 
 

8
 

Rectangularity
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11 Perpendicularity

 

12 Signed Perpendicularity
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scale and rotation
invariant (normali-
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test the application apart from the daily routine.
These experts also controlled the accuracy evalua-
tion. A usability engineer was present at the patient
finding workstation (host) while the doctor engages
in the patient examination task (without visibility)
and data-entry task (with visibility).

Data input using a usual paper form with and
without a digital pen was used. So each doctor had to
perform the form-filling process twice. This ensures
minimal change to the daily routine and the possi-
bility to observe the doctor in the daily examination
routine. The input forms (paper and Mammo Digital
Paper) had the same contents and similar layouts.

Each reader (senior radiologist) examined 18 con-
secutive patients/patient cases during clinical routine
performing the two data-input methods (resulting in
36 fully specified patient records with a total of 3780
annotation fields whereby 765 have been used. Spar-
sity = 0.202). The usual paper form served as refer-
ence standard for data collection. After the workday
every reader and the seven additional radiologists
evaluated the documentation results. Breast cancer
diagnosis included MRI imaging. Standard usability
forms (questionnaires) were filled out in order to
identify objective key features and to provide a com-
parison to other data-entry systems the radiology
team was familiar with.

The form evaluation focused on two medical sec-
tions: (1) MRI imaging including different attributes
for the characterization of lesions as well as numbers
for BI-RADS classification; (2) assessment of the
results in free text form. The number of data-entry
errors was determined by comparing the results of
the different methods.

Evaluation Results
The results are shown in table 2. We highlighted the
new digital pen features we implemented in Mammo
Digital Pen. As can be seen, the new digital pen sys-
tem features of immediate validation, offline valida-
tion, real-time recognition of text, online correction
of recognition errors, real-time capture to structured
database, and forward capture to database (with the
help of a transcriber), which have previously been
reserved for PC and/or ASR systems, can now be done
with digital pens employing automatic stroke inter-
pretation. This corresponds to the workflow of the
clinician. We evaluated that a direct digitalization at
no additional cost counts most. In addition, the real-
time recognition of gestures and using the digital
source document as a certificate (the captured signa-
ture can be officially used) are unique features of the
Mammo Digital Paper system.

What kind of information counts most? In many
specific reporting tasks such as radiological reporting,
dictation (preferably with modern ASR systems) is
performed. However, in the department we evaluat-
ed, paper-based data collection dominates during
breast imaging because many digital devices are

immobile and too unwieldy. Nevertheless, flexibility
is crucial in this clinical setup. The data-entry system
should be completely mobile in order to work with it
in different situations such as taking the patient’s
medical history during the ultrasound examination
or during the mammography reporting. The usage of
the usual paper form enables quick and very com-
fortable data input and provides a high user satisfac-
tion. This is partly due to the fact that because of the
resemblance to the source paper forms, no addition-
al training hours were needed. Predefined annotation
fields can be recognized at the recognition rate of the
online mode detection of 98 percent. HWR and draw-
ings vary according to the predefined grammar,
where a trade-off between accuracy and coverage
must be investigated in future evaluations. It cannot
be said that any information of a specific mode is
more important than that of another mode as this is
highly case specific. In any case, real-time digitized
information items should be controlled/corrected at
acquisition time to avoid the data transcription/veri-
fication task of professional typists (which is also
prone to error).

Can we embed the new intelligent user interface?
All radiologists noted that flexibility during the data
input promotes a good doctor-patient relationship
what is crucial for patients’ satisfaction and recovery
(no distraction from primary task; no distraction
from patient). The user distraction from primary task
is one of the main issues with any clinical PC report-
ing software. Can we produce a complete and valid
digital form? The evaluation in table 2 was based on
this requirement (given the correction at acquisition
time), which has been justified empirically by the
expert questionnaires.

Conclusion and Future Work
We presented a digital pen-based interface for mam-
mography forms and focused on an evaluation of
normal paper and digital paper, which also included
a comparison to PC reporting and an automatic
speech-recognition system. All digital data-input
devices improve the quality and consistency of mam-
mography reports: the direct digitization avoids the
data-transcription task of professional typists.

The radiologist team was in general very support-
ive to test the new digital paper form. According to
their comments, it can be said that most of them feel
that digital documentation with desktop PC com-
puters (without AI support) is in many respects a step
backward. The results of the clinical evaluation con-
firm this on the measures of ease of use/user distrac-
tion and efficiency. The results presented here may
differ with other, more integrative desktop PC or ASR
reporting software. Finally, after controlling the
results on screen, a signature triggers a PDF report-
generation process where the original user input can
be seen, as well as the transcribed database entry. In



addition, our approach provides other means to
increase the data quality of future reports: with nor-
mal paper forms, logic errors can arise, for example
by skipping required fields (such as the BI-RADS clas-
sification) or annotating with words that do not stem
from the predefined vocabularies.

The possibility to reduce real-time recognition
errors and logic errors as the data are being collected
has great potential to increase the data quality of
such reports over the long run. There’s also great
potential for reasoning algorithms and ontology-
based deduction. With automatic concept checks of
medical terms, for example, educators may find inter-
active papers for mammography can help trainees
learn the important elements of reports and encour-
age the proper use of special radiology terms. We
firmly believe that a large-scale implementation of
the Mammo Digital Pen technology all over the
country can help improve the quality of patient care
because similar cases can be found more easily and
used in case-based reasoning applications toward
automatic decision support. Toward this goal, the
reliability of recognition concerning sketches and
text labels at various positions has to be improved
considerably; this detection assumes a perfect detec-
tion of different modes in fast succession. Future
work includes the interpretation of the handwritten
strokes in the sketch areas on the conceptual, med-
ical level, for example, “does the form value ‘round’
correspond to the shape in the sketch area?”
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Notes
1. See www.visionobjects.com/.

2. See www.isofthealth.com/en/Solutions/Department/
Radiology.aspx.

3. See www.nuance.com/for-healthcare/capture-any-
where/radiology-solutions/index.htm.
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