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Automated planning studies the problem of reasoning
about actions to achieve goals or to maximize a
reward. Actions are usually expressed in terms of pre-

conditions and effects. Preconditions indicate the require-
ments that must hold to apply the action, while effects are
the consequence (including the cost) of applying the action
to the state of the world. Automated planning has been
applied to diverse, real-world application areas such as space
exploration, manufacturing, machine tool calibration, and
road traffic management.

In order to foster the development and comparison of
planning approaches, to assess the state of the art in plan-
ning, and to coordinate new challenging benchmarks, the
International Planning Competition (IPC) has been organ-
ized every two or three years since 1998.

This article summarizes the eighth International Planning
Competition held in 2014 (IPC-2014), which focused on
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n This article reviews the 2014 Inter-
national Planning Competition (IPC-
2014), the eighth in a series of competi-
tions starting in 1998. IPC-2014 was
held in three separate parts to assess the
state of the art in three prominent areas
of planning research: the deterministic
(classical) part (IPCD), the learning
part (IPCL), and the probabilistic part
(IPPC). Each part evaluated planning
systems in ways that pushed the edge of
existing planner performance by intro-
ducing new challenges, novel tasks, or
both. The competition surpassed again
the number of competitors that partici-
pated in its predecessor, highlighting the
competition’s central role in shaping the
landscape of ongoing developments in
evaluating planning systems.
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aspects that have a significant impact on planning
and, in general, on the AI community: both identi-
fying the emerging planning trends and describing
the newly introduced domains, which have been
designed for investigating the applicability of plan-
ning techniques to a range of real-world applications.
More information about the competition, including
complete results, source code of planning systems,
and domain models, can be found on the IPC portal
for all years and editions of the competition.1 A sum-
mary of the history behind these parts can be found
at in the article about the prior competition, IPC-
2011 (Coles et al. 2012). Similar to IPC-2011, the
competition was held in three distinct parts. The
deterministic part (IPCD) has been running since
IPC-1998 and is focused on fully observable environ-
ments where actions are atomic with deterministic
effects, and planning is episodic. The learning part
(IPCL) relaxes the episodic assumption to allow plan-
ners to learn from prior experience with the domain
model or search process. The probabilistic part (IPPC)
introduces episodic, cost-optimal problems with sto-
chastic transitions, and (optionally) partial observ-
ability.

Deterministic Part (IPCD-2014)
IPCD is the longest running part of the competition,
and its evaluation tracks have evolved as the research
community focused on new challenges. IPCD-2014
introduced three innovations: the agile track, a pro-
tocol for problem selection, and a unified planner
submission system called DES.

The agile track evaluates how quickly planners
solve challenging problems. The cutoff CPU time
limit is 5 minutes compared to the usual limit of 30
minutes. This has been done because, in many plan-
ning applications, it might not be possible to wait a
significant amount of time for having a plan to use;
satisficing plans are required as soon as possible and,
eventually, they can be optimized.

IPCD-2014 introduced a reproducible, unbiased
and general protocol for efficient selection of testing
problem instances.2 Clearly, such a selection is an
extremely critical step of every competition, since it
is strongly related to performance and outcomes of
planning engines. This approach relies on (1) gener-
ation of a large set of benchmarks; (2) execution of
anonymized planning systems on generated
instances; and (3) selection of suitable benchmarks.
In particular, the third step aims to remove trivial
and too complex planning problems.

Also, a new technique for submitting planners has
been designed and exploited: the DES system. Such a
system allowed participants to configure, compile,
test, and submit their planning engines directly on
the competition premises. This minimized the num-
ber of last-minute bugs, which are mainly because of
compiling issues, and let teams understand the actu-

al performance of planners on the competition
machines, which can significantly change on differ-
ent hardware or software configurations (Howe and
Dahlman 1993).

IPCD-2014 followed the evaluation formats of
IPCD-2008 and IPCD-2011. The modeling language
was the same as aforementioned editions of the com-
petitions, but new core features required to be sup-
ported by planners were introduced: negative pre-
conditions and conditional effects. This was done to
foster features support and promoting planners that
can be more appropriate to exploit in real-world
planning applications. As in previous editions of the
deterministic track, the VAL (Howey, Long, and Fox
2004) tool was used for validating the plans provid-
ed by planners. In all but the agile track the evalua-
tion metrics of IPC-2008 and IPC-2011, which favor
quality and coverage over problem-solving speed,
were maintained. Briefly, each planner receives a
score between 0 and 1 for each planning task. The
score is the ratio between the quality of the solution
found, if any (0 if no solution is provided), and the
quality of the best solution found by any competitor.
The score is summed across all problems for a given
planner, and the winner is the planner with the high-
est score. Scores are not aggregated across tracks. In
the agile track, a similar metric is used, but scores are
given by evaluating run time. In this case, each plan-
ner receives a score between 0 and 1 for each plan-
ning task. The score is the ratio between the CPU
time needed for solving the problem, 0 if no solution
is provided, and the CPU time needed by the fastest
competitor. In order to evaluate progress made in the
planning area, results included a comparison to the
winner of the last competition.

IPCD-2014 received a record number of submis-
sions — 67 planners took part in the deterministic
track alone. In the following sections we will discuss
trends of the planning area that emerged from the
competition, and the new domain models intro-
duced.

Results and Trends
IPCD-2014 held five tracks: agile (15 participants),
multicore (9), optimal (17), satisficing (20) and tem-
poral satisficing (6). Two tracks, the temporal optimal
and preferences tracks, were cancelled due to too few
competitors. We remark that few planners can deal
with preferences or temporal models, which limits
applicability of these systems in many real-world
applications. We also note the number of entrants of
the 2014 temporal satisficing track was lower than
the corresponding 2011 track. It should be remarked
that multicore solvers are not yet as well engineered
as classical planners, a fact also observed at IPCD-
2011 (Coles et al. 2012), though this may be due to
the multicore track being recently added.

In the sequential satisficing track, IBaCoP2 (Cen-
amor, de la Rosa, and Fernández), which is a portfo-
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lio-based approach combining a set of state-of-the-art
planning engines, was declared as the winner and
Mercury (Katz and Hoffmann), which uses best first
search with partial delete-relaxation heuristics, was
declared as the runner-up. In the sequential optimal
track, SymBA*-2 (Torralba, Alcázar, Borrajo, Kiss-
mann, and Edelkamp), which uses bidirectional
blind search with perimeter abstraction heuristics,
was declared as the winner, and cGamer (Torralba,
Alcázar, Kissmann, and Edelkamp), an extension of
the Gamer planner (Kissmann and Edelkamp 2011)
that won the IPC-2008, which uses bidirectional
symbolic search, was declared as the runner-up. In
the sequential agile track, YAHSP3 (Vidal), which per-
forms a search embedding delete-relaxed heuristics,
was declared as the winner, and Madagascar-pC (Rin-
tanen), which translates planning problems into SAT,
was declared as the runner-up. In the sequential mul-
ticore track, ArvandHerd (Valenzano, Nakhost,
Müller, Schaeffer, and Sturtevant), which is a portfo-
lio-based approach combining random-walk and
best-first search-based planning, was declared as the
winner, and IBaCoP (Cenamor, de la Rosa, and Fer-
nández), a variant of IBaCoP2, was declared as the
runner-up. In the sequential temporal track, YAHSP3-
MT (Vidal), a variant of YAHSP3, was declared the
winner, and Temporal Fast Downward (Eyerich,
Keller, Aldinger, and Dornhege), an extension of Fast
Downward (Helmert 2006), a well known heuristic
search-based planner, was declared the runner-up.

As confirmed by the record number of participants
and the good overall performance, many high-per-
formance sequential planners have been developed.
We believe this to be the result of the availability of
well documented and supported planning platforms,
such as FF (Hoffmann and Nebel 2001; Hoffmann
2003), Fast-Downward (Helmert 2006), and the very
recent LAPKT,3 which makes testing and developing
new techniques easier. On the other hand, this leads
to a large number of planning systems that are simi-
lar, and therefore share most of the weaknesses and
strengths; for instance, 29 systems out of 67 are built
on top of Fast-Downward (Helmert 2006).

To encourage the development of innovative plan-
ning techniques, and avoid the proliferation of too-
similar planning systems, two special jury awards
were given for the most innovative planners. Mercu-
ry (Katz and Hoffmann) is based on the red-black
heuristic, which relaxes only some state variables in
order to balance between taking advantage of delete-
relaxation and mitigating its drawbacks (Katz, Hoff-
mann, and Domshlak 2013). RPT (Alcázar, Fernán-
dez, Borrajo, and Veloso) exploits rapidly exploring
random trees (RRTs), which is a well known tech-
nique in path planning, in order to decompose plan-
ning tasks into much smaller subtasks that connect
randomly generated (nonspurious) states (Alcázar,
Veloso, and Borrajo 2011).

The newly introduced agile track evaluated plan-

ners on how quickly they found their first solution
(solution quality was not considered). The speed of
planners was not assessed in previous competitions,
and the rationale behind introducing agile track was
to encourage development of fast planners, since
many application areas need solutions quickly. We
found that planners usually performed very well in 2
or 3 domains, however, in other domains their per-
formance was poor. On the other hand, most of the
problems were solved by at least one of the planners.

Portfolio-based planning relies on combining dif-
ferent planning techniques for solving an instance;
29 out of 67 systems can be broadly classified as a
portfolio planner. In IPCD-2011 portfolios were
mainly static that is, they were configured once on a
set of training instances and exploited on testing
problems. In contrast, IPCD-2014 saw a significant
number of portfolio-based entrants that exploit dif-
ferent approaches for either online or offline config-
uration. Portfolio-based planners performed very well
in the satisficing track and the multicore track par-
ticipants were all portfolio-based. On the other hand,
they tended to underperform in the optimal and
agile tracks, where combining techniques usually
increases coverage at the expense of run-time per-
formance.

In terms of progress made by planning engines,
LAMA-11 (Richter and Westphal 2010),4 the winner
of the 2011 competition, would have placed 12th in
the IPCD-2014 quality rankings, which reveals a
strong trend of progress in the state of the art, larger
than the trend we observed between IPCD-2011 and
IPCD-2008 (Coles et al. 2012). To evaluate progress
on run time, we considered LPG-td (Gerevini, Saetti,
and Serina 2003; 2010) and Metric-FF (Hoffmann and
Nebel 2001, Hoffmann 2003); they would have
ranked respectively the 13th and the 17th position
(out of 17) of the agile track. Interestingly, it is worth
noting that the winner of the sequential temporal
track, YAHSP3-MT, is not able to address concurren-
cy, and it won due to its very good performance on a
small number of domains.

Domain Models Introduced
Since one of the aims of the competition is to evalu-
ate the domain-independent performance of plan-
ners, and given the fact that planning techniques can
be finely tuned on existing and known domains, it is
of crucial importance that new challenging domains
and problems be introduced at every edition. More-
over, competition is a good occasion for evaluating
how state-of-the-art planners perform in potential
application domains. In 2014, we introduced 9 new
domains, out of 23 that have been used among all the
tracks. Some of them were specifically designed for
testing planners’ ability in handling the required
PDDL features, and had not directly lead to applica-
tions. However, several domains deal with relevant
real-world problems. It is the case of traffic control,
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which is modeled in three domain models: RTAM
(Shah et al. 2013), in which planners have to deal
with accident management, that is, planning actions
to be taken by police, ambulances, and so on, and
CityCar and MapAnalyser (Vallati and Chrpa), where
planners are required to shape a map, in terms of
road connections between junctions, for maximizing
the flow of cars between different areas of the city.
Other newly introduced domains are cave diving
(Robinson, Muise, and Gretton), where a group of
divers has to be organized in order to visit a number
of underwater caves; maintenance (Rintanen), which
schedules maintenance of aircrafts in airports; child’s
snack (de la Rosa and Fuentetaja), which creates
sandwiches and serves them to a child; Tetris (Val-
lati), which models the well known Tetris game; hik-
ing (McCluskey), which organizes hiking trips; and,
finally, the genome edit distances domain (Haslum
2011), which encodes the problem of finding a min-
imum cost sequence of operations that transforms
one genome (signed permutation of genes) into
another.

It is worth noting that, for various reasons, a num-
ber of new domains were not suitable to be used in
the competition. Domains that were submitted but
not used in the competition included airport (West-
erman and McCluskey), where automated planning
is exploited for performing ground traffic control
operations in airports; NRP (Piip and Ernits), which
models the nurse scheduling problem in a hospital;
pizza (de la Rosa and R. Fuentetaja), which cuts piz-
zas into slices and then serves them to customers;
crisp (Koller and Hoffmann 2010), which describes
the problem of sentence generation in natural lan-
guages; and calibration (Parkinson et al. 2014), which
optimizes the calibration process of machine tools.

Learning Part (IPCL-2014)
IPCL-2014 built upon the two previous learning parts
to include a quality subtrack that employed the plan
quality evaluation from the deterministic track. This
track is designed to evaluate learning versus non-
learning planners in the context of problems similar
to the deterministic track. An integrated execution
subtrack was proposed but did not have enough com-
petitors to run.

The quality subtract featured three awards: overall,
best learner, and basic solver. The overall award
included any approach fitting within the competi-
tion framework (CPU, memory, disk space), so there
were few, if any, restrictions for this award. The hope
in keeping the format similar to the IPCD is to facili-
tate direct comparison to IPCD results. The best
learner award identifies the planner that most
improved the difference in quality (that is, the learn-
ing delta) when learning was applied over when it
was not. In numerous conversations leading up to
the competition, there was no clear consensus on

how to assess the learning delta, and some felt the
Pareto-optimal metric from IPCL-2011 confounded
the two metrics and was too easily manipulated (that
is, a competitor can artificially inflate the learning
delta by failing during the no-knowledge runs).
Thus, metrics were evaluated separately with an
elimination round to ensure competitors could not
artificially inflate the learning delta.

The basic solver award was introduced in IPCL-
2014. While any definition of a basic solver can be
perceived as somewhat arbitrary, the intent was to
make a succinct definition available before the com-
petition and take one small step toward encouraging
fundamental research in basic solvers without limit-
ing any approach. A basic solver is defined as any sin-
gle (meta) algorithm that does not leverage more
than one general-purpose solver at its core. This defi-
nition includes as a basic solver any meta-algorith-
mic approach (for example, iterated local search, iter-
ated WA*, managing calls to one SAT solver,
randomized restarting A*) provided the parameter-
ized variants use the same core solver. To make this
concrete we will use some examples: A core solver
cannot itself be an ensemble of heterogeneous
solvers. A fallback strategy that applies a different
core solver is considered more than one core solver
and is excluded as a basic solver. Simultaneously
searching with different heuristics (with possibly dis-
tinct open lists) is no different in spirit than making
iterated calls of WA* with different weights and is
included as a basic solver. A randomized restart algo-
rithm that adjusts its restart strategy is included; iter-
ated solvers that select (or adjust) parameters for a
single base algorithm are similar in spirit to other
iterated meta-algorithmic approaches. A planner
that reencodes the task for a single core solver (while
possibly learning to select among distinct encodings)
is considered a basic solver. Competitors certified
their planners as a basic solver subject to a final deci-
sion by the organizers.

Competitors were judged on six domains chosen
from previous competitions: elevators, floortile,
nomystery, parking, spanner, and transport. No new
domains were submitted for this track, so the
domains from the 2008 and 2011 deterministic and
learning tracks were used. In order to use domains
from these competitions, the language for the learn-
ing part of IPC-2014 was a restricted subset of PDDL
3.1. All solutions were validated with VAL (Howey,
Long, and Fox 2004). A challenge in the learning
competition is to generate problem instances that
extend beyond nonlearning approaches, lie within
reach of the anticipated performance of learning
approaches, extend beyond the most capable learn-
ing planners, and draw the testing set from a similar
distribution from the training set while avoiding
results affected by overfitting. To mitigate the bias in
selecting domains and in selecting the instance dis-
tributions, the domains were chosen to balance the
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approaches that did well on them in previous com-
petitions and instances were selected randomly from
a range.

At the start of a six-week learning stage, competi-
tors were provided generators for these domains, a
representative set of validation problems, and guide-
line ranges for the evaluation distributions. Errors in
the domains and generators were corrected at this
point. After the learning stage was complete, com-
petitors were provided runs from selected validation
problems to ensure that their planner was perform-
ing as expected. Problems found in those runs were
corrected before collecting the final results. For the
final evaluation, 5 problems from each domain were
randomly generated from the distributions, resulting
in 30 problem instances. Competitors did not know
these evaluation problems until after the results were
released. The planners were run on the EC2 cloud
compute platform with the support of a generous
grant from Amazon Web Services; each compute plat-
form had a compute equivalent of 2 cores and 3.75
GB memory and ran Ubuntu 12.04 LTS. To account
for variations in the actual computing resources on
the cloud platform, each planning system was run 30
times with and without domain knowledge on each
problem instance. There are three categories of
awards, each with a first, second, and third place.

Of the 14 planners from 8 teams that expressed an
interest in competing for the quality track, 11 plan-
ners from 7 teams competed in the final evaluation.
Five planners were registered as basic solvers that
used only one algorithm to solve problems.

Results and Trends
The overall best quality award compares planners on
the quality of the best plan they produced for each
problem. The awards for best overall quality (out of a
possible score of 30) go to MIPlan (first place, quali-
ty: 21.88) from team members Nuñez, Borrajo,
López; Fast Downward Cedalion (second place, qual-
ity: 19.98) from team members Seipp, Sievers, Hutter;
and Fast Downward SMAC (third place, quality:
17.45) from team members Seipp, Sievers, and Hut-
ter.

The best learner award compares planners on the
learning delta between their overall improvement on
plan quality when knowledge was applied over when
it was not. To ensure that the baseline performance
without knowledge was fair, any problem solved by
seven or more (that is, half or more) planners was
removed from this evaluation, resulting in 24 prob-
lem instances. No planners were eliminated from
consideration, but the ranking did change slightly
due to this adjustment. The awards for best learner
go to Fast Downward Cedalion (first place, adjusted
quality delta: 10.40), Eroller (second place, adjusted
quality delta: 9.97) from team members de la Rosa
and Fuentetaja; and Fast Downward SMAC (third
place, adjusted quality delta: 9.18). The basic solver

award compares the quality of the best plan while
using only a single core algorithm. The best core
solver awards go to Fast Downward SMAC (first
place, quality: 17.45); LLama (second place, quality:
14.30) from team members Virseda, Alcázar; and
Eroller (third place, quality: 12.51).

Assessing the benefit of learning for classical plan-
ning remains a challenge. The elimination round
seems to have partially resolved one issue in assess-
ing a learning delta. However, there remains no con-
sistent measurement of the computational effort
invested during the learning stage, suggesting that
teams with access to greater computational resources
may be at an advantage. Further, it remains possible
to win the overall award with a strong base system
and a modest performance increase with learning. It
seems worthwhile to continue discussions on how to
reward learning in future competitions in spite of the
challenges associated with defining such a metric.

Learning planners have advanced considerably
since IPCL-2008 and IPCL-2011. The problem distri-
butions extended the range of the previous competi-
tions, and the most capable planners solved many of
these harder problems with learning where they
failed without learning. However, the lack of new
domains for IPCL-2014 was unfortunate, and it will
be illuminating to evaluate these systems on the new
problems from IPCD-2014. It may also be worth con-
sidering in future competitions how to leverage new
domains in both IPCD and IPCL so that the results
are based on the same problems and can be more
directly comparable.

Learning alone does not account for the best over-
all performance, although learning was important
for ranking well in the overall award. For example,
IBaCoP performed very well in IPCD-2014 and its
companion learning planner, LIBaCoP, similarly
placed well in the ranking before learning, but it was
surpassed in the overall ranking by systems that had
larger learning deltas. The best overall and best learn-
er rankings differ, and the rankings changed sub-
stantially (sometimes for the worse) when learning
was applied for all but the winning overall planner,
MIPlan. For the 24 problems used to assess learning
delta, less that half (5 of 11) of the systems improved
the quality score by an average of more than 5 prob-
lems; 3 of those were basic solvers.

Basic solvers deserve greater attention. The best
three basic solvers scored overall rankings of 3rd,
7th, and 8th while scoring 2nd, 3rd, and 4th in the
best learner ranking. This ranking difference under-
scores a performance gap between ensembles and
basic solvers, reveals that basic solvers still remain
viable for improved learning, and strongly suggests it
is worthwhile to highlight basic solvers in future
competitions. Basic solvers, which usually excel on
specific problem instances, are often the atomic
building blocks of ensembles, which usually push
the performance envelope across problem sets. Both



are necessary to advance planning and search; it is
prudent to consider how we can encourage advance-
ments in both. More broadly, separately awarding
basic solvers (rather than penalising or eliminating
ensemble systems) may also prove useful in other
competitions facing concern over how to balance
performance differences between ensemble systems
and basic solvers.

The Probabilistic Part (IPPC-2014)
IPPC-2014 continued with the competition format
initiated in IPPC-2011 that provided tracks for both
discrete MDP and POMDP problem specifications
described in the Relational Dynamic influence Dia-
gram Language (RDDL) language.5 Continuous tracks
of IPPC-2014 were also planned but not run due to a
lack of competitors.

While probabilistic tracks dating back to the IPPC-
2004 used a probabilistic extension of PDDL known
as PPDDL (Younes et al. 2005), RDDL was introduced
in IPPC-2011 as an alternative specification language
to PPDDL to provide joint modeling of stochasticity,
concurrency, and complex reward and transition
structure not possible in (lifted) PPDDL. The use of
RDDL in the IPPC-2011 marked the first time that
complex stochastic domains such as traffic control
and elevator control could be modeled. A slight
extension of RDDL for the IPPC-2014 allowed the
further modeling of real-world domains taken from
the ecology literature. As in the IPPC-2011, IPPC-
2014 provided translations of RDDL domains and
problem instances to various alternative formats (for
example, factored MDPs and POMDPs and grounded
PPDDL) to facilitate participation by a wide range of
competitors.

IPPC-2014 used the purely reward-based evalua-
tion metric introduced in IPPC-2011 — for each of 10
problem instances and for each of eight problem
domains (80 problem instances altogether), a plan-
ner was assigned a normalized [0, 1] score with the
lower bound determined by the maximum average
performance of a noop and random policy and the
upper bound determined by the best competitor; any
planner not competing or underperforming the low-
er bound was assigned a score of 0 and all normalized
[0, 1] instance scores were averaged to arrive at a sin-
gle final score for each planner. In contrast to the
IPPC-2011, which only used a single time limit for
completion of the entire competition (leading to
highly varying amounts of time allocated to different
problem instances), IPPC-2014 enforced a strict per-
instance time limit of 18 minutes to complete all 30
trials. This timing change was made to ensure fair
comparison of planner performance on a per
instance basis.

Participation in IPPC-2014 offered a rematch of
the top two competitors from the respective MDP
and POMDP tracks of IPPC-2011 using variants of

Monte Carlo tree search (MCTS) and online value
iteration. In addition, two new competitors joined
the MDP track IPPC-2014. Overall results showed
that the three year head-start of the previous com-
petitors paid off in this competition with the top two
places in each track unchanged from IPPC-2011;
nonetheless, results on four of the domains common
between IPPC-2011 and IPPC-2014 show that plan-
ners competing in both have demonstrated signifi-
cant performance improvements since 2011. Later
on in this article we will elaborate on general plan-
ning trends that can be inferred from these results
along with a discussion of new domains that were
introduced in IPPC-2014 to provide novel technical
challenges and real-world applications.

Results and Trends
With the change from PPDDL used in IPPCs 2004,
2006, and 2008 to RDDL used in IPPCs 2011 and
2014, the field of competitors and winning methods
have shifted substantially. Given the derivation of
PPDDL from its deterministic PDDL subset, high-per-
formance planners for PPDDL in IPPCs 2004-2008
often relied on deterministic replanning methods
that used an underlying PDDL planner — the first
and quite successful of these approaches being FF-
Replan (Yoon, Fern, and Givan 2007), which
replanned on unexpected outcomes in a deter-
minized translation of PPDDL to PDDL. With the
change to RDDL in IPPC-2011 that made heavy use
of exogenous stochasticity, concurrency, and gener-
al reward (cost-optimal) objectives in a finite horizon
setting, the winning approaches in IPPC-2011 shift-
ed to variants of Monte Carlo tree search and in
some cases, online value iteration.

The dominance of planners using Monte Carlo
tree search continued in IPPC-2014 with revised
entries from the same winning teams and runners-
up as in 2011. For the MDP track, the winner was
PROST-2014 (Keller and Geisser), which used a mod-
ified UCT approach (Keller and Helmert 2013); the
runner-up was G-Pack (Kolobov, Mausam, and
Weld), which used an iterative deepening version of
labeled RTDP (Bonet and Geffner 2003) with sam-
pled Bellman backups (Kolobov, Mausam, and Weld
2012). For the POMDP track, the winner was POMD-
PX-NUS (Ye, Wu, Zhang, Hsu and Lee), which used a
combination of heuristic search on a sampled sparse
belief tree (Somani et al. 2013) along with UCT for
POMDPs known as POMCP (Silver and Veness 2010);
the runner-up was KAIST-AIPR-Lab (Han, Nam, Lee,
and Kim), which also used POMCP in combination
with symbolic heuristic search value iteration (Sim et
al. 2008). All these planners showed improvement
on their previous versions on the four domains com-
mon to both the 2011 and 2014 competitions; in
some domains, the 2014 versions of planners halved
the average cost of their 2011 versions, indicating
substantial progress in the MDP and POMDP tracks
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since IPC 2011. An innovation award was not offered
in IPPC-2014 as has been done for other tracks,
because the number of competitors is still small and
diverse and does not (yet) suffer from a proliferation
of planners based on a common code base.

To compare planners from IPPC-2008 to IPPC-
2014, a variant of the triangle tireworld domain (Lit-
tle and Thiébaux 2007) used in IPPC-2008 was trans-
lated to RDDL for use in IPPC-2014. An analysis of
results from both competitions suggests that IPPC-
2008 replanners could solve larger problems, albeit
somewhat suboptimally, while the IPPC-2014 Monte
Carlo planners were closer to optimal on the prob-
lems they could solve, but could not scale to the
largest problems. This inherently reflects the
strengths and weaknesses of the two approaches. Tri-
angle tireworld was intentionally designed to prove
difficult for replanners since it required careful rea-
soning about the probabilities of different paths,
hence the potential suboptimality of determinizing
approaches that discard probabilities. On the other
hand, Monte Carlo tree search approaches reason
directly about expected costs, but in doing so must
reason about a tree of contingency paths with vary-
ing probabilities in contrast to probability-free deter-
ministic replanning. This observation suggests that a
merger of Monte Carlo tree search and replanning
techniques might provide more optimal planners for
longer horizons; notably techniques such as RFF
(Teichteil-Königsbuch, Kuter, and Infantes 2010),
which won the fully observable uncertainty track of
IPPC-2008, do offer some potential guarantees for
replanning by incorporating Monte Carlo simula-
tions, but so far RFF has only been evaluated in the
goal-oriented setting of IPC 2008.

One final trend observed in 2014 was that an
unprecedented half of the planners entered in IPPC-
2014 used symbolic (decision diagram) representa-
tions. While these decision diagram–based planners
did not take the top places, one of them — KAIST-
AIPR-Lab — did achieve runner-up in the POMDP
track. It remains to be determined whether any par-
ticular type of structure for MDP or POMDP domains
can be identified where symbolic planners can defin-
itively outperform nonsymbolic planners.

Domain Models Introduced
A principle guiding the switch from PPDDL to RDDL
in IPPC-2011 was to enable the representation of rich
planning domains with concurrency and exogenous
stochastic events such as traffic control and elevator
control that could not be represented in PPDDL.
IPPC-2014 sought to continue this trend by intro-
ducing three new contributed domains of interest to
the broader scientific community. The first two new
domains were from ecology and respectively repre-
sent the problems of wildfire management (Karafyl-
lidis and Thanailakis 1997) (that is, how to allocate
firefighting resources to protect assets), contributed

by Zhenyu Yu; and invasive species management
(Muneepeerakul et al. 2007) (that is, how to allocate
personnel resources to limit the spread of the
Tamarisk invasive plants in stream systems), as mod-
eled by Dietterich, Taleghan, and Crowley (2013). A
slight extension of RDDL for IPPC-2014 allowed tran-
sition distribution parameters to be composed from
exponentials and other elementary functions, which
enabled the modeling of these two domains that used
empirically derived transition models. A third
domain, academic advising, contributed by Libby
Ferland, represented an academic advisor’s task of
recommending courses for students to help them
graduate as quickly as possible.

Concluding Remarks
All tracks in IPC-2014 have shown significant
advances in planning technology in the last three
years, and in some cases, the techniques used by win-
ning planners in particular tracks indicate a funda-
mental shift in the approach that appears to be most
effective. Hence the IPC-2014 has served its purpose
of both encouraging and tracking progress in the
planning community by comparing state-of-the-art
planning technologies in a controlled evaluation set-
ting on domains of common interest to the commu-
nity. As the AI and planning communities move for-
ward to consider future IPCs and other similarly
motivated competitions in AI in general, we remark
on two imperatives that we believe future organizers
should bear in mind.

First, we reinforce a remark from the IPC 2011
(Coles et al. 2012) that the competition languages
and domains have profoundly influenced the direc-
tion of planning research dating back to the first IPC
in 1998. Hence we believe it is imperative that future
competition domains are chosen so as to maintain
relevance not only to trends in the planning com-
munity but also to potential end users of planning
technology. In many cases, modeling domains of
interest to the broader research community may sim-
ply require elicitation from domain experts and for-
malization within the language constraints of exist-
ing tracks. In other cases this may require using more
expressivity already available in existing languages or
even novel language extensions to include, for exam-
ple, object fluents (supported by both PDDL 3.1 and
RDDL but not used in existing competitions), con-
straints and timelines (supported by ANML [Smith,
Frank, and Cushing 2008]), hierarchical decomposi-
tion (Erol, Hendler, and Nau 1994; Shivashankar et
al. 2013), or more holistic views of the planning sys-
tem (Ghallab, Nau, and Traverso 2014; Pollack and
Horty 1999).

Second, we believe the adage of “what you meas-
ure is what improves” is critical to keep in mind for
future competitions. Future organizers should thus
consider whether the current evaluation metrics
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encourage planning research that finds wider adop-
tion in the AI community and beyond. For instance,
organizers might consider different or richer quality
metrics that explicitly trade off time and objective
quality or perhaps even a change of setting, for exam-
ple, to focus on real-time planning scenarios that
limit online deliberation and require effective offline
planning for a variety of scenarios that may be
encountered at execution time. Furthermore, it
would be useful if planner computational effort
could be measured independently of its implementa-
tion in order to better compare planning paradigms,
but no such measurement has been proposed to date.

In conclusion, we believe that as long as future
IPCs make a concerted effort to remain relevant — to
model domains of interest for real-world applications
and to measure what matters — future IPCs can con-
tinue to drive forward rapid progress in planning
research and its practical application.
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Notes
1. pc.icaps-conference.org/.

2. helios.hud.ac.uk/scommv/IPC-14/selection.html.

3. Available at lapkt.org.

4. See also LAMA 2008 and 2011 by S. Richter, M. Westphal,
and M. Helmeter, which appeared in a booklet distributed at
the 7th International Planning Competition.

5. See Relational Dynamic Influence Diagram Language
(RDDL): Language Description by S. Sanner (users.cecs.anu.
edu.au/˜ssanner/IPPC2011/RDDL.pdf).
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