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B Detection of fraud, waste, and abuse
(FWA) is an important yet challenging
problem. In this article, we describe a
system to detect suspicious activities in
large health-care data sets. Each health-
care data set is viewed as a heteroge-
neous network consisting of millions of
patients, hundreds of thousands of doc-
tors, tens of thousands of pharmacies,
and other entities. Graph-analysis tech-
niques are developed to find suspicious
individuals, suspicious relationships
between individuals, unusual changes
over time, unusual geospatial disper-
sion, and anomalous network structure.
The visualization interface, known as
the network explorer, provides a good
overview of data and enables users to
filter, select, and zoom into network
details on demand. The system has
been deployed on multiple sites and
data sets, both government and com-
mercial, and identified many overpay-
ments with a potential value of several
million dollars per month.
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trillion a year. Driven by the market size, health care

has become an important and fast growing applica-
tion domain for data analytics. McKinsey’s influential report
on big data analytics (Manyika et al. 2011) lists health care as
the top most promising application domain. One significant
problem of health care is the loss of health-care expenditures
to fraud, waste, and abuse (FWA). Figure 1 lists the amount of
improper payment in U.S. government expenditure. In 2012,
improper payments totaled about $120 billion. Health-care-
related programs such as Medicaid, Medicare fee for service
(FFS) and parts C and D contribute significantly, representing
more than half of the total. A separate report from the Insti-
tute of Medicine (IOM) estimates the annual loss to FWA in
the health-care domain to be $750 billion (Institute of Med-
icine 2012). The magnitude of the fraud problem has attract-
ed many efforts from the health-care industry, the data-ana-
lytics industry, and research communities to develop
fraud-detection systems.

H ealth-care expenditures in the United States exceed $2
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Figure 1. Improper Payments in Government Expenditure.

Health-care-related programs include federal and
state government programs such as Medicaid,
Medicare Advantage (Part C), Medicare FFS, and
Medicare Prescription Drug Benefit (Part D). Non-
health-care programs include Earned Income Tax
Credit (EITC), Pell Grants, Public Housing/Rental
Assistance, Retirement, Survivors and Disability Insur-
ance (RSDI), School Lunch, Supplemental Nutrition
Assistance Program (SNAP), Supplemental Security
Income (SSI), Unemployment Insurance (Ul), and
other programs. Source: www.paymentaccuracy.gov.

Despite the substantial financial significance, the
fraud-detection problem is still far from being solved.
While health-care data (insurance claims, health
records, clinical data, provider information, and oth-
ers) offers tantalizing opportunities, it also poses a
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series of technical challenges. From a data represen-
tation view, health-care data sets are often large and
diverse. It is common to see a state’s Medicaid pro-
gram or a private health-care insurance program hav-
ing hundreds of millions of claims per year, involving
millions of patients and hundreds of thousands of
providers of various types, for example, physicians,
pharmacies, clinics and hospitals, and laboratories.
Any fraud-detection system needs to be able to han-
dle the large data volume and data diversity. Further-
more, health-care programs and perpetrators are in
the fraud arms race and constantly make adjustments
to gain a competitive advantage over the other side.
Data patterns from both sides are dynamic. The com-
plexity of the problem calls for a rich set of tech-
niques to examine health-care data.



Health-care financials are complex, involving a
multitude of providers (physicians, pharmacies, clin-
ics and hospitals, and laboratories), payers (insurance
plans), and patients. To design a good fraud-detection
system, one must have a deep understanding of the
financial incentives of all parties. Terry L. Leap’s book
on medical billing (Leap 2011) provides a nice
overview of each type of providers, their financial
practices, and common fraud activities. Starting from
domain knowledge, auditors and investigators have
designed fraud-detection rules to watch out for false
claims. The rules cover diverse behaviors, for instance,
total sum of medical service hours claimed for any
given day close to or exceeding 24 hours, work hours
during short holiday weeks or under adverse weather
conditions staying high, unusually high proportion
of home visits, and billing of service to patients who
are already deceased. Readers may refer to Rebecca S.
Busch'’s Healthcare Fraud: Auditing and Detection Guide
(Busch 2012), for a comprehensive list of example
rules. This methodology of comparing data against a
predefined rule set is widely adopted in auditing prac-
tice and works effectively, but its performance is
inherently limited by subject matter expert knowl-
edge, which can be inaccurate and incomplete. Fur-
thermore, new fraud patterns are constantly invented
to circumvent the built-in fraud-detection rules. A dif-
ferent alternative, thriving due to the recent advances
of machine learning and big-data infrastructure, is the
data-driven methodology that identifies normal pat-
terns from real data and detects outliers deviating
from the norm. Various approaches have been devel-
oped for outlier detection, such as density-based
approaches to identify points in low probability
regions, proximity-based approaches to identify
points isolated from others, subspace-based methods
to identify rare classes, and supervised or semisuper-
vised learning methods to learn differences between
normal and abnormal classes (Aggarwal 2012). Com-
pared to their rule-based counterparts, data-driven
approaches are more flexible, but computationally
intense, as the search space for fraud is vast. We advo-
cate a combined approach, where domain knowledge
is used to guide the search, while data-driven
machine-learning methods do the rigorous comput-
ing to improve upon expert intuition to achieve bet-
ter accuracy and flexibility.

To develop our overall system, we work with Xerox
Services, which provides review and auditing servic-
es to a number of government health-care programs
and private-sector health-insurance companies. Our
tool, known as the Xerox Program Integrity Validator
(XPIV), has been deployed on multiple sites and is in
use by fraud analysts in their investigation practice.
The tool provides two broad categories of functional-
ities: (1) automated screening, which enables an ana-
lyst to focus attention on a small list of suspect
providers, as opposed to a prohibitively large set, and
(2) interactive drill down, where the analyst starts

from a suspicious individual or activity (as singled
out by the automated screening components) and
interacts with the system to navigate through data
items and collect evidence to build an investigation
case. The two categories have quite different techni-
cal foci. Automated screening (1) focuses on algo-
rithmic design for detecting diverse forms of anom-
alies, and interactive drill down (2) focuses on
database indexing/caching for fast data retrieval and
user interface design for intuitive user-system inter-
action. For the conciseness of this article, we do not
attempt to describe the complete XPIV system, but
only describe a particular subset of techniques, name-
ly graph analysis, to detect suspicious activities and
relationships. Other components of XPIV, such as
outlier detection and duplicate detection, are left out
of the scope of this article and may be discussed in
follow-up publications.

Graph Analysis

We have worked with fraud analysts to understand
real needs in their investigation effort. One common
concern that the analyst would like to have help with
is to detect organized crimes. Recent years have wit-
nessed crime rings migrating from illegal drug traf-
ficking to the safer and far more lucrative business of
perpetrating frauds against health care. The National
Health Care Anti-Fraud Association (NHCAA) has
reported that, in Florida alone, government Medicare
and Medicaid programs and private health-insurance
companies have lost hundreds of millions of dollars
in recent years to criminal rings.! Collusion among
dishonest practitioners has also become common,
with fraudulent activities such as self-referrals, false
or unnecessary referrals, and kickbacks. Patients may
be involved as well. A 2013 investigative series by the
Center for Investigative Reporting and CNN? uncov-
ered rampant overbilling in California’s publicly
funded drug rehabilitation system and fraud schemes
such as clinics recruiting homeless to pose as
patients. It is reported that California paid $94 mil-
lion in fiscal years 2012 and 2013 to clinics that have
shown signs of deception or questionable billing.

To detect crime rings and collusion networks such
as the ones mentioned above, we need graph-analyt-
ics methods to examine data points in relation to
others.

Compared to anomaly detection schemes, which
focus on attributes of individuals, examining the
relational aspects provides a new perspective. Our
system is the first of its kind that allows fraud ana-
lysts to detect network-based fraud. Each data set is
represented as a large and heterogeneous graph,
where nodes represent millions of patients and hun-
dreds of thousands of providers, such as doctors, hos-
pitals, and pharmacies, and edges represent billions
of claimed services, medications, and supplies involv-
ing multientity relationships among them. In this
article, we describe the technical components.
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Graph analysis, originally rooted in network sci-
ence and graph theory, has been extended to a vari-
ety of applications such as communication networks,
bioinformatics, and operations research. The recent
decade has seen a rapid adoption of graph-based
techniques to analyze large scale social interactions
such as the world wide web and social media such as
Facebook, Twitter, and LinkedIn. We have extended
these techniques to analyze health-care data for FWA
detection. In particular, we look for four types of
anomalies in the graph: (1) suspicious individuals, (2)
suspicious relationships, (3) anomalous temporal
changes and geospatial characteristics, and (4) struc-
tures.

Suspicious individuals. We examine each individual
entity (patient, provider, pharmacy, and so on) based
on its attributes.

Suspicious relationships in the graph. While the pre-
vious type focuses on individual attributes, this type
focuses on pairwise relationships. While individuals
may appear perfectly normal, each out-of-norm rela-
tionship warrants a red flag.

Anomalous temporal changes and geospatial charac-
teristics in the graph. Our analysis couples graph analy-
sis with temporal and geospatial analysis to look for
unusual temporal changes or unusual geospatial dis-
tributions.

Structures in the graph. Graph techniques can reveal
structure, including clusters of doctors referring to
each other or a heavily connected group of individu-
als associated with narcotics transactions. We use
graph structure analysis techniques to identify
anomalous structures.

The sections that follow provide a few concrete
examples of graph-analysis techniques for FWA
detection. Loosely speaking, graph-analysis tech-
niques fall under two categories. The first category,
known as the ego-net approach, focuses on individual
nodes and distills features from a node’s local neigh-
borhood. Features include, for instance, degree and
entropy of local connectivities. We have developed
ego-net approaches to examine narcotics relation-
ships and temporal and spatial characteristics of
patient flow between pharmacies and providers. The
second category analyzes the global structure of the
health-care relation network and looks for commu-
nities sharing a common abnormal practice, or tight-
knit communities that are anomalous in their aggre-
gated statistics. The structural approach can identify
fraud networks such as collusion networks or organ-
ized crime. The two categories combined together
encompass both the local and the global characteris-
tics. We also briefly describe network explorer, a visu-
alization and user interface that supports an eagle-
eye view of the entire network and an interactive drill
down of suspicious nodes within its local ego-net.

Automated screening faces the technical challenge
of balancing false alarms and missed detection. An
accurate characterization of performance, such as a
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ROC curve or precision or recall metric, would be
great. However, we note that the performance met-
rics are extremely hard to measure due to the high
cost of investigation and the extreme class imbal-
ance. Fach investigation case bears a cost, ranging
from $200 for a simple desk audit to $20,000 for a
typical crime investigation. The approach of subsam-
pling a set and labeling each data point to obtain the
precision or recall metric, though common in aca-
demic studies, is infeasible here, as it would require
labeling a very large set (due to class imbalance in
which a few fraud cases are buried in the sea of regu-
lar cases) and hence incur a prohibitively large inves-
tigation cost. This is an inherent drawback of the
fraud-detection application domain. For practical
business reasons, we have designed our system to
produce high precision and low recall. We resort to
empirical validation, reporting cases of findings and
ballpark recovery dollar amounts. Though still pre-
liminary, our system is being widely used by the ana-
lysts to focus their investigation effort. This under-
lines the value of the network analytics methods
presented in this article. Currently we are working
with our collaborators to integrate user feedback,
such as confirmation or dismissal of red-flagged cas-
es to obtain more rigorous precision metrics.

Due to HIPAA restrictions?® and other business con-
straints, we cannot disclose full details such as per-
sonal health information (PHI) and business identi-
ties. Instead we present a high-level description, with
all sample results anonymized.

Analysis of Narcotics
Relationship Graphs

In this section, we illustrate graph-analysis methods
to detect suspicious individuals and suspicious rela-
tionships using a concrete example of narcotics use,
prescription, and sales. Narcotics is of concern
because of the growing abuse of medications and
illicit drug trafficking. In recent years, narcotics have
grown to be used recreationally, and they are highly
addictive (Epstein 1989). Despite federal efforts to
restrict narcotics prescriptions, narcotics abuse con-
tinues to be a problem. In addition, narcotics can be
illegally sold at a very high value because of the high
demand and limited supply. Many people who abuse
narcotics illicitly obtain them from patients with
legitimate prescriptions (Radnofsky and Walker
2014), so it is important to track the individual
patients that are obtaining large amounts of nar-
cotics, as well as the doctors and pharmacies that are
facilitating such diversion.

Our data set consists of three types of entities:
patient, doctor, and pharmacy. It is equivalent to a
heterogeneous graph with three types of nodes. For
each pairwise relationship (patient-doctor, patient-
pharmacy, doctor-pharmacy), we produce a bipartite
graph. Figure 2 visualizes doctor-pharmacy relation-



ships in a real-world health-care data set. Red nodes
are doctors, and blue nodes are pharmacies. To avoid
overcrowding the graph, we only visualize the top
3000 nodes and the top 5000 edges in terms of their
narcotics amount. We use Fruchterman-Reingold, a
physics-based layout, to reveal clusters of doctors and
pharmacies who are connected together by heavy
narcotics transactions. The graph exhibits clear pat-
terns. For instance, it has long been suspected by
fraud analysts that doctors with questionable nar-
cotics prescription practices gravitate toward phar-
macies bad at gatekeeping. In the graph, we clearly
see this pattern in the provider clustering. While the
system computes and displays the graph almost
instantaneously, it would take an analyst many hours
to perform this kind of analysis manually.

Approach

To automate detection of suspicious entities, we have
designed a set of features, associated with aggregated
statistics in the bipartite graphs. Given a node n and
its 1-hop neighborhood N, we have degree: |N], the
number of nodes in the neighborhood; weight: the
aggregated total number or total amount of claims
that a node is associated with; and entropy ratio: how
evenly the node associates with entities in its neigh-
borhood, in terms of total number of claims or total
amount. Mathematically

log<|w|> TogI v & P 1%

where p, is the percentage of node n’s business with
neighbor k out of its total business. The summation
term is the empirical entropy, measuring the disper-
sion of n’s business among its neighborhood N. The
entropy is further divided by log(|N]) to normalize to
the range [0, 1]. If n evenly distributes its business
among N, the entropy ratio is 1. If in contrast, n does
most of its business with one neighbor, the disper-
sion is very skewed, resulting in an entropy ratio
close to 0.

Figure 3 lists the different anomalies that we look
for in the relation graph. The anomalies fall into
three categories: individual-level anomalies (labeled
I), anomalies at the relationship (edge) level (labeled
R), and anomalies with unexplainable medical
behavior (labeled B). They are shown in various
shades of gray or (if in color) red, green, and blue
fonts respectively. Individual-based anomalies of
interest include: (I1) who are the heavy consumers of
narcotics, and where they get drugs from; (I2) which
doctors prescribe a lot of narcotics and to whom; (I3)
which pharmacies sell a lot of narcotics and to
whom. These questions are easy to answer based on
degree and weight features.

Anomalous relationships may include unusually
focused relationship such as (R1) where a pharmacy’s
narcotics sales come from an unusually small number
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Figure 2. Bipartite Graph.

This graph visualizes the doctor (red/ light gray) — pharmacy (blue /
dark gray ) relationship regarding narcotics prescriptions and sales.

of patients and prescribing doctors; (R2) a doctor
directs heavy narcotics sales to several pharmacies;
and (R3) a doctor prescribes narcotics to only a few
patients. High concentration between nodes can be
interpreted as potential collusion. The entropy ratio
feature can be used here.

A consequence of this analysis is the ability quick-
ly to detect fraudulent characteristics that are of
interest to our users. For example, our users com-
monly look for (R4) “shopping patients,” that is, a
patient visits a large number of doctors in order to
get narcotics prescriptions. By sifting through mil-
lions of beneficiaries, our algorithm can save analysts
hours of manual search time.

Behavioral anomalies are those that are not justi-
fied by medical practice. These include (B1) if a
patient consumes nothing but narcotics; and (B2)
whether a patient-doctor relationship is focused on
narcotics alone. In order to quantify these metrics,
we also incorporate the patients’ and doctors’ claims
outside of narcotics, and find the percentage of nar-
cotics by dollar amount and number of total claims.

Anonymized Cases Under Investigation

Our data set contains medical and pharmacy claims
from a state Medicaid program. It consists of rough-
ly 64 million claim lines from 5.2 million patients,
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Figure 3. Anomalies in a Narcotics Relation Graph.

more than 52,000 doctors, and nearly 9,000 phar-
macies. We focus on Schedule II narcotics defined by
the U.S. Controlled Substances Act.* Schedule II
drugs are from drug classes such as opiates, stimu-
lants, and depressants, which are all highly abusable.
Examples include morphine, oxycodone, and fen-
tanyl. Within the data set, our graph-analysis tech-
niques have identified numerous suspicious activi-
ties. All findings are currently being investigated by
the state’s program integrity analysts. Here we give a
few examples.

Patient P36641 is the top narcotics consumer in
2013, totaling an amount exceeding $400,000. He or
she gets fentanyl prescriptions entirely from Doctor
D25542. Doctor D25542 is also the top prescribing
doctor for narcotics. He/she is currently under active
investigation by Medicaid’s Program Integrity Office.
The same analysis on 2012 data points to a top pre-
scribing doctor who is now convicted.

Patient P96274 visits 26 different doctors for pre-
scriptions of methadone, hydromorphone, and fen-
tanyl. The total is less than $10,000, but street value
can be 50 times higher.
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Pharmacy RX13230 has annual narcotics sales of
$220,000, out of which $161,000 comes from a sin-
gle doctor (Doctor D19848) for a single patient
P90594. This unusually strong relationship is under
investigation.

The detection of narcotics diversion can be extend-
ed to other diversion problems in health care with a
high resale value, such as durable medical equipment
and diabetes supplies. The same anomaly-detection
techniques, described here, are applicable in these
domains.

Temporal and Geospatial Reasoning

Interesting insights can be obtained by exploring the
dynamic property of a health-care graph. We ana-
lyzed the graph’s temporal characteristics to find sev-
eral types of anomalies. These anomalies include sink
vertices, source vertices, and heavy links. Sink ver-
tices represent providers who attract patients from
other providers at unusually high rates. Source ver-
tices are providers who can’t keep their patients.
Heavy links are graph edges where unusually strong



business relationships occur. In current practice,
fraud analysts manually search for these types of
anomalous providers through SQL-like queries. Our
approach automates the effort and aids investigators
to identify these outliers systematically.

We analyze the temporal characteristics by repre-
senting claims as a discrete time sequence of
providers for each patient and computing transition-
al probabilities using maximum likelihood estima-
tion (Lee, Judge, and Zellner 1968) on empirical
observation data. By comparing these transition
probabilities to a baseline, we can identify source,
sink, and heavy links.

Anonymized Cases Under Investigation

Our analysis shows that most patients return to the
same pharmacy repeatedly and rarely deviate from
their pattern. More than 80 percent of prescriptions
are filled at the same pharmacy where the previous
prescriptions are filled. By comparison to this base-
line, two different types of source nodes are detected
by our algorithms. The first type of source nodes
tends to lose patients to another specific pharmacy
(that is, a sink node). For example, our analysis iden-
tified two pharmacies where 85 percent of the
source’s business is later transferred to the sink. This
is particularly unusual given that these two pharma-
cies are 500 miles apart. An example of this kind is
worth further investigation to determine whether the
business relationship between the source and sink
represents truly fraudulent behavior. Interestingly,
some pharmacies with prior fraud convictions have
shown up to be anomalous again for this analysis.
The second type of source consists of pharmacies
who spread their patients to many different pharma-
cies. These source pharmacies may not necessarily be
involved in FWA activities, but could be losing cus-
tomers due to poor quality of service. Nevertheless
such abnormal patterns are worth investigators’
attention.

Geospatial Analysis

Geospatial data are another useful source of informa-
tion for anomaly detection. We assume that most
patients visit physicians and pharmacies in their
local cities. This is especially true for the Medicaid
population since Medicaid is designed to cover
patients that have economic constraints or are phys-
ically immobile. Occasionally there are many benign
reasons why patients might visit providers far from
home, for example, (1) sickness or injury during trav-
el, and (2) visiting specialists like a surgical oncologist
for special treatment. We focus on outlier detection
methods using aggregated statistics as features to
help remove the effect of these rare events.

We compute the geographical distance between
the physician-pharmacy pair and derive an empirical
cumulative distribution function (cdf) (Mason 1982).
Typically the empirical cdf increases sharply over dis-

tance. For example, a pharmacy’s or physician’s busi-
ness relationships are 50 percent within a 10-mile
radius, 80 percent within a 20-mile radius, 90 percent
within a 30-mile radius, and so on. The dashed lines
in figure 4 show a set of cdfs at different percentiles.
We apply DBSCAN (Ester et al. 1996), a density-based
clustering algorithm, to the empirical distributions to
define the baseline. Cdfs that are similar to each oth-
er are grouped together, while cdfs that deviate dras-
tically from the norm are identified as anomalies.

Anonymized Cases Under Investigation

The thick black line in figure 4 shows an anomalous
cdf of a pharmacy, where 42 percent of its business
comes from a physician more than 400 miles away.
In addition to the long distances traveled by visiting
patients, the fact that all long-distance prescriptions
come from this single physician is abnormal, which
could be an interesting finding in its own right.

Discovering Latent
Networks of Providers
Sharing Anomalous Practices

In this section we discuss the discovery of heteroge-
neous provider communities that share anomalous
business practices. In particular, we consider extract-
ing communities of prescribing providers that are
participating in anomalous drug sales. Within such a
community, each individual provider’s specialty will
determine the kinds and quantity of the prescrip-
tions the provider writes. A cardiologist’s prescrip-
tions will be composed of a high proportion of heart-
disease-related medications whereas an oncologist
will tend to prescribe a high proportion of
chemotherapy drugs. We aim to simultaneously dis-
cover provider types while detecting when the pre-
scription behaviors of heterogeneous provider com-
munities are anomalous. For instance, a hypothetical
cardiologist and oncologist may be interacting with
a pharmacy to sell narcotics to addicted patients.
While the majority of their individual prescription
sales are consistent with their types, composed of
heart-disease and chemotherapy drugs, respectively,
the narcotics sales represent a shared deviation from
those types. We call these communities out-of-speci-
fication. In order to find these communities we need
a concrete definition of a provider’s type and a means
of exploiting this type definition to find anomalous
communities in our graph. In this graph two
providers are connected if one of them has sent at
least one prescription to the other. Edges are labeled
by a vector of features computed as a function of the
prescription events. Unfortunately, we cannot
observe a provider’s type, nor the communities to
which the provider belongs. We develop a proba-
bilistic algorithm that discovers out-of-spec commu-
nities, ranks them and their members, and outputs a
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Figure 4. Example of Geospatial Anomaly.

description of the community’s unusual behaviors.
Our model of out-of-spec communities represents
the types of individual providers, the community
each provider belongs to, the global prescription
behaviors generated by these types, and community
prescription behaviors generated by community
members. To do this we build upon the Latent Dirich-
let Allocation model (Blei, Ng, and Jordan 2003) by
introducing the concept of communities, and com-
munity prescription behaviors. Each provider in the
graph is associated with both a type and a communi-
ty. Provider types are associated with distributions
over the global prescription behaviors. These distri-
butions provide a basis for discovering anomalous
communities. Each provider is also associated with a
community; a community is a connected component
of the provider graph. Together a provider’s type and
community impose a distribution over the prescrip-
tion behaviors. The set of global prescription behav-
iors and the community prescription behaviors are
distributions over the edge features. Conditioned on
a provider’s type and community, the data observed
in the edges is assumed to be generated from a mix-
ture of global behaviors (representing what is typical)
and community behaviors (representing what is pecu-
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liar to the community). We implemented an infer-
ence algorithm that infers each part of this represen-
tation. Given the data we discover the set of provider
types, each provider’s community memberships, the
set of global behaviors, and the community prescrip-
tion behaviors. Intuitively, communities with mem-
bers whose adjacent edges are generated from the
community behavior distributions are considered
anomalous. According to this intuition we developed
an algorithm that ranks the discovered communities
and the community members.

Estimating the latent variables in the graph is a
computationally demanding task. There are a lot of
variables here: provider type, community member-
ships, prescribing behaviors of individual providers,
and communities. We propose a simple agglomera-
tive clustering procedure that seeks to iteratively
improve the joint likelihood score by merging adja-
cent communities. To accomplish this we define a
merge score that compares the log-likelihood of the
current communities against the log-likelihood of
the merged community. Using this score we designed
a simple greedy agglomeration procedure that is
guaranteed to find a partitioning of the graph. The
result is an efficient search for an approximate solu-



tion. As output we receive the collection of commu-
nities and their corresponding latent variable esti-
mates for presentation to analysts.

We have integrated our model with two tools that
our users can employ to investigate the discovered
communities. The first is the network explorer (NE),
which provides a high-level view of the community
set. We will describe NE features in more detail later in
the article. The second tool is the Group-in-a-Box
visualization (Rodrigues et al. 2011) to provide visual
cues of why communities and their members are
anomalous. Figure 5 shows an example view of anom-
alous latent communities. Communities with low
anomaly scores are removed in order to present a less
cluttered visualization. The high-level view clearly
highlights community members that stand out with
respect to their peers. Larger nodes (red dots) repre-
sent more anomalous community members. Our
users can garner further details on demand by clicking
a node to zoom into a finer graph structure.

Anonymized Cases
Under Investigation

Given a network of approximately 74,000 providers
with more than 900,000 prescription relationships,
our algorithm discovers 900 communities of varying
sizes. In order to evaluate the quality of the discov-
ered communities we presented our partners with a
list of 40 providers. Our algorithm ranks both the
communities and community members. To generate
our list of providers we took the top five community
members from the top 11 communities. This is a
small set of providers, but our evaluation is limited
by the very high cost of evaluating examples (our
partners estimate up to two hours of time are needed
per provider). We asked our partners to identify
whether a member of the list represented FWA and
to provide feedback on the providers. In order to pro-
duce these labels our partners could make use of a
historical case database that stores information about
past analysis. Of the set we presented to our partners,
they identified nine individuals as being representa-
tive of FWA. Seven of these providers were previous-
ly identified, through weeks of painstaking search, by
partners. Importantly, two of the discovered
providers became new cases. This was interesting giv-
en that our analysis was performed on historical data.
Our algorithms are able to analyze the data in hours
and provide illustrating evidence so that the analysts
can build a case with ease in a day’s worth of effort.

Discovering Anomalous
Structure in the Graph

In this section, we report our work in progress on a
nonparametric approach to discovering anomalous
communities in the medical network. We assume
that we are given an arbitrary input graph G with

nodes being entities such as providers, hospitals,
pharmacies, and patients, and the edge attributes
reflecting the strength of interaction between the
nodes. For concreteness, in this article we consider
the specific case of referral networks where the graph
G is composed of provider nodes, and the links
between nodes a and b represent the total number of
referrals between providers a and b. Given this input
graph G, we are interested in identifying subsets of
communities that are anomalous. We do this in a
three stage process: (1) identification of communi-
ties in G; (2) extraction of features characterizing
these communities; and (3) identification of anom-
alous communities using these multivariate feature
representations of these communities. We discuss
each of these steps in detail in the sequel.

Community Extraction

As a first step, we extract tight-knit communities in
the graph G. Community detection in a graph is a
widely studied problem in the network data-mining
literature. However, most of the popular methods
such as graph partitioning, hierarchical clustering,
and spectral clustering are concerned with partition-
ing the graph into disjoint sets of tight-knit nodes
(Fortunato 2010). These partitioning methods how-
ever are not a good fit in our particular context of
medical networks for the reason that the entire
graph G need not be partitionable into tight-knit
communities; rather we expect a few pockets of
tight-knit communities interspersed in the graph.

As a consequence of this observation, we devel-
oped an agglomeration-based partitioning scheme
that only identifies the small pockets of tight-knit
communities as opposed to completely partitioning
the set of nodes into disjoint subsets. The proposed
agglomeration scheme works by building communi-
ties one node at a time in a greedy fashion, and
adding nodes to the communities while ensuring
that the communities remain tightly knit. We
denote the set of communities extracted from G by
C={C,C, ..., CJ

After extracting the set of communities C through
the proposed agglomeration scheme, we check to see
whether any of the extracted communities are
anomalous. We do this in two steps. As a first step,
we check the case where the very existence of com-
munities is anomalous. To check this case, we com-
pute the ratio of the total number of nodes in C rel-
ative to the total number of nodes in G.
Conceptually this ratio is similar to the well-known
graph modularity metric proposed by Newman
(2006), except that this ratio is defined based on
nodes, and the graph-modularity metric is defined
on edges. On one hand, if the ratio is very small, it
indicates that G is a network that is largely commu-
nity free, and we therefore declare that all the dis-
covered communities in C are anomalous. On the
other hand, if the ratio of the number of nodes in C
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Figure 5. Anomalous Communities Discovered by the Analysis.

relative to G is moderate to large, then we conclude
that the presence of a community in G does not indi-
cate that the community is anomalous.

Feature Extraction

In the event of the latter scenario being true, we
extract several features that are of interest in order to
characterize each of these communities, and subse-
quently we look for communities that are anomalous
with respect to the extracted feature sets. In this arti-
cle, we consider the following sets of features to char-
acterize any given community C, in the referral net-
work: community size, community density, average
dollar amount, and average anomaly score. Com-
munity size is the number of nodes in C;. Communi-
ty density is the ratio of the total number of edges in
C, relative to the number of nodes. Average dollar
amount is the ratio of the total dollar amount asso-
ciated with the referral edges in C, relative to the
number of nodes. For the average anomaly score,
independent of network analytics, we compute
anomaly scores for all providers based on marginal
statistics and compute the average anomaly score of
a community C; as the average of the anomaly scores
of all providers in the community in order to detect
whether a community has an abnormal concentra-
tion of anomalous providers.
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Anomaly Detection

In our final step, we extract anomalous communities
using these features by feeding the features through
an off-the-shelf anomaly-detection method for mul-
tivariate data. In this article, we use the iForest anom-
aly-detection algorithm (Liu, Ting, and Zhou 2008),
which is currently the state of the art. The iForest
method detects anomalies based on the difficulty of
isolating a point from the rest of the points using ran-
domly generated classification trees. The intuition is
that an outlier point is far easier to isolate than nor-
mal points.

Anonymized Cases Under Investigation.

We applied the described procedure to a referral net-
work with about 60,000 providers. On running our
agglomeration-based partitioning algorithm, we dis-
covered a total of 2432 communities. These 2432
communities accounted for about 40,000 providers,
or about 66 percent of the total nodes in the network.
Thus, the presence of communities in this network is
not anomalous.

Subsequently, we extract community size, density,
average dollar amount, and average anomaly score as
features for anomaly detection. On running iForest,
we discovered a total of 34 anomalous communities.
Five communities were flagged because of their large
size. Each of these communities had in excess of 200
providers or communities, while a majority of the
communities had an average of about 10 providers.
Ten other communities were flagged for high densi-
ty, another 12 were flagged for high dollar amount,
and the remaining 7 were flagged for high anomaly
scores. An interesting observation was that some of
the communities were anomalous with respect to
more than one feature. For instance, one particular
community, which had about 400 providers, also had
an abnormally high density.

Visualization: The Network Explorer

Network visualization is one of the most difficult
challenges of information visualization. Many tech-
niques have been proposed for small networks (with
hundreds of nodes or less), but they are ill-suited for
analyzing our medical network of tens of thousands
of providers. To address the challenge, we have devel-
oped a new visualization tool, the network explorer,
to support the FWA detection task. Figure 6 shows the
network explorer’s data overview interface. The
overview enables users to get an eagle-eye picture of
the network and get an overall idea of how many
nodes (providers, patients, or pharmacies) are suspi-
cious, whether and how the nodes form clusters, and
their respective cluster sizes. The network explorer
uses a rank-by-relevance framework to visualize a
subset of nodes (for example, 10,000) to control the
visualization complexity and focus visualization
resources only on noteworthy nodes. Highly suspi-



cious nodes identified by the anomaly-detection
schemes described in the earlier sections are high-
lighted. Clustering provides visual structure that can
be easily interpreted by the users.

In the network explorer, users navigate the network
through filtering and selection. The right-hand panel
in figure 6 demonstrates the filtering mechanism.
One can filter the network by edge properties (such as
the number of referrals, as shown by the first filtering
bar) or by node properties (such as the anomaly score
based on how rare a procedure is performed, aka pro-
cedure fraction anomaly score, as shown in the sec-
ond filtering bar). This filtering mechanism allows
users to query the network directly.

Given an identified suspect node, the user may
need to explore the suspect’s network connections.
In fact the ability to do local network exploration is
the second most requested requirement from our
users (next only to the overview). For instance, one of
our users was interested in understanding which
pharmacies were driving the business from a specific
prescriber, and identifying which other prescribers
were heavy customers of said pharmacy. To meet this
requirement, the network explorer includes an ego-
centric mode that lets users select one or more target
nodes and interactively explore their ego-net, that is,
the k-hop neighborhood for small k. All of the fea-
tures available in the overview mode also work in the
egocentric mode, including filtering, dynamic group-
in-a-box, and rank-by-relevance. Figure 7 demon-
strates the progressive drill down and visualization
with increasingly finer granularity. In this example,
the user has clicked a node to jump into the gray
cluster on the top-left corner of figure 7a. By doing
this, only the 83 nodes in the cluster are shown in
the screen (figure 7b). Then the user reruns the clus-
tering algorithm to discover the finer subcluster
structure shown in figure 7c and finally zooms into a
subcluster with only 27 nodes (figure 7d). The node
navigator bar on the left of figure 7 shows the users
has jumped into a cluster two times. This zooming-in
ability, as well as zooming out by clicking on the
open space or the node navigator bar, allows the user
to navigate the network freely and effectively.

Graph Analytics in
Real-World FWA Detection

We have deployed our analytics system to support
several business applications to detect fraud, waste,
abuse, and other kinds of inappropriate billing. These
applications include provider review, cost contain-
ment, recovery services, and prepay detection.

The goal of provider review is to find providers
(doctors, hospitals, clinics, and others) who are
billing inappropriately and who will be the most
valuable to audit, judging by the amount billed, the
degree to which the billing is inappropriate, and oth-
er factors such as the extent to which patient health

is endangered. Analysis aims to maximize a value
function over providers or sets of providers.

The goal of cost containment is to find a proposed
change to the current claim payment rules that is
likely to result in increased efficiency, decreased cost,
or improved health-care outcomes. These opportu-
nities focus less on individual providers, patients, or
claims and instead focus on a set of these. Here
analysis aims to find billing patterns that are com-
mon and expensive but inappropriate.

The goal of recovery services is to find individual
claims where more money was paid than should
have been and then to contact the associated
providers and get the money back. For example, a
recovery services call center may ask a provider to
refund money if the provider was accidentally paid
twice for the same service, or if another insurance
company should have been billed first. Analytics for
recovery services focuses on overbilling that can be
proven easily and then tries to find as many
instances as possible.

The goal of prepay detection is to identify inap-
propriate claims before the provider is paid for those
claims. For any given claim, a prepay algorithm
determines whether the claim should be rejected,
sent to a human analyst for further study, or
processed normally.

We work with teams that provide services organ-
ized around the business applications mentioned
above. In that work, we use our deployed system to
provide analytics reports and interactive software
that can be shared with analysts performing provider
reviews, cost containment, and recovery. Our part-
ner teams, through their interaction with the
deployed system, give us feedback on algorithms,
reports, and software, allowing us to improve them
iteratively. In addition, improvements made to sup-
port one team often support others. Our analytics
have already been used to find many overpayments
including provider review and cost containment cas-
es with a potential value of several million dollars
and recoverable claims with a potential value of
roughly a million dollars per month.

Our graph analytics support three of the four
kinds of service. For provider review, one way to find
suspicious providers is to look at the graph of rela-
tionships between providers, such as patient referrals
and shared patients. If providers are colluding to
defraud the system, that will show up in this graph.
Likewise, providers and patients may collude to bill
insurance payers for drugs or supplies and then sell
them on the street. In cost containment, a provider
billing too much for one patient will often bill too
much for other patients as well. Patterns in the
provider-patient network, then, can uncover sys-
temic overbilling that can be addressed by a rule
change. In prepay detection, when making a deci-
sion about a new claim, the algorithm can look at
patient-provider, provider-provider, and patient-
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patient relationships together with information
about particular providers, patients, and claim fea-
tures that have been associated with overbilling in
the past to recommend human review of some
claims.

Discussion: Deployment
and Evaluation

We have applied modular programming principles to
design our anomaly-detection components as inde-
pendent and interchangeable algorithmic pieces that
can be composed or rewired to operate on diverse
data sets. For instance, the same set of graph feature
extraction algorithms described in the Narcotics Net-
work section can be applied to data sets regarding
diabetic supply or durable medical equipment to
identify potential perpetrators. The modularity and
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reusability have significantly reduced deployment
cost. The remaining major deployment workload is
on data ingestion and schema adaptation. Data
ingestion needs to take into account the multiple
data representations coexisting in different parts of
the data. For instance, providers are often identified
using National Provider Identifier (NPI) numbers, but
pharmacies, which are also one type of provider, are
sometimes identified using their NABP (National
Association of Board of Pharmacy) numbers. Like-
wise, patient identity may be represented by several
insurance plan/program numbers. U.S. medical prac-
tice is transitioning its diagnosis code system from
ICD-9 to ICD-10, and hence almost all data sets see a
mixture of both. We customize ETL (Extract/Trans-
fer/Load) code to unify the differences and convert
each data set’s native data representation to the data-
set-independent representation that our algorithm
modules expect. Depending on data complexity, the



Figure 7. Users Can Jump into Clusters to Focus Their Exploration into Specific Parts of the Network.

data ingestion and schema adaptation effort may
amount to days of work. Amortized over the lifetime
of the XPIV, the deployment cost is fairly low.

As we create our algorithms, we evaluate them
against three levels of benefit: (1) productivity bene-
fits, (2) human-level quality on results with a reduced
detection time, and (3) greater-than-human-level
quality on results. Our evaluations run from infor-
mal, such as user testimonials, to formal, such as cal-
culation of precision in finding overpayments.

For example, one Xerox partner wrote, “Using
these technologies will improve the selection of audit
targets, which has a direct impact to revenue on these
contingency-based contracts.” Another Xerox part-

ner wrote, “Interesting flag. . . . So it has a high posi-
tive hit rate at first pass,” and also wrote, “In the first
5 minutes I identified a possible referral . . .” and also,

“Without [this tool], it would have been very difficult
and quite time consuming to do this research.”

On the more formal side, we have been fortunate
to have analysts who are willing to go through large
results sets, including thousands of flagged health-
care claims, to see which are or are not recoverable.
For example, after several iterations of improving
duplicate detection, we were able to get 100 percent
precision on a first result set based on criteria set by
the analysts. As another example, using relationships
in a narcotics graph, we produced a list of providers
with high anomaly scores and made them available
to a group of analysts for review. Of the 39 providers
reviewed so far, 8 were already under review and 1
more was written up for review, for 9/39 = 23 percent
suspicious cases. Of the remaining cases, 11 were in
provider categories that are out of scope for review at
the time. Eight more were of low materiality based
on predetermined thresholds defined by the payer.

Such providers can easily be filtered out of future
reports. Removing these 19 providers from our cur-
rent set would give us an updated ratio of 9/20 or 45
percent. Considering a list of recommended
providers still takes time and effort for our analysts,
but it appears to be a valuable new source of candi-
date providers and reduces effort compared to man-
ually constructed queries and reports. As these evalu-
ations indicate, our tools and algorithms have been
able to improve user productivity and allow users to
produce results that were difficult or time consuming
to produce previously.

These statements speak to the impact of the system
from the point of view of analysts. As our program
continues to develop we plan to augment this analy-
sis to include additional measurements of system
quality. For instance, a crucial measurement in fraud
detection is the rate of case identification for indi-
vidual analysts. An ideal system increases this rate.

Our initial evaluations, though preliminary, sug-
gest that our tool successfully improves work flows.
Our future effort will determine the magnitude of
this improvement. In addition, in coordination with
our business partners we continue to construct larg-
er sets of ground truth data that are crucial for pre-
liminary evaluation of new analytics. We expect, in
coming years, to establish empirically the robustness
of our deployed system.

Conclusion

This article presents our work on developing graph-
analysis techniques and applying them to real-world
health-care data sets to look for fraud, waste, and
abuse activities. We represent the health-care rela-
tionship using heterogeneous graphs and identifying
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anomalous individuals, relationships, and communi-
ties by analyzing the local and global characteristics
of the graphs. Our work has identified investigation
targets totaling millions of dollars of potential recov-
ery for our collaborators at Xerox Services.

Our future work will take several forms. First, we
plan to extend our graph-analysis techniques to scan
incoming claim streams fast enough to intercept sus-
picious claims before they are paid. This early detec-
tion requires the graph-analysis algorithms to be
optimized for memory and computation, running
quickly on large graphs. In addition, we plan to add
additional feedback loops to our system, so that
actions taken by users of our technologies become
input to the algorithms. This will enable a rigorous
performance evaluation of detection precision. At the
same time, the algorithms will learn from the suspi-
cious activities that users explore and mark, and the
results of audits, investigations, and recoveries. Final-
ly, we will allow users to configure the analytics so
that it is easy to tune them to the needs of specialists
and repeat successful analyses on new data sets.
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Notes

1. See NHCAA. 2011: The Challenge of Health Care Fraud:
Consumer Alerts: The Impact of Health Care Fraud on You.
Washington, DC: The National Health Care Anti-Fraud
Association (www.nhcaa.org/resources/health-care-anti-
fraud-resources/the-challenge-of-health-care-fraud.aspx).

2. Infographics on the 2013 video series Rehab Racket pro-
duced by CIR and CNN are available from revealnews.org.
3. The Health Insurance Portability and Accountability Act
of 1996, Public Law 104-191, is available at www.cms.gov
/Regulations-and-Guidance/HIPAA-Administrative-Simplifi-
cation/HIPAAGenInfo/Downloads/HIPAALaw.pdf.

4. Title 21 CFR 1308.12. U.S. Department of Justice, Drug
Enforcement Administration, available at www.ecfr.gov.
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