
Homelessness affects around 2 million youths in the
United States annually, 11 percent of whom are
infected with the human immunodeficiency virus

(HIV), which is 10 times the rate of infection in the general
population (Aidala and Sumartojo 2007). Peer-led HIV pre-
vention programs such as Popular Opinion Leader (POL)
(Kelly et al. 1997) try to spread HIV prevention information
through network ties and recommend selecting intervention
participants based on degree centrality (that is, nodes with
the most number of friendships picked first). Such peer-led
programs are highly desirable to agencies working with
homeless youth as these youth are often disengaged from tra-
ditional health-care settings and are distrustful of adults (Rice
and Rhoades 2013, Rice 2010).

Agencies working with homeless youth prefer a series of
small-size interventions deployed sequentially as they have
limited personnel to direct toward these programs. This fact,
along with the emotional and behavioral problems of youth,
makes managing groups of more than five or six young peo-
ple at a time very difficult (Rice et al. 2012b). Strategically
choosing intervention participants is important so that infor-
mation percolates through their social network in the most
efficient way.
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� Homeless youth are prone to human immun-
odeficiency virus (HIV) due to their engagement
in high-risk behavior such as unprotected sex,
sex under influence of drugs, and so on. Many
nonprofit agencies conduct interventions to edu-
cate and train a select group of homeless youth
about HIV prevention and treatment practices
and rely on word-of-mouth spread of informa-
tion through their one single social network Pre-
vious work in strategic selection of intervention
participants does not handle uncertainties in the
social networks’ structure and evolving network
state, potentially causing significant shortcom-
ings in spread of information. Thus, we devel-
oped PSINET, a decision-support system to aid
the agencies in this task. PSINET includes the
following key novelties: (1) it handles uncer-
tainties in network structure and evolving net-
work state; (2) it addresses these uncertainties
by using POMDPs in influence maximization;
and (3) it provides algorithmic advances to
allow high-quality approximate solutions for
such POMDPs. Simulations show that PSINET
achieves around 60 percent more information
spread over the current state of the art. PSINET
was developed in collaboration with My Friend’s
Place (a drop-in agency serving homeless youth
in Los Angeles) and is currently being reviewed
by its officials.



The purpose of this article is to introduce partially
observable Markov decision process (POMDP)–based
social interventions in networks for enhanced HIV
treatment (PSINET), a novel system that chooses the
participants of successive interventions in a social
network. The key novelty of our work is a unique
combination of POMDPs and influence maximiza-
tion to handle uncertainties about friendships
between people in the social network; and the evolu-
tion of the network state in between two successive
interventions. Traditionally, influence maximization
has not dealt with these uncertainties, which greatly
complicates the process of choosing intervention
participants. Moreover, this problem is a very good
fit for POMDPs as we conduct several interventions
sequentially, similar to sequential actions taken in a
POMDP; and we must handle uncertainty over net-
work structure and evolving state, similar to partial
observability over states in a POMDP.

However, there are scalability issues that must be
addressed. Unfortunately, our POMDP’s state (2300

states) and action (150
10) actions) spaces are beyond

the reach of current state-of-the-art POMDP solvers
and algorithms. To address this scaleup challenge,
PSINET provides a novel online approximation algo-
rithm that relies on the following key ideas: (1) com-
pact representation of transition probabilities
(explained later) to manage the intractable state and
action spaces; (2) combination of the QMDP heuristic
(a well known offline approximate solver) with
Monte Carlo simulations to avoid exhaustive search
of the entire belief space; and (3) voting on multiple
POMDP solutions, each of which efficiently searches
a portion of the solution state space to improve accu-
racy. Each such POMDP solution (which votes for the
final solution) is a decomposition of the original
problem into a simpler problem. Thus, PSINET effi-
ciently searches the combinatorial state and action
spaces based on several heuristics in order to come up
with good solutions.

Our work is done in collaboration with My
Friend’s Place (MFP),1 a nonprofit agency assisting
Los Angeles’s homeless youth to build self-sufficient
lives by providing education and support to reduce
high-risk behavior. Our collaborators conducted
extensive interviews with homeless youth at My
Friend’s Place to ascertain the structure of their
friendship-based social networks. Therefore, we eval-
uate PSINET on real social networks of youth attend-
ing this agency. This work is being reviewed by offi-
cials at My Friend’s Place toward final deployment.

Related Work
There are three primary areas of related work that we
discuss in this section. First, we discuss work in the
field of influence maximization, which was first
explored by Kempe, Kleinberg, and Tardos (2003),
who provided a constant-ratio approximation algo-

rithm to find “seed” sets of nodes that can optimally
spread influence in a graph. This was followed by
many speedup techniques (Leskovec et al. 2007;
Kimura and Saito 2006; Chen, Wang, and Wang
2010). All these algorithms assume no uncertainty in
the network structure and select a single seed set. In
contrast, we select several seed sets sequentially in
our work to select intervention participants. Also, our
problem takes into account uncertainty about the
network structure and evolving network state.
Golovin and Krause (2011) introduced adaptive sub-
modularity and discussed adaptive sequential selec-
tion (similar to our work) in viral marketing. Howev-
er, unlike our work, they assume no uncertainty in
network structure and state evolution.

Another field of related work involves two (or
more) players trying to spread their own competing
influence in the network (broadly called influence
blocking maximization, or Inf-BM). Some research
exists on Inf-BM where all players try to maximize
their own influence spread in the network, instead of
limiting others’ (Bharathi, Kempe, and Salek 2007;
Kostka, Oswald, and Wattenhofer 2008; Borodin, Fil-
mus, and Oren 2010). Tsai, Nguyen, and Tambe
(2012) try to model Inf-BM as a game-theoretic prob-
lem and provide scaleup techniques to solve large
games. Just like our work, Tsai et al. (2013) consider
uncertainty in network structure. However, Tsai et al.
(2013) do not consider sequential planning (which is
essential in our domain) and thus, their methods are
not reusable in our domain.

The final field of related work is planning for
reward/cost optimization. In POMDP literature, a lot
of work has been done on offline planning; some
notable offline planners include GAPMIN (Poupart,
Kim, and Kim 2011) and Symbolic Perseus (Spaan
and Vlassis 2005). However, since it has been sug-
gested that online planners are able to scale up better
(Paquet, Tobin, and Chaib-Draa 2005), we focus on
online POMDP planners in this article. For online
planning, we mainly focus on the literature on
Monte Carlo (MC) sampling–based online POMDP
solvers since this approach allows significant scale-
ups. Silver and Veness (2010) proposed the partially
observable Monte Carlo planning (POMCP) algo-
rithm, which uses Monte Carlo tree search in online
planning. Also, Somani et al. (2013) present the DES-
POT algorithm, which improves the worst-case per-
formance of POMCP. Bai et al. (2014) used Thomp-
son sampling to trade off intelligently between
exploration and exploitation in their D2NG-POMCP
algorithm. These algorithms maintain a search tree
for all sampled histories to find the best actions,
which may lead to better solution qualities but makes
these techniques less scalable (as we show in our
experiments). Therefore, our algorithm does not
maintain a search tree and uses the QMDP heuristic
(Littman, Cassandra, and Kaelbling 1995) to find best
actions.
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Our Approach
Partially observable Markov decision processes are a
well-studied model for sequential decision making
under uncertainty (Puterman 2009). Intuitively,
POMDPs model situations wherein an agent tries to
maximize its expected long-term rewards by taking
various actions while operating in an environment
that could exist in one of several states at any given
point in time and that reveals itself in the form of
various observations. The key point is that the exact
state of the world is not known to the agent, and
thus, these actions have to be chosen by reasoning
about the agent’s probabilistic beliefs (belief state).
The agent, thus, takes an action (based on its current
belief), and the environment transitions to a new
world state. However, information about this new
world state is only partially revealed to the agent
through observations that it gets upon reaching the
new world state. Hence, based on the agent’s current
belief state, the action that it took in that belief state,
and the observation that it received, the agent
updates its belief state. The entire process repeats sev-
eral times until the environment reaches a terminal
state (according to the agent’s belief).

More formally, a full description of the POMDP
includes the sets of possible environment states, the
set of actions that the agent can take, and the set of
possible observations that the agent can observe. In
addition, the full POMDP description includes a tran-
sition matrix for storing transition probabilities,
which specify the probability with which the envi-
ronment transitions from one state to another, con-
ditioned on the immediate action taken. Another
component of the POMDP description is the obser-
vation matrix for storing observation probabilities,
which specify the probability of getting different
observations in different states, conditioned on the
action taken to reach that state. Finally, the POMDP
description includes a reward matrix, which specifies
the agent’s reward of taking actions in different
states.

A POMDP policy Π provides a mapping from every
possible belief state (which is a probability distribu-
tion over world states) to an action. Our aim is to find
an optimal policy Π* which, given an initial belief β0,
maximizes the expected cumulative long-term
reward over H horizons (where the agent takes an
action and gets a reward in each time step until the
horizon H is reached). Computing optimal policies
offline for finite horizon POMDPs is PSPACE-com-
plete. Thus, focus has recently turned toward online
algorithms, which only find the best action for the
current belief state (Paquet, Tobin, and Chaib-Draa
2005; Silver and Veness 2010). Thus, online planning
interleaves planning and execution at every time
step.

The POMDP Model of Our Domain
In describing our model, we first outline the home-

less youth social network and then map it onto our
POMDP. The social network of homeless youth is a
directed graph G specified by its nodes (V) and edges
(E). Let the number of nodes in G be n. Every node in
V represents a homeless youth, and every edge of the
form {e = (B, C)} (where B and C are graph nodes) rep-
resents that youth B has nominated (listed) youth C
in his or her social circle. Further, the set of edges E
consists of a set of certain edges (Ec), which represent
friendships that we are certain about. Moreover, E
consists of a set of uncertain edges (Eu), which repre-
sent friendships that we are uncertain about. For
example, youth may describe their friends vaguely,
which is not enough for accurate identification (Rice
et al. 2012b; 2012a). In this case, there would be
uncertain edges from the youth to each of his or her
suspected friends. No edge can be both certain and
uncertain.

Each uncertain edge e exists with an existence
probability u(e), the exact value of which is deter-
mined from domain experts. For example, if it is
uncertain whether node B is node A’s friend, then
u(A, B) = 0.5 implies that B is A’s friend with a 0.5
chance. Accounting for these uncertain edges is
important as our node selection might depend heav-
ily on whether these edges exist with certainty or not.
We call this graph G an “uncertain graph” hence-
forth. Figure 1 shows an uncertain graph on six
nodes (A to F) and seven edges. The dashed and sol-
id edges represent uncertain (edge numbers 1, 4, 5,
and 7) and certain (edge numbers 2, 3, and 6) edges,
respectively.

In our work, we use the independent cascade mod-
el, a well-studied influence propagation model
(Kimura and Saito 2006). In this model, every node v
has an h-value, which is 1 or 0, depending on
whether a node is influenced or not, respectively.
Nodes only change their h-value (from 0 to 1) once,
when they get influenced. Once a node gets influ-
enced, it cannot go back to being uninfluenced. If
node v gets influenced at time step t, it influences
each of its one-hop (that is, separated by a single
edge) uninfluenced neighbors with a propagation
probability p(e) for all future time steps. Moreover,
every uncertain edge e has an f-value (which repre-
sents a sampled instance of u(e) and is unknown a
priori). The f-value is 1 or 0 depending on whether
the uncertain edge exists with certainty in the real
graph (that is, the youth at the end of that uncertain
edge are actually friends) or not (that is, the youth at
the end of that uncertain edge are not friends),
respectively. For uncertain edges e, the influence
probability (given by p(e) 3 u(e)) is contingent on the
edge’s actual existence.

Note that eliminating all uncertain edges by
replacing them with certain edges that propagate
influence with probability p(e) 3 u(e) is not possible.
This is because, in our model, when we pick nodes,
we resolve uncertainty in their neighboring edges



(explained later), so the probability would change
from p(e) 3 u(e) to either p(e) or 0 (depending on
whether we found out that the uncertain edge exists
or it does not). If the probability changes to p(e), then
influence will spread along this edge with probabili-
ty p(e) for all future time steps. Otherwise, if the prob-
ability changes to 0, no influence will spread in
future time steps. Due to this changing probability
value, we cannot apply the transformation of replac-
ing uncertain edges.

Recall that we need a policy for selecting nodes for
successive interventions in order to maximize the
influence spread in the network. Nodes selected for
interventions are assumed to be influenced (or equiv-
alently, their h-value becomes 1) after the interven-
tion with certainty. However, there is uncertainty in
how the h-value of the unselected nodes changes in
between successive interventions. For example, in
figure 1, if we choose nodes B and D for the first inter-
vention, we are uncertain whether nodes C and E
(adjacent to nodes B and D) are influenced before
nodes for the second intervention are chosen. We
now provide a POMDP mapping onto our problem.

States
A state consists of the state of the nodes (that is,
whether they are influenced or not), along with the
state of the uncertain edges (that is, whether they
exist or not). The state of the nodes is given by their
h-values and the state of the uncertain edges is given
by their f-values. Our POMDP has 2n+m states.

Actions
Every subset of k nodes (k is the number of nodes
selected per intervention and is given as input) is a
POMDP action. For example, in figure 1, one possible
action is {A, B} (assuming k = 2). Our POMDP has (n

k)
actions.

Observations
Previous studies such as Rice et al. (2012b) show that
homeless youth are found to be more willing to discuss
their social ties in the presence of outreach workers in
an intervention. Therefore, we assume that we can
observe the f-values of uncertain edges outgoing from
the nodes chosen in an action. This translates to asking
intervention participants about their one-hop social
circles, and this is within the agency’s capacity. For
example, by taking action {B, C} in figure 1, the f-val-
ues of edges 4 and 5 (that is, uncertain edges in the one-
hop social circle of nodes B and C) would be observed.

Transition Probabilities
Here, we give a high-level intuition for how transi-
tion probabilities are computed. Basically, in order to
find out the complete transition matrix, we need to
calculate the probability of reaching final state s’, giv-
en that we took action α in initial state s. If we can
calculate this probability for fixed values of s, α, and
s , we can then find out the entire transition matrix
by calculating transition probabilities for all possible
combinations of s, α, and s . Thus, we now discuss
how to calculate the transition probability for a giv-
en s, α, and s , which we denote by T(s, α, s ).
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Figure 1. A Sample Six-Node Uncertain Graph.
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For T(s, α, s ) to be nonzero, we require that the f-
values of all uncertain edges in state s, which were
not observed as a result of taking action α, will not
change in the final state s’. This is because the f-val-
ues of an uncertain edges can only change as a result
of observing that uncertain edge. Also, we require
that all nodes that were already influenced in the pre-
vious state s (that is, those h-values that were 1 in s),
remain influenced in the final state s (that is, these
h-values remain 1 in s ), irrespective of the taken
action α. Finally, we also require that all nodes that
we influence as a result of action α will remain influ-
enced in the final state (that is, the h-values of nodes
picked in action α will become 1 in the final state s’).

If any of these three conditions is not satisfied,
then T(s, α, s ) = 0. For the cases where these condi-
tions hold, we provide a heuristic method to calcu-
late transition probabilities in the next section (as
accurate calculation needs to consider all possible
paths in a graph through which influence could
spread, which is O(n!) in the worst case).

Transition Probability Heuristic
In this section, we explain our transition probability
heuristic that we use for estimating our POMDP’s
transition probability matrix.

Essentially, we need to come up with a way of find-
ing out the final state of the network (probabilistical-
ly) prior to the beginning of the next intervention
round. Prior to achieving the final state, the network
evolves in a predecided number of time steps. Each
time step corresponds to a period in which friends
can talk to their friends. Therefore, a time step value
of 3 implies allowing for friends at three hops dis-
tance to be influenced.

However, we make an important assumption that
we describe next. Consider two different chains of
length four (nodes) as shown in figure 2. In chain 1,
only the node at the head of the chain is influenced

(shown in black) and the remaining three nodes are
not influenced (shown in white). The probability of
the tail node of this chain getting influenced is (0.5)3

(assuming no edge is uncertain and probability of
propagation is 0.5 on all edges). In Chain 2, all nodes
except the tail node are already influenced. In this
case, the tail node gets influenced with a probability
0.5 + (0.5)2 + (0.5)3. Thus, it is highly unlikely that
influence will spread to the end node of the first
chain as opposed to the second chain. For this rea-
son, we only keep chains of the form of chain 2 and
accordingly prune our graph (explained next).

We construct a pruned graph G
σ

(created from
graph G) that only contains edges outgoing from
influenced nodes. We prune the graph because influ-
ence can only spread through edges that are outgo-
ing from influenced nodes. More details on G

σ
can be

found in our IAAI paper (Yadav et al. 2015). Note
that G

σ
only considers chains of type 2 and prunes

away chains of type 1.
Using these assumptions, we use G

σ
to construct a

diffusion vector D, the ith element of which gives us
a measure of the probability of the ith node to get
influenced. This diffusion vector D is then used to
estimate the transition probabilities.

Figure 3 illustrates the intuition behind our tran-
sition probability heuristic. More details on the
heuristic can be found in our IAAI 2015 paper (Yadav
et al. 2015). For each uninfluenced node X in the
graph, we calculate the total number of paths (like
chain 2 in figure 2) of different lengths L = 1, 2, …,
T from influenced nodes to node X. Since influence
spreads on chains of different lengths according to
different probabilities, the probabilities along all
paths of different lengths are combined together to
determine an approximate probability of node X to
get influenced before the next intervention round.
Since we consider all these paths independently
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Figure 2. Chains in Social Networks.i h i i i l k
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(instead of calculating joint probabilities), our
approach produces an approximation.2

Observation Probabilities
Here, we give a high-level intuition for how obser-
vation probabilities are computed. Basically, in order
to find out the complete observation matrix, we
need to calculate the probability of observing obser-
vation o, given that we took action α to reach final
state s . If we can calculate this probability for fixed
values of o, α, and s , we can then find out the entire
observation matrix by calculating observation prob-
abilities for all possible combinations of o, α, and s .
Thus, we now discuss how to calculate the observa-
tion probability for a given o, α, and s’, which we
denote by Ω (o, α, s ).

Calculating Ω(o, α, s ) is trivial as the final state s
already has f-values of all uncertain edges, and you
know which uncertain edges you will observe, as a
result of knowing the nodes that you pick in action
α. Thus, given s and α, only one observation is pos-
sible which is composed of the f-values (from s ) of
the observed uncertain edges. More details can be
found in our IAAI paper (Yadav et al. 2015).

Rewards
The reward of taking action α in state s (denoted by
R(s, α)) is the expected number of new influenced

nodes (where the expectation is taken with respect to
all possible final states s’ that could be reached by tak-
ing action α in state s).

PSINET
Initial experiments with the ZMDP solver (a software
package that contains many offline planning algo-
rithms)3 showed that state-of-the-art offline POMDP
planners ran out of memory on 10-node graphs.
Thus, we focused on online planning algorithms and
tried using POMCP (Silver and Veness 2010), a state-
of-the-art online POMDP solver that relies on Monte
Carlo (MC) tree search and rollout strategies to come
up with solutions quickly. However, it keeps the
entire search tree over sampled histories in memory,
disabling scaleup to the problems of interest in this
article. Hence, we propose an MC-based online plan-
ner that utilizes the QMDP heuristic and eliminates
this search tree.

POMDP Black-Box-Simulator
MC-sampling-based planners approximate the value
function for a belief by the average value of η (say) MC
simulations starting from states sampled from the cur-
rent belief state. Such approaches depend on a
POMDP black box simulator Γ, which generates the
state, observation, and reward at time t + 1, given the
state and action at time t, in accordance with the
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Figure 3. The Intuition Behind our Transition Probability Heuristic.

X is any uninfluenced node. S (the big oval) denotes the set of all influenced nodes. All these nodes have been categorized
according to their path length from node X. For example, all nodes having a path of length 1 (that is, Y, D, S, K) are distinguished
from all nodes having path of length T (that is, R, W, L, C). Note that node Y has paths of length 1 and 2 to node X.
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POMDP dynamics. More details on the construction
of Γ can be found in Yadav et al. (2015).

QMDP
QMDP is a well known approximate offline planner,
and it relies on Q(s, α) values, which represent the
value of taking action α in state s. It precomputes
these Q(s, α) values for every (s, α) pair by approxi-
mating them by the future expected reward obtain-
able if the environment is fully observable. On a high
level, QMDP’s approximate policy for a given belief
state selects the action that maximizes the expected
future value of that belief state. More details on QMDP
can be found in the paper by Littman, Cassandra,
and Kaelbling (1995).

Unfortunately, our intractable POMDP state and
action spaces makes it infeasible to calculate Q(s, α)
for all pairs of (s, α). Thus, we propose to use an MC-
sampling-based online variant of QMDP in PSINET.

Algorithm Flow
Algorithm 1 (figure 4) shows the flow of PSINET. In
step 1, we randomly sample all uncertain edges e in
G (according to u(e)) to get different graph instances
(when we repeat this sampling process multiple
times), which form a set Δ. Each of these instances is
a different POMDP as even though we remove uncer-
tainty about the f-values of all the uncertain edges,
the h-values of nodes are still partially observable
(that is, we know that nodes that we picked for the
intervention get influenced with certainty, but we do
not have any observation concerning the other
nodes). Since each of these instances fixes the f-value
of all uncertain edges, the belief β is represented as
an unweighted particle filter where each particle is a

tuple of h-values of all nodes. This belief is shared
across all instantiated POMDPs. For every graph
instance δ ∈ Δ, we estimate the best action α

δ
in graph

δ, for the current belief β in step 3 (this process is
done in parallel for each distinct graph instance, as
shown in figure 5). In step 4, we find our best esti-
mation κ of the optimal action for belief β, by voting
among all the actions chosen by δ ∈ Δ. Then, in step
5, we update the belief state based on the chosen
action κ and the current belief β. PSINET can again be
used to find the best action for this or any future
updated belief states. We now detail the steps in algo-
rithm 1.
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Figure 5. Parallelizing Execution of Several Threads.Figi ug rer 5 Parar llelizingn Executit on of Severar l ThT rer adsd
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Figure 4. Algorithm 1 Pseudocode.



Sampling Graphs
In step 1, we randomly keep or remove uncertain
edges to create one graph instance. As a single
instance might not represent the real network well,
we instantiate the graph several times to create a set
Δ of instances. Then, we use each of these instances
to vote for the best action to be taken.

Finding Best Action
Step 3 uses algorithm 2 (figure 6), which finds the
best action for a single network instance, and works
similarly for all instances. Figure 7 illustrates the
details of algorithm 2 (pseudocode in figure 6). For
each instance, we find the action that maximizes
long-term rewards averaged across η (we use η = 28)
MC simulations starting from states (particles) sam-
pled from the current belief β. Each MC simulation
samples a particle from β and chooses an action to
take (choice of action is explained later). Then, upon
taking this action, we follow a uniform random roll-
out policy (until either termination, that is, all nodes
get influenced, or the horizon is breached) to esti-
mate the long-term reward, which we get by taking
the “selected” action. This reward from each MC sim-
ulation is analogous to a Q(s, α) estimate. Finally, we
pick the action with the maximum average reward.

Multiarmed Bandit
We can only calculate Q(s, α) for a select set of actions
(due to our intractable action space). To choose these
actions, we use an upper confidence bound (UCB1)
implementation of a multiarmed bandit to select
actions, with each bandit arm being one possible
action. Every time we sample a new state from the
belief, we run UCB1, which trades off exploitation
with exploration to come up with an action choice.
More details about the implementation can be found
in the IAAI paper (Yadav et al. 2015). In essence, in
every MC simulation, UCB1 strategically chooses

which action to take, after which we run the rollout
policy to get the long term reward.

Voting Mechanisms
In step 4, each network instance votes for the best
action (found using step 3) for the uncertain graph,
and the approximate best action is chosen by aggre-
gating these votes according to different voting
schemes. We propose using three different voting
schemes: PSINET-S, PSINET-W, and PSINET-C.

PSINET-S: Each instance’s vote gets equal weight.

PSINET-W: Every instance’s vote gets weighted differ-
ently. This weighting scheme approximates the prob-
abilities of occurrences of real-world events by giving
low weights to instances that remove either too few or
too many uncertain edges, since those events are less
likely to occur. Instances that remove exactly half the
number of uncertain edges get the highest weight,
since that event is most likely (Yadav et al. 2015).

PSINET-C: Given a ranking over actions from each
instance, the Copeland rule makes pairwise compar-
isons among all actions, and picks the one preferred
by a majority of instances over the highest number of
other actions (Pomerol and Barba-Romero 2000). It is
a popular voting rule because it is Condorcet consis-
tent (that is, if an action is preferred to every other
action in a majority of the votes, it will be selected
with certainty). Similar to Jiang et al. (2014), we gen-
erate a partial ranking for each instance by using mul-
tiple runs of algorithm 2 (figure 6).

Belief State Update
Recall that every MC simulation samples a particle
from the belief, after which UCB1 chooses an action.
Upon taking this action, some random state (parti-
cle) is reached using the transition probability heuris-
tic. This particle is stored, indexed by the action tak-
en to reach it. Finally, when all simulations are done,
corresponding to every action α that was tried during
the simulations, there will be a set of particles that
were encountered when we took action α in that
belief. The particle set corresponding to the action
that we finally choose forms our next belief state.

Experimental Evaluation
We provide two sets of results. First, we show results
on artificial networks to understand our algorithms’
properties on abstract settings and to gain insights on
a range of networks. Next, we show results on the
two real-world homeless youth networks that we had
access to. In all experiments, we select two nodes per
round and average over 20 runs, unless otherwise
stated. We set the value of T = 3 (the number of hops
considered for influence spread) in all experiments.
PSINET-S and PSINET-W use 20 network instances
and PSINET-C uses 5 network instances (each
instance finds its best action five times) in all experi-
ments, unless otherwise stated. The propagation and
existence probability values were set to 0.5 in all
experiments (based on findings by Kelly et al.
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Figure 6. Algorithm 2 Pseudocode.



[1997]), although we relaxed this assumption later. In
this section, a 〈X, Y, Z〉 network refers to a network
with X nodes, Y certain and Z uncertain edges. We
use a metric of indirect influence spread (IIS)
throughout this section, which is the number of
nodes indirectly influenced by the intervention par-
ticipants. For example, on a 30-node network, by
selecting 2 nodes each for 10 interventions (horizon),
20 nodes (a lower bound for any strategy) are influ-
enced with certainty. However, the total number of
influenced nodes might be 26 (say) and thus, the IIS
is 6. All comparison results are statistically significant
under bootstrap-t (α = 0.05).

Artificial Networks
First, we compare all algorithms on block two-level
Erdos-Renyi (BTER) networks (having degree distri-
bution Xd ∝ d–1.2, where Xd is the number of nodes of
degree d) of several sizes, as they accurately capture
observable properties of real-world social networks
(Seshadhri, Kolda, and Pinar 2012).

In figure 8a, we compare solution qualities of
degree centrality (DC), POMCP and PSINET-S,
PSINET-W, and PSINET-C on BTER networks of vary-
ing sizes. In DC, nodes are selected in subsequent

rounds in decreasing order of out degrees, where
every uncertain edge e adds u(e) to the node degrees.
We choose DC as our baseline as it is the current
modus operandi of agencies working with homeless
youth. The x-axis shows number of network nodes
and the y-axis shows IIS across varying horizons
(number of interventions). This figure shows that all
POMDP-based algorithms beat DC by around 60 per-
cent, which shows the value of our POMDP model.
Further, it shows that PSINET-W beats PSINET-S and
PSINET-C. Also, POMCP runs out of memory on 30-
node graphs.

In figure 8b, we show run times of DC, POMCP,
and PSINET-S, PSINET-W, and PSINET-C on the same
BTER networks. The x-axis shows the number of net-
work nodes and the y-axis shows log (base e) of run
time (in seconds). Figure 8b shows that DC runs
quickest (as expected) and all PSINET variants run in
almost the same time. Thus, figures 8a and 8b tell us
that while DC runs quickest, it provides the worst
solutions. Amongst the POMDP-based algorithms,
PSINET-W is the best algorithm that can provide
good solutions and can scale up as well. Surprising-
ly, PSINET-C performs worse than PSINET-W and
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Figure 7. Flow Inside Find Best Action.
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PSINET-S in terms of solution quality. Thus, we now
focus on PSINET-W.

Having shown the impact of POMDPs, we analyze
the impact of increasing network instances (which
implies increasing number of votes in our algorithm)
on PSINET-W. In figure 9a, we show solution quality
of PSINET-W with increasing network instances, for
a 〈40, 71, 41〉 BTER network with a horizon of 10. The

x-axis shows the number of network instances and
the y-axis shows ΠS. Unsurprisingly, this figure shows
that increasing the number of network instances
increases ΠS as well.

In figure 9b, we show run time of PSINET-W with
increasing network instances, for a 〈40, 71, 41〉 BTER
network with a horizon of 10. The x-axis shows the
number of network instances and the y-axis shows
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run time (in seconds). This figure shows that increas-
ing the number of network instances increases the
run time as well. Thus, a solution quality/run-time
trade-off exists, which depends on the number of
network instances. A greater number of instances
results in better solutions and slower run times and
vice versa. However, for 30 versus 70 instances, the
gain in solution quality is less than 5 percent where-
as the run time is around twice as long, which shows
that increasing instances beyond 30 yields marginal
returns.

Next, we relax our assumptions about propagation
p(e) probabilities, which were set to 1.5 so far. Figure
10a shows the solution quality, when PSINET-W and
DC are solved with different p(e) values on the net-
work edges (the p(e) values were changed for both
the network that was input to the algorithm and the
network on which the algorithm’s policy was exe-
cuted) for a 〈40, 71, 41〉 BTER network with a horizon
of 10. The x-axis shows p(e) and the y-axis shows IIS.
This figure shows that varying p(e) minimally affects
PSINET-W’s improvement over DC, which shows our
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Figure 9. Increasing Number of Graph Instances.
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algorithms’ robustness to these probability values
(we get similar results upon changing u(e)).

In figure 10b, we show solution qualities of
PSINET-W and DC on a 〈30, 31, 27〉 BTER network by
varying the number of nodes selected per round (k).
We use a horizon of 3 (in order to ensure the per-
formance of our algorithm on varying horizon
lengths). The x-axis shows increasing k, and the y-
axis shows IIS. This figure shows that even for a small
horizon of length 3, PSINET-W significantly beats
DC. For increasing values of k, PSINET-W beats DC
with increasing margins.

Real-World Networks
Figure 11 shows one of the two real-world friendship-
based social networks of homeless youth (created by

our collaborators through surveys and interviews of
homeless youth attending My Friend’s Place), where
each numbered node represents a homeless youth.
Figure 12 compares PSINET variants and DC (horizon
= 30) on these two real-world social networks (each of
size around 〈155, 120, 190〉). The x-axis shows the
two networks and the y-axis shows IIS. This figure
clearly shows that all PSINET variants beat DC on
both real-world networks by around 60 percent,
which shows that PSINET works equally well on real-
world networks. Also, PSINET-W beats PSINET-S, in
accordance with previous results. Above all, this sig-
nifies that we could improve the quality and effi-
ciency of HIV-based interventions over the current
modus operandi of agencies by around 60 percent.
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Figure 10. Comparison of Degree Centrality with PSINET-W Across Varying Parameters.
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We now differentiate between the kinds of nodes
selected by DC and PSINET-W for the sample BTER
network in figure 13, which contains nodes segre-
gated into four clusters (C1 to C4), and in which
node degrees in a cluster are almost equal. C1 is
biggest, with slightly higher node degrees than oth-
er clusters, followed by C2, C3, and C4. DC would
first select all nodes in cluster C1, then all nodes in

C2, and so on. Selecting all nodes in a cluster is not
smart, since selecting just a few cluster nodes influ-
ence all other nodes. PSINET-W realizes this by
looking ahead and spreads more influence by pick-
ing nodes in different clusters each time. For exam-
ple, assuming k = 2, PSINET-W picks one node in
both C1 and C2, then one node in both C1 and C4,
and so on.
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Figure 11. One of the Friendship-Based Social Networks of Homeless People Visiting My Friend’s Place.
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Implementation Challenges
Looking toward the future of testing the deployment
of this procedure in agencies, there are a few imple-
mentation challenges that will need to be faced. First,
collecting accurate social network data on homeless
youth is a technical and financial burden beyond the
capacity of most agencies working with these youth.
Members of this team had a large three-year grant
from the National Institute of Mental Health to con-
duct such work in only two agencies. Our solution,
moving forward (with other agencies) would be to use
staff at agencies to delineate a first approximation of
their homeless youth social network, based on their
ongoing relationships with the youth. The POMDP
procedure would subsequently be able to correct the
network graph iteratively (by resolving uncertain
edges through POMDP observations in each step).
This is feasible because, as mentioned, homeless
youth are more willing to discuss their social ties in an
intervention (Rice et al. 2012b). We see this as one of
the major strengths of this approach.

Second, our prior research on homeless youth
(Rice and Rhoades 2013) suggests that some struc-
turally important youth may be highly antisocial and
hence a poor choice for change agents in an inter-
vention. We suggest that if such youth are selected
by the POMDP program, we then choose the next
best action (subset of nodes) that does not include
those “antisocial” youth. Thus, the solution may

require some ongoing management as certain indi-
viduals either refuse to participate as peer leaders or,
based on their antisocial behaviors, are determined
by staff to be inappropriate.

Third, because of the history of neglect and abuse
suffered by most of these youth, many are highly sus-
picious of adults. Including a computer-based selec-
tion procedure into the recruitment of peer leaders
may raise suspicions about invasion of privacy for
these youth. We suggest an ongoing public-awareness
campaign in the agencies working with this program
to help overcome such fears and to encourage partic-
ipation. Along with this issue, there is a secondary
issue about protection of privacy for the individuals
involved. Agencies collect information on their
youth, but most of this information is not to be
shared with researchers. We suggest working with
agencies to create procedures that allow them to
implement the POMDP program without having to
provide identifying information to our team.

Conclusion
This article has presented PSINET, a POMDP-based
decision-support system to select homeless youth for
HIV-based interventions. Previous work in strategic
selection of intervention participants does not han-
dle uncertainties in the social network’s structure and
evolving network state, potentially causing signifi-
cant shortcomings in spread of information.
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Figure 13. Sample BTER Graph.
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PSINET has the following key novelties: (1) it han-
dles uncertainties in network structure and evolving
network state; (2) it addresses these uncertainties by
using POMDPs in influence maximization; and (3) it
provides algorithmic advances to allow high-quality
approximate solutions for such POMDPs. Simula-
tions show that PSINET achieves around 60 percent
improvement over the current state of the art.
PSINET was developed in collaboration with My
Friend’s Place and is currently being reviewed by its
officials.
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Notes
1. See myfriendsplace.org.

2. See teamcore.usc.edu/people/amulya/appendix.pdf for
more details and proofs.

3. See T. Smith (2013), ZMDP Software for POMDP/MDP
Planning. www.longhorizon.org/trey/zmdp
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