
In the 1960s and 1970s, predictions that AI technologies
would solve many problems, such as automated reason-
ing, machine learning, vision, natural language under-

standing, robotics, or planning, within the next few decades
were quite optimistic. To cite just one of the main propo-
nents of those years, Marvin Minsky (1967) wrote that
“Within a generation […] the problem of creating ‘artificial
intelligence‘ will substantially be solved. Although this gen-
eral goal still needs to be fulfilled, certain areas of AI have
reached a mature application status.”

One of the AI technologies that successfully found its way
into industrial applications is constraint satisfaction (Rossi,
van Beek, and Walsh 2006). Constraint satisfaction is a form
of automated reasoning where the problem is modeled by a
set of variables and constraints. A solution is a variable
assignment — each variable gets a value from its associated
domain — where all constraints are satisfied. Constraints are
logical or relational expressions restricting the values that
may be assigned to the variables. Due to the strict and simple
definition of constraint-satisfaction problems (CSPs), many
highly efficient and robust constraint reasoning techniques,
for example, constraint propagation (Bessiere 2006), com-
plete search (van Beek 2006), and local search heuristics
(Hoos and Tsang 2006), have been developed.

Configuration of technical and commercial products and

Articles

WINTER 2016 67Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Twenty-Five Years of
Successful Application

of Constraint
Technologies at Siemens

Andreas Falkner, Gerhard Friedrich, Alois Haselböck,
Gottfried Schenner, Herwig Schreiner

n The development of problem solvers
for configuration tasks is one of the
most successful and mature application
areas of artificial intelligence. The pro-
vision of tailored products, services, and
systems requires efficient engineering
and design processes where configura-
tors play a crucial role. Because one of
the core competencies of Siemens is to
provide such highly engineered and cus-
tomized systems, ranging from solu-
tions for medium-sized and small busi-
nesses up to huge industrial plants, the
efficient implementation and mainte-
nance of configurators are important
goals for the success of many depart-
ments. For more than 25 years the
application of constraint-based meth-
ods has proven to be a key technology in
order to realize configurators at
Siemens. This article summarizes the
main aspects and insights we have
gained looking back over this period. In
particular, we highlight the main tech-
nology factors regarding knowledge rep-
resentation, reasoning, and integration
that were important for our achieve-
ment. Finally we describe selected key
application areas where the business
success vitally depends on the high pro-
ductivity of configuration processes.

services is one of the fields where constraint satisfac-
tion evolved to become the main representation and
reasoning technique (Faltings and Freuder 1998).
Simply speaking, configuration is the selection and
combination of parts from a component catalog,
together with setting parameters of these parts such
that all physical, technical, commercial, and strate-
gic constraints are fulfilled.

Siemens AG, a German-based multinational elec-
tronics and electrical engineering company, has used
constraint-satisfaction technologies in productive
configuration systems successfully for about 25 years.
In this article, we describe how constraint techniques
can be embedded and used in industrial configura-
tors, and how the complex structure and require-
ments of large-scale technical systems made it neces-
sary to extend the standard theory of constraint
satisfaction both in modeling expressiveness and rea-
soning capabilities. We describe examples of config-
urators, based on constraint satisfaction, that have
been successfully put to productive use for many
years.

A configurator, as is the case for most engineering
and industrial software systems, has three different
aspects: (1) Knowledge representation to provide a
language to describe the domain of interest, along
with data persistence and maintenance capabilities
(see the section on Knowledge Representation). (2)
Reasoning methods to provide functions for auto-
matic problem solving and user assistance functions,
for example, by filtering invalid options in the cur-
rent situation (see the section on Reasoning). (3) An
infrastructure to integrate those modeling and rea-
soning components into a software application.
Important aspects of integration are user interface,
input/output interfaces, connectors to enterprise
software (product lifecycle management, enterprise
resource planning, customer relationship manage-
ment), a web environment, and so on (see the sec-
tion on Integration).

In the Applications section, we briefly describe
some applications whose backbone is constraint-sat-

isfaction technology and that are or were in produc-
tive use at Siemens. Finally, the Summary concludes
this article.

Knowledge Representation
Constraint technologies have become the main
approach used to model and solve configuration
problems. There are many different kinds of configu-
ration problems, but one simple aspect to categorize
them is whether a problem is static or dynamic.

In a static configuration problem the task is to
select and combine components from a predefined
and relatively small set of parts (for example, hun-
dreds of pieces). For each part it has to be decided
whether it shall be used in a concrete configuration
without violating any predefined restrictions con-
cerning the combination of parts. Examples of such
problems are web-based shops for consumer products
(like bicycles, computers, cars), feature models (Kang
et al. 1990), or product line engineering systems
(Clements and Northrop 2001). Those systems can be
very elegantly modeled by standard constraint-satis-
faction techniques.

An example of a constraint-satisfaction language is
MiniZinc, which is a powerful language for specify-
ing static problems in a very concise way (Nethercote
et al. 2007). The code clip in listing 1 shows an exam-
ple from a PC configuration: if the usage type of a
computer is multimedia, the PC must be at least a
quad-core.

From the knowledge representation point of view,
languages like MiniZinc are well suited for represent-
ing combinatorial problems of manageable scales. If
the problem gets large and structurally complex,
object-oriented formalisms are a better way of repre-
senting the product taxonomy and dependencies in
a natural way. Another aspect is the static versus the
dynamic property of a problem. Consider the follow-
ing realistic extensions to our PC example problem:
An order contains not only a single PC but a whole

Articles

68 AI MAGAZINE

Listing 1. MiniZinc Example.

int : multimedia = 1;
int : scienti�c = 2;
int : internet = 3;
var 1 .. 3: usage ;
var 1 .. 16: number_cpus ;
constraint (usage == multimedia) –> (number_cpus >= 4);

Articles

WINTER 2016 69

set of PCs, each with individual properties, and for
each CPU of each PC, not only the number of CPUs
but several properties (such as manufacturer, per-
formance) may be specified. Additionally, global con-
straints refer to the whole set of PCs, for example, a
suitable LAN router must be configured depending
on the number of Internet and multimedia PCs. The
formulation of such dynamic problems using static
constraint languages imposes the representation of
all largest possible problem instances based on a fixed
set of variables and constraints resulting in excessive
memory consumption. Moreover, the language con-
structs require a nontrivial transformation of the
conceptual model into a CSP representation. This
mapping is difficult to comprehend for software engi-
neers who are trained to specify problems by object-
oriented means. In particular, arrays and matrices of
variables are used, which do not reflect the structur-
al aspects of the problem.

In a dynamic configuration problem the set of dif-
ferent parts to be combined in a solution is not
known beforehand. Static problems are mainly of
combinatorial nature, while dynamic problems must
additionally decide on creating new configuration
objects and adding them to the current problem.
Examples of such dynamic domains are many indus-
trial fields such as railway safety systems, telecom-
munication systems, or power stations. Knowledge
representation of such systems as object databases
with integrity constraints have a long history (Hull
and King 1987; Beneventano et al. 1998). There have
been several attempts to extend the standard con-
straint theory to such dynamic, conceptual represen-
tation schemes, for example, conditional constraint
satisfaction (Mittal and Falkenhainer 1990), dynam-
ic constraint satisfaction (Dechter and Dechter 1988),
and option types in the constraint language MiniZ-
inc (Mears et al. 2014). Although these extensions
provide mechanisms for a dynamic selection of vari-
ables that are active in a constraint network, they are
still based on a static set of potential variables.

A more powerful extension is generative constraint
satisfaction GCSP (Fleischanderl et al. 1998), where
constraints are integrated into an object-oriented
environment. The object-oriented paradigm is nowa-
days well-established in most nontrivial configurator
implementations based on programming languages
such as C++, C#, or Java.

GCSP can be seamlessly integrated into an object-
oriented environment. Variables and constraints are
defined on the class hierarchy level. Each time an
instance of a class (that is, a configuration object) is
created or destroyed, its variable and constraint
instances are created or destroyed, too. The result is a
constraint network that grows and shrinks along
with the object network. By adding new variables
induced by configuration object creation, domains of
existing variables may be extended, too, because
associations are represented by variables and their

domains are therefore sets of configuration objects.
Furthermore, domain values previously found to be
consistent/inconsistent may change their consisten-
cy state because of variable insertion. Analogous cas-
es apply to object deletions. A dependency network
induced by the set of constraints identifies those vari-
able domains whose values must be reevaluated due
to variable insertion/deletion.

The GCSP code for our small PC configuration
example is shown in listing 2. It is a straightforward
implementation of the UML diagram shown in fig-
ure 1. A configuration consists of a set of PCs and
each PC consists of 1 to 16 CPUs. The task of config-
uration is to create the necessary amount of PC
instances along with their CPU instances and deter-
mine their properties.

An instance of class Configuration consists of an
arbitrary number of PC instances, each of which is
connected to several (min. 1, max. 16) CPU
instances. The constraint code for requiring at least 4
CPUs for a multimedia PC looks very similar to the
MiniZinc code above, with the main difference that
the constraint is defined on the class level. Each time
a PC is instantiated, a new constraint instance is cre-
ated and added to the dynamic constraint network.

At Siemens, various GCSP-based configurators
have been built and are in productive use. Examples
are configurators for railway interlocking and safety
systems, telecommunication switching systems, or
gas compressors (see the Applications section). The
knowledge bases and solutions in these domains are
huge (hundreds of thousands of components), and it
has become evident that it is not possible to build
such systems in an efficient and clean way without
the structuring capabilities of object-oriented knowl-
edge representation and the declarative aspect of
constraint satisfaction. Experience has shown that
declarativity supports the maintenance of such sys-
tems very well, especially if they are long-lasting (for
example, railway systems have a life span of about 30
years), because data and logic are cleanly separated
and general, domain-independent reasoning meth-
ods are used for solving.

In rule-based systems, as mainly used for expert
systems in the past (McDermott 1982), maintenance
often becomes a nightmare, because procedural, for-
ward-chaining rules such as seen in many commer-
cial systems are directed and have many interdepen-
dencies (Soloway, Bachant, and Jensen 1987).
Nevertheless, for certain kinds of problems where
reasoning definitely is directed (for example, the
wiring is determined by the arrangement of the mod-
ules in a rack, and not vice versa), production rules
are a good choice. Knowledge engineers can write
production rules in a very intuitive way and rule exe-
cution is fast. For such cases, we have integrated a for-
ward-chaining rule mechanism into our configura-
tion framework in addition to constraints.

Reasoning
Separation of knowledge representation and reason-
ing is the key factor in knowledge-based systems such
as configurators. There are many different kinds of
reasoning tasks in a complex system, and therefore
the architecture of such systems must be able to inte-
grate various solvers and solving technologies (Falkn-
er et al. 2011). The reasoning methods can be classi-
fied along different perspective; the main
classifications for configuration applications are
detailed in the following paragraphs.

Satisfaction versus optimization. Satisfaction is the
task of finding an arbitrary solution where all con-
straints are satisfied. In many configuration prob-
lems, this is not enough. Users are interested in solu-
tions that minimize or maximize one or several
optimization criteria (for example, find the least
expensive configuration). Of course, optimization
algorithms are computationally more challenging
than pure satisfaction algorithms.

Find one or all solutions. Configuration problems in
industry and infrastructure domains often get very
large and complex, so that trying to find all solutions
is a hard task due to the huge search space. Typically,
many solutions will be very similar because of sym-
metry reasons. Usually it is sufficient to find one
solution or only a few. Examples where an exhaus-
tive search of the solution space is necessary are fea-
ture models in the domain of product line engineer-
ing, where classification figures such as variability

(the ratio of valid solutions to feature combinations)
or commonality (the percentage of solutions con-
taining the same feature configuration) play an
important role (Benavides, Segura, and Cortés 2010).

Propagation-guided search. The most prominent
techniques are search algorithms based on backtrack-
ing, where values are assigned successively to vari-
ables, and in the case of a dead end, conflicts in the
past are to be resolved (van Beek 2006). Consistency
algorithms are look-ahead methods, where inconsis-
tent domain values are filtered out and this knowl-
edge is propagated to still unassigned variables
(Bessiere 2006). Usually, a combination of backtrack-
ing and look-ahead techniques is applied, where in
each backtracking cycle assigned values are propa-
gated to filter the domains of still unassigned vari-
ables (Freuder and Mackworth 1994).

Complete versus incomplete techniques. Backtracking
or full consistency algorithms are complete tech-
niques, because they will theoretically always find a
solution, if one exists. For large and complex prob-
lems, however, such algorithms may not be applica-
ble due to the sheer size of the search space. Heuris-
tic search methods have to be used instead. Such
methods are either constructive, generating a solu-
tion step by step using heuristic decisions, or pertur-
bative. Perturbative search starts with a heuristically
generated complete configuration and successively
repairs or improves it by local, often random deci-
sions (Hoos and Tsang 2006). Local search methods
use partial or complete candidate solutions as search
states. The search process starts with an initial state
and proceeds from one search state to a neighboring
state exploiting limited local information. Construc-
tive and perturbative methods can also be combined.
Some of the main heuristic search algorithms are
GSAT, tabu search, simulated annealing, genetic algo-
rithms, and large neighborhood search.

Interactive versus batch techniques. In batch configu-
ration problems, all user requirements are compre-
hensively specified at the beginning, and a solver
finds a solution without any user interaction. One of
our challenging examples of a batch configuration
problem is the Partner Units Problem, where zones
and sensors are assigned to communication units
(Aschinger et al. 2011). However, most configuration
systems in practice are interactive systems because
users want to be guided in their decision processes:
they are not able to specify all requirements in
advance but need to see the effects of each decision
on the alternatives for the remaining variables —
which values are no longer allowed or which values
are direct and indirect consequences, respectively. For
many of our dynamic configuration problems, users
are not able to anticipate all additionally required
decisions based on some initial choices; for example,
depending on the selection of a software module type
for some hardware element, different parameters
must be specified by the user. Such problems call for
reasoning methods that assist the user to build a solu-

Articles

70 AI MAGAZINE

enumeration Usage {
 multimedia, scienti�c, internet}

class Con�guration {
 aggreg pcs[1..*]: PC;
}

class PC {
 attr usage: Usage;
 assoc con�guration[1]: Con�guration oppositeOf pcs;
 aggreg cpus[1..16]: CPU;
 constraint usageMultimedia {
 assert (usage == Usage.multimedia) –> (cpus.size() >= 4);
 }
}

class CPU {
 attr manufacturer: String;
 assoc pc[1]: PC oppositeOf cpus;

Listing 2. GCSP Example.

tion step by step rather than automatically derive
one. Consistency algorithms and local search meth-
ods support these demands quite well. For example,
the removal of items from a menu of currently possi-
ble options corresponds to filtering out values from a
variable’s domain by constraint propagation. Anoth-
er reasoning task important for interactive configura-
tion systems is to provide explanations for conflicts
in configuration fragments. Falkner, Felfernig, and
Haag (2011) describe some approaches for that.

Discrete versus continuous problems. Discrete prob-
lems have finite, discrete variable domains, like dif-
ferent module types or component properties with
enumeration domains. All the aforementioned rea-
soning methods work on such discrete problems. In
many configuration domains, for example, trans-
portation systems (Ahuja, Möhring, and Zaroliagis
2009), continuous variables (such as real numbers)
are also necessary. The most prominent techniques
for such domains are linear programming, (mixed)
integer programming (Papadimitriou and Steiglitz
1982), nonlinear programming (Bazaraa, Sherali, and
Shetty 1993), convex optimization (Bertsekas 2009),
and interval propagation (Hentenryck 1997).

Implementation
Nowadays, many different constraint solvers are
available, both from academic research institutes and
commercial vendors. There are indications that the
CSP language MiniZinc (as briefly described in the
Knowledge Representation section) is becoming a
constraint language standard (Nethercote et al.
2007). The advantage of this standardization would

be that more and more solvers will understand
MiniZinc models, and application developers could
choose the most suitable solver for a particular prob-
lem without changing the CSP knowledge represen-
tation. Examples of solvers that understand MiniZinc
(or its “flattened” version FlatZinc) are G12, Gecode,
ECLiPSe, and SICStus Prolog.

Recently, constraint-satisfaction search methods
have been complemented by SAT solvers, which
gained enormous potential due to new highly effi-
cient inference algorithms like conflict learning or
the parallel application and orchestration of differ-
ent solving strategies (Biere et al. 2009, de Moura
2011).

But most of the existing solvers and algorithms are
designed for standard, static constraint-satisfaction
problems. Moving to a dynamic environment like
generative constraint satisfaction (GCSP), algorithms
must be adapted or new ones must be invented. This
is challenging and far from being solved (Wallace
and Freuder 1998). Modern logic programming
methods like answer set programming, ASP (Leone
et al. 2006; Brewka, Eiter, and Truszczynski 2011),
allow the formulation of first-order theories. Using
this approach, a compact knowledge representation
is possible. However, current solving methods trans-
late these first-order theories into propositional log-
ic during the grounding phase, which results in
unacceptable memory consumption for big problem
instances. However, we have applied ASP successful-
ly for hard midsized configuration problems
(Aschinger et al. 2011) comprising hundreds of com-
ponents.

An important alternative is the use of local or
heuristic search techniques. These techniques swap

Articles

WINTER 2016 71

C
C

C

E Usage

PC

CPU
internet

usage:Usage

pc

cpus

pcs

manufacturer:String

1..*

1..16

pc

multimedia

+

+

+ +

+

Figure 1. UML Model for the PC Example.

the “luxury” of being complete for being fast and
returning acceptable solutions in most cases. One
such method is iterative repair (Selman, Levesque,
and Mitchell 1992) — violated constraints are
repaired until, finally, a solution is found. Sophisti-
cated (often domain-dependent) heuristics guide the
search process so that the chance of finding an
acceptable solution quickly is high.

Symmetry breaking is another approach developed
in the context of constraint satisfaction and applies
very well to the solving of configuration problems by
systematic search. The basic idea is to prune those
parts of the search tree that are symmetric to parts
that have already been proven to be either consistent
or inconsistent (Freuder 1991; Haselböck 1993; Craw-
ford et al. 1996; Gent, Petrie, and Puget 2006).

Besides the aforementioned reasoning methods,
there exist many other different solving techniques
and tools, most of them specialized to tackle very
specific problem types. Many real-world configura-
tion problems are complex and heterogeneous in the
sense that various forms of knowledge representa-
tions (for example, propositional logic, first-order
logic, equations, and inequalities) should be
employed for a compact problem specification.
Therefore, there is an increasing need for an open
architecture with the possibility to integrate such dif-
ferent reasoning methods and tools that are able to
deal with a variety of different customer require-
ments.

In the configuration applications described in the
Applications section, different solvers and solver
technologies are used, often in a combined way.
Some parts of an industrial configuration problem
could be solved by mapping them to standard sys-
tems such as Choco, MiniZinc, or ASP, some were
well represented by MILP (mixed integer linear pro-
gramming) systems. In those cases, adapters from the
formalism representing the object model and busi-
ness logic to the formalism of the external solver
have been implemented. For large-scale, dynamic
problems, we mostly used a proprietary GCSP imple-
mentation — S’UPREME — which is a local search
solver based on iterative repair. In turn, many tech-
niques like arc consistency or forward checking
developed in the context of constraint satisfaction
have been adapted and used in S’UPREME. No
adapters from the object model to the solver are nec-
essary in that case, because S’UPREME works directly
on that model.

Integration
AI technology, as described in the preceding section,
is usually embedded in an infrastructure of different
functions and services, for example, a client-server
platform based on a database management system
and an application server, a user interface, I/O func-
tions for reading customer data and exporting data

to other systems, and a test bed for verifying the gen-
erated results. Integration of a constraint solver is
best supported if it is available as a middleware
instead of a stand-alone modeling language. Some
constraint systems provide APIs to main program-
ming languages such as Java, C++, or C#. To name
just a few: Choco (Java), Gecode (C++), Google CP
Solver (Java, C++, .Net), IBM ILOG CP (C++), JaCoP
(Java), OscaR (Scala).

An exemplary standardization initiative is the Java
Constraint Programming API JSR 331. The goal is that
different constraint system vendors provide their sys-
tems in terms of this standard API. This standardiza-
tion supports the integration of constraint technolo-
gy in a Java application, making it also possible to
exchange the underlying solver without changing
the application code.

Another integration aspect is characterized by the
notion of system of systems. Often, more than one
configuration system is necessary in the whole
design, sales, and production process, or in the con-
text of product portfolios where a concrete applica-
tion consists of a set of interacting subproducts. Each
subsystem may have its own individual and special-
ized configurator. They can be integrated either by
loose coupling, exchanging partial configurations
through interface files, or by working together on a
common knowledge platform. Both methods have
their strengths and weaknesses. In loosely coupled
systems, the individual configurators can be devel-
oped independently from each other to a large
extent, choosing the best technology for each task.
The price is redundant data and expensive interfaces
between the subsystems. On the other hand, mono-
lithic systems based on a single knowledge base pro-
vide a simpler tool architecture, but have more
restrictions on the technologies and frameworks
used for implementation. A promising compromise
is to keep the operational and organizational inde-
pendence of the individual systems, but to offer
appropriate modeling constructs for collaborative
modeling, for automated data exchange between the
different CSP models, and for preventing redundan-
cy, inconsistency and ambiguity in shared data
(Dhungana, Falkner, and Haselböck 2013).

Applications
In the late 1980s, no robust academic or commercial
constraint systems were available ready to be used in
industrial applications. Research mainly focused on
developing efficient search and consistency algo-
rithms. In the 1990s, the first constraint logic pro-
gramming systems emerged, mainly based on Prolog
(for example, ECLiPSe, SICStus Prolog, CHIP, B-Pro-
log), and practical application of constraint program-
ming, like circuit verification, scheduling, or resource
allocation, arose (Wallace 1996). In the middle of the
1990s, the ILOG Solver was one of the first CSP

Articles

72 AI MAGAZINE

solvers delivered as a C++ library. It is now part of the
IBM ILOG CPLEX Studio (CP Optimizer). In the first
decade of 2000, constraint systems like Choco, JaCoP,
Gecode, Minion, or Google CP Solver (to name just a
few) turned up and became more and more mature.

In the last years, the following trends have become
apparent: (1) Constraint systems are available as
libraries (for example, as a Java library like Choco)
and can read constraint models specified in quasi-
standard languages like MiniZinc or the Java Con-
straint Programming API JSR 331. This supports an
easy and flexible integration into a standard applica-
tion infrastructure. (2) On the basic level, often SAT
solvers are used for search. An interesting variant of
logic programming systems is Answer Set Program-
ming (Gelfond 2008), for example, DLV, Smodels, or
the tool suite Potassco. ASP combines deductive data-
base systems, nonmonotonic reasoning, and con-
straint programming. (3) Constraint systems become
more and more expressive by providing and combin-
ing solvers for different theories. Beyond discrete,
finite domains, such theories support integers, real
numbers, sets, lists, and various other data structures.
The underlying logical framework is SMT (satisfiabil-
ity modulo theories), for example, Z3 (de Moura and
Bjørner 2008). (4) Constraint-based systems become
platforms integrating various solvers, each special-
ized for a particular problem domain. An example is
the system Numberjack (Hebrard, O’Mahony, and
O’Sullivan 2010), which integrates mixed-integer
programming solvers, SAT solvers and constraint
solvers. (5) Constraint solving is used in interactive
environments such as sales configurators and guided
selling tools. A prominent example is Tacton’s CPQ
(Configure Price Quote) product TCsite, which com-
petes well with precompiled approaches such as
BDD-based Configit’s virtual tabulation method.

In this section we describe several configurators
developed at Siemens in the last 25 years that employ
constraints for specifying technically correct config-
urations. Different domains and problems have dif-
ferent emphases. Sometimes finding a valid solution
is sufficient, sometimes the focus lies on one or sev-
eral optimization criteria. But all these applications
have in common that they are complex, large, and of
dynamic nature, and that constraints play a central
role in representing integrity, consistency, and
behavioral models of the systems.

Due to the fact that generative constraint-satisfac-
tion problems need special representation and solv-
ing techniques, we developed a proprietary con-
straint framework S’UPREME, which is used for
configuration of large-scale technical products with-
in Siemens.

Configurator for Railway Interlocking
Systems for Austria (1989 to Date)
At the end of the 1980s we began to implement the
first large-scale configuration system that used con-

straint techniques. The task of this system was to
configure hardware and software of railway control
centers for hundreds of railway stations in Austria
(see figure 2).

In railway signaling, an interlocking system is an
arrangement of signals and other equipment that
prevents conflicting movements of trains in a net-
work of tracks, switches, and crossings. It ensures
that trains receive clear signals only if their defined
route is safe to be used. Modern interlocking systems
use software programs running on special-purpose
control hardware such as shown in figure 3. Siemens
supplies a big variety of systems and components tai-
lored to the requirements of different countries and
companies.

Configured systems comprised more than 50.000
components and several megabytes of parameter
data for safety-critical systems. Customer and
requirements data (station and line topology, signal
tables) are partly imported into the system through
interface files and partly manually specified through
a graphical UI. Constraints check the integrity and
plausibility of these data. Outputs are manifold and
include hardware assembling sheets in AutoCAD,
cable layout plans, element connection diagrams (in
PDF format), software parameter files (in XML and
other text formats), configured user interfaces, bills
of materials (for example, in MS-Excel), checklists for
system tests (for example, in MS-Word). The config-
urator, written in C++, used classes and associations
as knowledge-representation concepts. The genera-
tion of instances was mainly realized by rule-execu-
tions and extended by constraint features. Con-
straints were implemented in C++ and processed by
consistency and filtering functions. Their task was to
inform the user continuously and in detail about
inconsistencies between user-set values of variables
and to warn him/her whenever a rule calculated a
different value for a variable after that variable had
been changed by the user. However, those con-
straints were not used for solution finding (search),
just for checking.

This configurator has been in productive use for
more than 25 years. It is still maintained and con-
tinuously adapted to the newest railway technology.

Configurator for Telecommunication
Switches (1994–2003)
Moving from rules to constraints was a significant
milestone in reducing configurator development and
maintenance costs.

For the domain of digital electronic telecommuni-
cation switches, we used the first implementation of
generative constraint satisfaction, written in
Smalltalk. Some of the interesting features of this
configurator were as follows: (1) It provided both
constraint filtering and backtrack search functional-
ity. Backtrack search was enhanced by look-ahead
techniques and domain-specific variable ordering

Articles

WINTER 2016 73

heuristics to cope with the large size of the products
that were configured (Fleischanderl et al. 1998). (2)
The concept of soft constraints (Meseguer, Rossi, and
Schiex 2006) was used by associating a strength fac-
tor to each constraint. If no solution could be found
fulfilling all constraints, constraints with a low
strength factor were relaxed. It turned out that such

soft constraints implied a high additional complexi-
ty to the reasoning, so we dropped it in the next ver-
sion of S’UPREME, replacing it by allowing the user
(or at least a class of expert users) to manually mark
constraints permitted to be violated. Such violation
permissions are documented in a report as part of the
output and are therefore traceable for each final prod-
uct. (3) A small part of the system was still rule based,
especially the cable layout functions. Constraints are
undirected, which is usually a big advantage over
rules, but in this case undirectedness was not neces-
sary, because cables were always layouted when
everything else was already determined. So rules
showed a winning performance in this case.

The configurator demonstrated the power of con-
straints for reducing maintenance costs and was in
productive use for about 10 years until Siemens with-
drew from the telecom business. In particular, the
maintenance costs were reduced dramatically. Com-
parable “conventional” systems needed about 15 per-
cent of the development costs for maintenance per
year. By applying constraint methods we could
reduce this to 2 percent.

Configurator Family for Railway
Interlocking Systems (2000 to Date)
Encouraged by the success of our constraint-based
configurator for telecommunication switches, we
applied its techniques again to the railway automa-
tion domain, but this time for an interlocking tech-
nology that is used worldwide in various countries
and projects.

Around the year 2000, we redesigned our genera-

Articles

74 AI MAGAZINE

Figure 2. A Workplace in a Railway Control Center (© Siemens AG Österreich 2016).

Figure 3. Railway Interlocking System Hardware.

© Siemens AG Österreich 2016.

tive constraints framework COCOS and ported it
from Smalltalk to Java. Based on S’UPREME, we
developed a tool family that enables project and sales
engineers to perform a detailed technical configura-
tion of electronic interlocking systems (including
software, hardware, user interfaces, communication
equipment). The size and complexity of the task is
very high. Typical configurations comprise 10,000
elements, 50,000 attributes/associations, and
100,000 active constraints. In order to make the con-
figuration process efficient, many of the necessary
decisions are supported by our tool through initial
values, computation functions, domain filtering, and
solving. In a sequence of manual and automated
steps, only several hundreds of explicit decisions
need to be made by the user to achieve a complete
configuration for average-sized systems.

The configurators are used in more than 10 coun-
tries for different railway companies. While most of
the structures and requirements are the same for all
of them, they differ in some — sometimes many —
details. For instance, types of available hardware ele-
ments are different in different countries, constraints
vary how to connect components, and special user
interface views or import/export functions are need-
ed. To cope with that situation, the architecture of
our configurators consists of three layers: (1) A
domain-independent kernel, providing mechanisms
for knowledge base representation, constraint-based
reasoning, and generic user interfaces. (2) A base lay-
er, containing all domain-specific knowledge that is
common to all configurator variants. (3) The variant
layers, representing the specialities of different coun-
tries.

The layered architecture facilitates reuse consider-
ably: the variant layers do not need to express the
same again and again — thus the code size of a typi-
cal variant is approximately 1/10 of the whole code
(a small value, considering that railway companies in
different countries have quite different require-
ments).

The GCSP approach integrates OO and CSP para-
digms: Although the knowledge base is modeled in
an object-oriented way, the attributes and associa-
tions of the model can be viewed as variables of a
constraint-satisfaction problem. For each attribute,
one variable is generated. For each association two
variables (one for each role of the association) are
generated. For each variable in the knowledge base,
additional information can be provided (initial val-
ues, possible values, cardinality of associations). From
that, built-in constraints are derived.

The reasoning is based on constraints — built-in
and special expressions such as logical expressions or
expressions about association cardinalities. Every
constraint is either specified in a domain-specific lan-
guage (Configuration Specification Language) and
then automatically transformed to Java, or directly
implemented in Java, allowing arbitrary Java state-

ments to be used additionally, provided the value
(true, false, undefined) of the constraint only
depends on the variables used in the current config-
uration. An example is shown in Listing 3.

The solving mechanism is repair based. Violated
constraints indicate parts of the configuration that
need to be repaired. The user can repair a constraint
violation manually, by choosing from a list of possi-
ble repair steps. Alternatively, the solver can be start-
ed to solve the constraints according to the solver’s
current heuristics. A valid configuration is found, if
all user requirements are fulfilled and there are no
violated constraints left. The same mechanism is
used for reconfiguration (for example, after knowl-
edge base changes). Violated constraints indicate
that parts of the system need to be modified. These
violations can either be repaired manually, giving
the user full control over the process, or automati-
cally, with all solvers generally trying to minimize
changes in the configuration.

Rules — which are a kind of domain-specific prop-
agators — are used if the inference always works in
only one direction. They are more efficient than con-
straints because they do not need search. The
S’UPREME rule mechanism can be used in parallel
with constraints. A rule is written in a procedural,
object-oriented style. Its result must solely depend
on the used variables; that is, when the values of the
variables stay the same, the rule must compute the
same output values.

The configuration of a large system consists of dif-
ferent subtasks (for example, hardware configura-
tion, software configuration). To allow the user to
concentrate on the task at hand, the whole problem
space can be partitioned into clusters that can be
activated and processed separately. Figure 4 shows
the configurator’s user interface with such clusters
grouped as phases and steps in the upper left win-
dow.

Interactive Configurator
for ETCS (2002 to Date)
ETCS (European Train Control System) is a European
standard for train control. It mainly consists of trans-
mitters (called balises) installed on the tracks, which
send telegrams to the passing train providing move-
ment authorities and track-side profile data (locally
allowed maximum speeds, gradients). In the level 2
variant of ETCS, trains are controlled by a radio cen-
ter. Balises are used for train position calibration (see
figure 5).

Such systems tend to get very large (the number of
variables and constraints involved is typically of
magnitude 105) and are highly dynamic: each sta-
tion has a different topology and consists of a differ-
ent number of different types of signals, tracks, and
branches.

We used generative constraint framework
S’UPREME to realize the ETCS configurator. Working

Articles

WINTER 2016 75

with that ETCS configurator is mainly an interactive
task: the user creates the route topology with all nec-
essary profile data to find the optimal number and
locations of balises and to generate their telegrams.

Constraint violations guide the user to build a con-
sistent and complete system. Constraint propagation
is employed to filter inconsistent options. Typically,
constraints have to navigate through the topology to
find locations and distances. For example:

The distance between two neighboring balises must
not exceed 2.000 meters.

Such constraints are either used to tell the user that
an additional balise must be created if the distance
between two neighboring balises is too high, or to
automatically place the balises at the correct dis-
tance. When all topology and profile data are consis-
tently configured, the telegrams for the balises can be
derived deterministically. Due to performance rea-
sons, we use forward-chaining rules instead of con-
straints to represent the derivation of balise
telegrams.

Our ETCS configurator is in productive use for
about 20 different countries. Each country has slight-
ly different operation regulations, so we have about
20 different variants of the configurator. The object-
oriented layout of the knowledge base supports code
stability and low maintenance costs.

Web-Based Configurators for Reciprocating
Compressors and Valves (2010 to Date)
A gas compressor consists of various parts of different
construction types and materials, like cylinders, pis-
tons, valves, and a driving system (see figure 6). The
goal is to find compressors and valves that fulfill all
user requirements: for example, find a configuration
for a given gas mix and operating conditions with a
discharge temperature below a specified limit and
appropriate cylinder sizes for a required volume flow.

The validity of a solution is described by two kinds
of constraints: compatibility constraints specify
which parts of which sizes fit together (for example,
valves of type V1 are not compatible with compres-
sors of type C1). In contrast, physical constraints cal-
culate the thermodynamic behavior of the gas com-
position in the compressor chambers and restrict the
selection of parts and materials. A typical example of
a physical constraint is the relationship between
eigenfrequency of a valve plate and rotation speed in
a compression chamber:

N is the number of valves for the compression
chamber, kvalves is the spring constant of the valve
springs, kplate is the spring constant of the valve plate,
and massplate is the mass of the plate. speedrotation is the
rotation speed of the driving system. c is a constant.

If this inequality is not satisfied for a concrete com-
pressor and valve constellation, that constellation is
not valid and is therefore ruled out.

Depending on the input requirements (like the
required discharge pressure), a compressor consists of
different stages, and each stage of several cylinders.
An interesting aspect of this problem is that we divid-
ed it into subproblems (roughly speaking, a subprob-
lem corresponds to a stage) and solved the whole
problem in two phases: (1) find potential solutions
for each stage, and (2) find valid combinations of
stage solutions. We use a backtrack algorithm to find
valid solutions for the stages. However, not only the
physical validity of a solution is expected, but also
optimality according to several criteria, like costs,
maintenance effort, gas compatibility, and strategic
preferences. So the search tree is fully examined in a
backtrack search manner, using constraint propaga-
tion and ordering techniques for early pruning of
dead-end branches or branches with low fitness func-
tions. The number of different constellations is of
magnitude 107, run time ranges from less than a sec-
ond for simple compressors up to one minute. In the
second phase, consistency propagation guarantees
that only stage configurations that are consistent
among each other are combined to a solution.

The properties of each cylinder (like type, diame-
ter, valves) correspond to the variables of a CSP; their
domains are the result of the preceding backtrack
search. There are many restrictions determining
which domain values of the different stages may be
combined in a final solution. We used a constraint-
propagation algorithm to achieve strong n-consis-
tency (Bessiere 2006) where n is the number of vari-
ables, making these cross-stage restrictions explicit.
The computation of strong n-consistency is expen-
sive, but in our case the number of subproblems /

eigenfreqplate
speedrotation

> c

eigenfreqplate
(N kvalves) kplate

massplate

Articles

76 AI MAGAZINE

enumeration SignalType {main, protection, shunting}

class Signal {
 attr type: SignalType ;
}

class TrackSegment {
 assoc signals [0..*]: Signal;

 // at most one main signal is allowed on a track segment
 constraint onlyOneMainSignal {
 assert signals.select(s|s.type == SignalType.main).size <= 1;
 }
}

Listing 3. GCSP Constraint Example.

stages are quite limited (< 10). Strong n-consistency
has the remarkable property that a solution can be
found without search (if one exists). Hence, when the
user interactively selects one special cylinder, it is
computationally efficient to remove all mismatching
cylinders of the other stages from the selection lists
on the GUI. As a result, consequent application of
constraint methods helps to find the best solution
within a given design space and to avoid erroneous
manual trials.

Summary
Within Siemens, constraint technologies have been
successfully used for solving configuration problems
for more than 25 years. By the application of con-
straints we were able to significantly reduce not only
the development effort but also maintenance costs
compared to procedural or rule-based systems. In cas-
es where we could compare similar configuration sys-
tems, approximately 80 percent of the maintenance
costs and more than 60 percent of the development
costs for the knowledge representation and reason-
ing tasks were saved. There were three crucial success
factors.

First, the combination of object-oriented and con-
straint technologies. Object-oriented modeling pro-

vides an expressive language and a natural structur-
ing of the domain knowledge. Constraints support a
clean and declarative formulation of the different
requirements and restrictions.

Second was the application of various reasoning
services and methods, which were best suited for
each concrete problem. The most important meth-
ods we used were: (1) Constraint checking to give
feedback to the user about the current consistency
state of the configuration. (2) Constraint propaga-
tion to filter out invalid choices. (3) k-consistency
propagation to provide positive and negative impli-
cants (for small problems). (4) Backtrack algorithms
to implement a complete search (for small and medi-
um-size problems). (5) Iterative repair algorithms to
perform a search for large-scale problems. (6) Opti-
mization search to find the best or good-enough
solutions. (7) Reconfiguration technologies to recon-
cile legacy configurations.

Third was the capability to deal with large dynam-
ic configuration problems, where the number of
components in a solution is not known beforehand.
In this case the standard theory of constraint satis-
faction had to be combined with expressions that
define instantiations of classes, resulting in genera-
tive constraint satisfaction.

Although many real-world problems have been

Articles

WINTER 2016 77

Figure 4. A Configurator for Railway Interlocking Systems.

Articles

78 AI MAGAZINE

GSM-R

RBC

Drive-Machine
Interface

GSM-R
antenna

European Vital
Computer

RBC: radio block center
TVDI: track vacancy detection indication

Interlocking

TVDI

Eurobalise
position
calibration

Vacancy detection
Section boundary

retemodOradaR
pulse
generator

Balise
antenna

Eurobalise
position
calibration

Figure 5. ETCS, a European Train Control Standard.

Figure 6. 3D View of Process Gas Compressors and Compressor Valves.

successfully solved with constraint technologies, we
are still far from providing out-of-the-box solutions
for complex, dynamic configuration problems. One
of the main open tasks is to design general and robust
methods for reasoning about the existence of objects
in an object-oriented environment (that is, express-
ing existential quantification over complex struc-
tures) and to provide these methods in off-the-shelf
configuration frameworks.

References
Ahuja, R. K.; Möhring, R. H.; and Zaroliagis, C. D., eds. 2009.
Robust and Online Large-Scale Optimization: Models and Tech-
niques for Transportation Systems, vol. 5868 of Lecture Notes
in Computer Science. Berlin: Springer.

Aschinger, M.; Drescher, C.; Friedrich, G.; Gottlob, G.; Jeav-
ons, P.; Ryabokon, A.; and Thorstensen, E. 2011. Optimiza-
tion Methods for the Partner Units Problem. In Integration of
AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems: 8th International Conference
Proceedings (CPAIOR 2011), vol. 6697 of Lecture Notes in
Computer Science, ed. T. Achterberg and J. C. Beck, 4–19.
Berlin: Springer. dx.doi.org/10.1007/978-3-642-21311-3_4

Bazaraa, M. S.; Sherali, H. D.; and Shetty, C. M. 1993. Non-
linear Programming: Theory and Algorithms (2nd ed.). New
York: Wiley.

Benavides, D.; Segura, S.; and Cortés, A. R. 2010. Automat-
ed Analysis of Feature Models 20 Years Later: A Literature
Review. Information Systems 35(6): 615–636. dx.doi.org/10.
1016/j.is.2010.01.001

Beneventano, D.; Bergamaschi, S.; Lodi, S.; and Sartori, C.
1998. Consistency Checking in Complex Object Database
Schemata with Integrity Constraints. IEEE Transactions on
Knowledge and Data Engineering 10(4): 576–598. dx.doi.org/
10.1109/69.706058

Bertsekas, D. P. 2009. Convex Optimization Theory. Belmont,
MA: Athena Scientific.

Bessiere, C. 2006. Constraint Propagation. Handbook of Con-
straint Programming, Foundations of Artificial Intelligence,
vol. 2, ed. F. Rossi, P. van Beek, and T. Walsh, 29–83. Amster-
dam: Elsevier. dx.doi.org/10.1016/S1574-6526(06)80007-6

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, vol. 185 of Frontiers in Arti-
ficial Intelligence and Applications. Amsterdam, The
Netherlands: IOS Press.

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer Set
Programming at a Glance. Communications of the ACM
54(12): 92–103. dx.doi.org/10.1145/2043174.2043195

Clements, P. C., and Northrop, L. M. 2001. Software Product
Lines: Practices and Patterns. SEI Series in Software Engineer-
ing. Boston, MA: Addison-Wesley.

Crawford, J. M.; Ginsberg, M. L.; Luks, E. M.; and Roy, A.
1996. Symmetry-Breaking Predicates for Search Problems. In
Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR’96), 148–159.
San Francisco, CA: Morgan Kaufmann Publishers.

de Moura, L. M. 2011. Orchestrating Satisfiability Engines.
In Principles and Practice of Constraint Programming (CP 2011)
17th International Conference Proceedings, vol. 6876 of
Lecture Notes in Computer Science, ed. J. H. Lee. Berlin:
Springer.

de Moura, L. M., and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analy-
sis of Systems, 14th International Conference (TACAS 2008),
vol, 4963 of Lecture Notes in Computer Science, ed. C. R.
Ramakrishnan and J. Rehof, 337–340. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-23786-7_1

Dechter, R., and Dechter, A. 1988. Belief Maintenance in
Dynamic Constraint Networks. In Proceedings of the 7th
National Conference on Artificial Intelligence, 37–42. Menlo
Park, CA: AAAI Press / The MIT Press.

Dhungana, D.; Falkner, A. A.; and Haselböck, A. 2013. Gen-
eration of Conjoint Domain Models for System-of-Systems.
In Proceedings of Generative Programming: Concepts and Expe-
riences (GPCE’13), ed. J. Järvi and C. Kästner, C., 159–168.
New York: Association for Computing Machinery.
dx.doi.org/10.1145/2517208.2517224

Falkner, A. A.; Felfernig, A.; and Haag, A. 2011. Recommen-
dation Technologies for Configurable Products. AI Magazine
32(3): 99–108.

Falkner, A. A.; Haselböck, A.; Schenner, G.; and Schreiner, H.
2011. Modeling and Solving Technical Product Configura-
tion Problems. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing (AI EDAM) 25(2): 115–129.
dx.doi.org/10.1017/S0890060410000570

Faltings, B., and Freuder, E. C. 1998. Guest Editors’ Intro-
duction: Configuration. IEEE Intelligent Systems 13(4): 32–
33. dx.doi.org/10.1109/MIS.1998.708430

Fleischanderl, G.; Friedrich, G.; Haselböck, A.; Schreiner, H.;
and Stumptner, M. 1998. Configuring Large Systems Using
Generative Constraint Satisfaction. IEEE Intelligent Systems
13(4): 59–68. dx.doi.org/10.1109/5254.708434

Freuder, E. C. 1991. Eliminating Interchangeable Values in
Constraint Satisfaction Problems. In Proceedings of the 9th
National Conference on Artificial Intelligence, vol. 1, 227–233.
Menlo Park, CA: AAAI Press / The MIT Press.

Freuder, E. C., and Mackworth, A. K., eds. 1994. Constraint-
Based Reasoning. Cambridge, MA: The MIT Press.

Gelfond, M. 2008. Answer Sets. In Handbook of Knowledge
Representation, vol. 3 of Foundations of Artificial Intelli-
gence, ed. F. van Harmelen, V. Lifschitz, and B. W. Porter,
285–316. Amsterdam: Elsevier.

Gent, I. P.; Petrie, K. E.; and Puget, J. 2006. Symmetry in
Constraint Programming. In Handbook of Constraint Pro-
gramming, Foundations of Artificial Intelligence vol. 2, ed. F.
Rossi, P. van Beek, and T. Walsh, 329–376. Amsterdam: Else-
vier. dx.doi.org/10.1016/S1574-6526(06)80014-3

Haselböck, A. 1993. Exploiting Interchangeabilities in Con-
straint-Satisfaction Problems. In Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence, ed. R. Bajc-
sy, 282–289. San Francisco: Morgan Kaufmann Publishers.

Hebrard, E.; O’Mahony, E.; and O’Sullivan, B. 2010. Con-
straint Programming and Combinatorial Optimisation in
Numberjack. In Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems,
7th International Conference (CPAIOR 2010) Proceedings,
vol. 6140 of Lecture Notes in Computer Science, ed. A. Lodi,
M. Milano, and P. Toth, 181–185. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-13520-0_22

Hentenryck, P. V. 1997. Numerica: A Modeling Language for
Global Optimization. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 97),
1642–1650. San Francisco: Morgan Kaufmann.

Hoos, H. H., and Tsang, E. P. K. 2006. Local Search Methods.

Articles

WINTER 2016 79

Amsterdam: Elsevier North-Holland Inc.

Selman, B.; Levesque, H. J.; and Mitchell, D.
G. 1992. A New Method for Solving Hard
Satisfiability Problems. In Proceedings of the
10th National Conference on Artificial Intelli-
gence, 440–446. Menlo Park, CA: AAAI Press
/ The MIT Press.

Soloway, E.; Bachant, J.; and Jensen, K.
1987. Assessing the Maintainability of
XCON-in-RIME: Coping with the Problems
of a VERY Large Rule-Base. In Proceedings of
the 6th National Conference on Artificial Intel-
ligence, 824–829. San Mateo, CA: Morgan
Kaufmann.

van Beek, P. 2006. Backtracking Search Algo-
rithms. In Handbook of Constraint Program-
ming, Foundations of Artificial Intelligence
vol. 2, ed. F. Rossi, P. van Beek, and T. Walsh,
85–134. Amsterdam: Elsevier. dx.doi.org/
10.1016/S1574-6526(06)80008-

Wallace, M. 1996. Practical Applications of
Constraint Programming. Constraints
1(1/2): 139–168. dx.doi.org/10.1007/ BF00
143881

Wallace, R. J., and Freuder, E. C. 1998. Sta-
ble Solutions for Dynamic Constraint Satis-
faction Problems. In Principles and Practice of
Constraint Programming (CP98), 4th Interna-
tional Conference Proceedings, vol. 1520 of
Lecture Notes in Computer Science, ed. M.
J. Maher and J. Puget, 447–461. Berlin:
Springer. dx.doi.org/10.1007/3-540-49481-
2_32

Andreas Falkner holds an MS and a Ph.D.
degree in computer science from the Vien-
na University of Technology. Since 1992 he
has been developing product configurators
for complex technical systems in various
domains at Siemens AG Österreich. At pres-
ent, he is a senior research scientist at
Siemens’ Corporate Technology, Research
Group Configuration Technologies, and
senior key expert for product configuration
and mass customization.

Gerhard Friedrich is a full professor of
computer science at the Alpen-Adria-Uni-
versity Klagenfurt, Austria. He is the dean of
the Faculty of Technical Sciences and directs
the research group on Intelligent Systems
and Business Informatics. Before his aca-
demic career, he was the head of the Depart-
ment for Configuration and Diagnosis Sys-
tems at Siemens AG Austria. His research
interests include configuration, planning,
and diagnosis as well as knowledge repre-
sentation, acquisition, maintenance, and
reasoning. Gerhard Friedrich received a
Ph.D. and an MS in informatics from Vien-
na University of Technology, Austria. In
2012 he became a fellow of the European
Association for Artificial Intelligence.

Alois Haselböck is a member of the
research staff at Siemens AG Österreich,
Corporate Technology, and is a senior key
expert on deductive and constraint-based
reasoning in the Research Group Configu-
ration Technologies. He received an MS and
a Ph.D. degree in computer science from
the Vienna University of Technology. His
research interests comprise knowledge rep-
resentation and solving techniques for con-
straint-satisfaction systems where he has
contributed fundamental findings in the
field of generative constraint satisfaction.

Gottfried Schenner is a senior research sci-
entist at Siemens’ Corporate Technology,
Research Group Configuration Technolo-
gies. He received his MS degree in comput-
er science from the Vienna University of
Technology. His research interests include
constraint-based product configuration and
the application of AI technologies (CSP,
ASP) in industrial software development
projects.

Herwig Schreiner is the head of the
Research Group Configuration Technologies
within Siemens Corporate Technology in
Vienna. He holds an MS degree in computer
science from Vienna Technical University
and an IPMA senior project manager certifi-
cate. He has more than 20 years experience
in technologies around configuring com-
plex systems as well as management of
large-scale software projects. His research
interest focuses on knowledge-based sys-
tems and configuration technologies, partic-
ularly on constraint-based reasoning in stat-
ic and dynamic envi ron ments.

In Handbook of Constraint Programming,
Foundations of Artificial Intelligence vol. 2,
ed. F. Rossi, P. van Beek, and T. Walsh, 135–
167. Amsterdam: Elsevier. dx.doi.org/10.
1016/S1574-6526(06)80009-X

Hull, R., and King, R. 1987. Semantic Data-
base Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys
19(3): 201–260. dx.doi.org/10.1145/45072.
45073

Kang, K.; Cohen, S.; Hess, J.; Novak, W.; and
Peterson, S. 1990. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.;
Gottlob, G.; Perri, S.; and Scarcello, F. 2006.
The DLV System for Knowledge Representa-
tion and Reasoning. ACM Transactions on
Computational Logic 7(3): 499–562. dx.doi.
org/10.1145/1149114.114911

McDermott, J. P. 1982. R1: A Rule-Based
Configurer of Computer Systems. Artificial
Intelligence 19(1): 39–88. dx.doi.org/10.1016
/0004-3702(82)90021-2

Mears, C.; Schutt, A.; Stuckey, P. J.; Tack, G.;
Marriott, K.; and Wallace, M. 2014. Model-
ling with Option Types in MiniZinc. In Inte-
gration of AI and OR Techniques in Constraint
Programming: 11th International Confer-
ence (CPAIOR 2014) Proceedings, vol. 8451
of Lecture Notes in Computer Science, ed.
H. Simonis, 88–103. Berlin: Springer.
dx.doi.org/10.1007/978-3-319-07046-9_7

Meseguer, P.; Rossi, F.; and Schiex, T. 2006.
Soft Constraints. In Handbook of Constraint
Programming, Foundations of Artificial Intel-
ligence vol. 2, ed. F. Rossi, P. van Beek, and T.
Walsh, 281–328. Amsterdam: Elsevier.
dx.doi.org/10.1016/ S1574-6526(06)80013-1

Minsky, M. L. 1967. Computation: Finite and
Infinite Machines. Upper Saddle River, NJ:
Prentice-Hall, Inc.

Mittal, S., and Falkenhainer, B. 1990.
Dynamic Constraint Satisfaction Problems.
In Proceedings of the 8th National Conference
on Artificial Intelligence, 25–32. Menlo Park,
CA: AAAI Press / The MIT Press.

Nethercote, N.; Stuckey, P. J.; Becket, R.;
Brand, S.; Duck, G. J.; and Tack, G. 2007.
MiniZinc: Towards a Standard CP Modelling
Language. In Principles and Practice of Con-
straint Programming (CP 2007), 13th Inter-
national Conference, vol. 4741 of Lecture
Notes in Computer Science, ed. C. Bessiere,
529–543. Berlin: Springer.

Papadimitriou, C. H., and Steiglitz, K. 1982.
Combinatorial Optimization: Algorithms and
Complexity. New York: Prentice-Hall.

Rossi, F.; van Beek, P.; and Walsh, T., eds.
2006. Handbook of Constraint Programming,
Foundations of Artificial Intelligence vol. 2.

Articles

80 AI MAGAZINE

