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AI Applications of Yesterday and Today
As with the AAAI itself, the Innovative Applications of Artifi-
cial Intelligence conference (IAAI) was the brainchild of Raj
Reddy. Howie Shrobe summarized the context: “... the emer-
gence of scientific achievements had triggered opportunities
to tackle new problems ... The point of the conference was to
exchange information about what really works and what the
real problems are. The goal was to lead to better technology,
to find and remedy current deficiencies, and to solve real
problems” (Shrobe 1996).

In the preface to the proceedings of the first IAAI confer-
ence in 1989, Herb Schorr, program chair, made some inter-
esting comments about the 1989 state of several of the AI
technologies that are now well established (Schorr and Rap-
paport 1989):
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� AI applications have been deployed
and used for industrial, government,
and consumer purposes for many years.
The experiences have been documented
in IAAI conference proceedings since
1989. Over the years, the breadth of
applications has expanded many times
over and AI systems have become more
commonplace. Indeed, AI has recently
become a focal point in the industrial
and consumer consciousness. This arti-
cle focuses on changes in the world of
computing over the last three decades
that made building AI applications
more feasible. We then examine lessons
learned during this time and distill
these lessons into succinct advice for
future application builders. 
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Expert Systems: “Nearly all [applications] are expert sys-
tems because it is in this form that AI is most rapidly
coming into widespread use.”

Robotics: “[N]o robot software system for complex
tasks is commercially available ... robots seem to be
stuck with their early applications and have made
small commercial progress in the last few years.”

Neural Networks: “[W]e know of no neural networks in
practical day-to-day use ... while this technology
appears to possess vast potential ... we leave it for this
book’s successor to cover such applications.”

Natural Language Processing (NLP): “[NLP] has been
constrained historically by limitations of computa-
tional power, but the fantastic progression of compu-
tational cost/performance has eliminated this bottle-
neck. ... [But] today’s applications ... are very limited
and very few low-level natural language functions are
being deployed.”

Expert systems were common and successful in the
late 1980s in large part because they were able to
incorporate domain- and task-specific knowledge;
their reasoning engines were relatively simple and,
consequently, these systems could be deployed on
computer hardware available at the time.

Herb Schorr’s comments about robotics, neural
networks, and NLP are prescient. In fact, in each area,
the story has completely flipped since 1989: today,
robots are common in industrial and service applica-
tions such as factory automation and farming, and
their deployment continues to grow; neural networks
make up significant portions of vision, speech, and
text-processing systems, and deep learning is one of
the more popular research and application areas in
AI today; and natural language processing can be
found in many applications that billions of people

use every day, such as search engines, personal assis-
tants, and web-connected speakers.

Today, AI is everywhere. By contrast with 1989,
when very few AI companies were in existence, today
many companies, from early stage startups to mature
enterprises, are developing AI applications (Zilis
2015).

The world of AI apps is very different as well. In the
early days, AI was viewed with suspicion in industry
as only the latest hype. Today, AI apps are all around
us. Indeed, AI and machine learning are expected in
almost every app.

Many, perhaps most, large organizations are mak-
ing use of AI technologies for market forecasting, cus-
tomer support, recruiting, fraud detection, scheduling
and planning, and other uses. Con sumer-oriented
examples of AI include Google’s search engine, self-
driving cars, and Google Now; Apple’s Siri (Cheyer
2014); Microsoft’s Cortana and Bing; Amazon’s Echo;
Facebook’s automatic photo tagging; Netflix’s movie
recommendations; and automated check deposits
using one of many mobile banking applications.
Table 1 shows even more problem and system types,
plus specific applications, several of which have been
presented at IAAI or AAAI over the years. Of course,
not all of these examples are commonly recognized as
AI applications — the AI features have disappeared
into the fabric. Modern search engines are a good
example of this phenomenon.

Although interest in computer science in general
dropped after the dot-com crash of the early 2000s
(Thibodeau 2008), the last few years have seen a
steady growth in the number of news stories about
AI appearing in popular media, as discovered by
AAAI’s automated AI in the News weekly news bot
(Eckroth et al. 2012). Figure 1 shows this trend. Com-

Table 1. AI in Use.

Problems and System Types 

Rule-Based Systems: Widely applied base technology  

Credit Card Fraud Alert  

Insurance  

Scheduling: Maintenance, Crew, Gate  

Video Games  

Search Engines  

Augmented/Virtual Reality  

Photo Face Recognition  

Handwriting Recognition: Mail Sorting, ATM-Checks 

Translation  

Deep Learning  

Robotics 

Specific Applications 

TurboTax  

Netflix Recommender 

FareCast, Google Flights, Kayak price predictor 

Narrative Science GameChanger 

IBM Watson 

Dragon Speech Recognition 

Amazon Robotics / Kiva Systems 

Roomba 

Kinect 

Driver-Assist / Self-Driving Vehicles 

Siri, Cortana, Amazon Echo 
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puter science undergraduate enrollments have exhib-
ited a similar trend, and as of 2014, more Ph.D. grad-
uates are employed in the field of AI, across academe
and industry, than any other subfield of computer
science (Zweben and Bizot 2015).

We believe there are several factors contributing to
the growth since the first IAAI conference in 1989.

Moore’s Law
One of the most important changes is the growth in
hardware performance. To illustrate, we will consid-
er a deployed system from the first IAAI conference.
Clancy, Gerald, and Arnold (1989) developed an
expert system that “assisted attorneys and paralegals
in the closing process for commercial real estate
mortgage loans.” Their system was required to work
on IBM PCs with Intel 80286 processors and 640 KB
memory. They wrote that the PC’s limited memory
posed a “critical technical consideration” and they
programmed their system to swap subsets of the
knowledge base in and out of memory during nor-
mal operation. Their solution, and more arcane
memory management techniques, are likely familiar
to AI system builders who were active in the early
days. 

Today, consumer hardware is 2500 times faster
(from 1.5 million instructions per second, or MIPS,
on an 80286 compared to 3783 MIPS on an Intel i7-
3770K, quad core).1 It is now common to find more
powerful servers, with more than 10 cores, which
means that we can take advantage of a speed-up of
10,000 — and growing.

In addition, consumer hardware contains 25,000
times as much memory (640 KB to 16 GB), and
50,000 times the disk capacity (40 MB to 2 TB). (See

also Preshing [2012].) This explosive growth of com-
puting power can be attributed to Moore’s law, which
summarizes Gordon Moore’s observation that the
number of transistors in integrated circuits doubles
approximately every two years. The diversity of inte-
grated circuits has also grown, resulting in general-
purpose GPUs (with multiteraflop performance; that
is, trillions of floating-point operations per second)
that have helped usher in the era of practical
machine learning.

The Internet
The global impact of the Internet on science and
society in general cannot be overstated. One of the
more interesting effects of the Internet, and the web
in particular, on AI systems was noted in Halevy,
Norvig, and Pereira’s (2009) article The Unreasonable
Effectiveness of Data. They note that the web enables
easy acquisition of massive amounts of data from bil-
lions of web pages, provided by billions of users. 

Halevy and colleagues further argue that sophisti-
cated knowledge representation and reasoning sys-
tems may be unnecessary, even detrimental when a
massive corpus such as the web is available. For
example, in the case of the semantic web, they sug-
gest that writing an ontology, adding metadata
markup for web pages, and building a complex rea-
soning system is likely to be more expensive and
error prone than simply querying the vast, unstruc-
tured corpus with shallow parsing and straightfor-
ward statistical analysis. The long tail of real-world
concepts defeats any effort to develop a grand mod-
el of everyday reasoning, but the long tail is well rep-
resented in massive data sets such as the web.

Open Source Software
Frustrated with a trend toward proprietary develop-
ment practices at the Massachusetts Institute of Tech-
nology (MIT), Richard Stallman started the GNU
Project in 1983 to create a free and open source
UNIX-like operating system. The idea spread and has
been harnessed by various groups, resulting in an
abundance of high-quality open source software. The
internet played a large role in the distribution and
development of open source software. In particular,
development of the Linux operating system, which
was built with GNU project tools, grew rapidly in the
1990s due to the availability of newsgroups, email,
and file sharing. As of November 2015, 99 percent of
the 500 most powerful supercomputers in the world
run the open source Linux operating system. Most
software development environments in use today are
open source (Oracle’s JVM, Microsoft’s .Net, C/C++
compilers, Python, and others), and many open
source libraries and toolkits are available for AI-spe-
cific tasks, a sampling of which are shown in table 2.

Machine Learning
Because available hardware did not allow large-scale

Figure 1. Count of News Stories Found 
by AI in the News for Each Week.

The line visualizes a linear regression.
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Table 2. Sample Open Source AI libraries and Toolkits.

TensorFlow (Google) Machine learning toolkit 

OpenCV (itseez) Computer vision library 

Sphinx (CMU) Speech recognition toolkit 

Drools (Red Hat) Rule-driven expert system shell, planning engine  

GATE (University of Sheffield) Natural language processing toolkit 
Robot Operating System (Open Source Robotics 
Foundation) 

Platform for integrating various algorithms and libraries 
related to robotics 

Figure 2. Google Trends Rankings for Various Search Terms. 

The y-axis represents smoothed relative interest.
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numeric computation, early AI systems relied on
heuristics encoded symbolically, even in data-heavy
tasks such as computer vision. Though significant
progress continues to be made in symbolic reason-
ing, it is clear that the power available to process vast
amounts of data — even at high data rates — has
enabled practical deployment of machine-learning
techniques and resulted in a wide diversity of suc-
cessful applications from speech recognition and face
recognition to self-driving cars. Additionally, it is
interesting to note that machine learning seems to
dominate the popular perspective of AI today, just as
it was considered by early AI researchers to be an
essential component of intelligence (Minsky 1961).

We find evidence of this in Google Trends data,
shown in figure 2. Interest in AI appeared to wane
after the dot-com crash and hit a low around 2009.
The search term computer science follows a similar
trend. Recently, interest has renewed and appears to
be supported by machine learning and recent work
in deep learning.

Reduced Business Risk
These points add up to another change. Because of
the greater computing power and more readily avail-
able data sets and software, today there is less need to
build massive technology platforms. Hence, it is
cheaper to build AI systems. More effort can be spent
on solving specific business problems, thereby reduc-
ing the risk associated with artificial intelligence.

Compared to 1989, today it is orders of magnitude
easier to integrate AI systems into a company’s over-
all IT portfolio. The reasons include: modern AI sys-
tems utilize standard hardware and software (in
many cases); they integrate more easily into existing
architectures; the iterative development process pio-
neered in AI projects has become common across IT;
and, the success of high-profile AI systems such as
Watson and Siri means that most people know that
AI can work in the real world. (The authors thank
Neil Jacobstein for this insight.)

Distributions and Trends 
from the IAAI Conferences
At the outset, IAAI included only applications that
had been deployed; that is, for which there was expe-
rience based on actual use, and for which payoff
could be estimated. In 1997, an emerging applica-
tions track was added to bridge the gap between AI
research and AI application development. The goal
was to support information sharing among
researchers and system builders: researchers could see
which techniques proved fruitful in deployed appli-
cations, and builders could learn of emerging tech-
niques that had yet to be proven in the field but
showed promise.

An analysis of the topics covered by IAAI articles is
shown in figures 3 and 4. This analysis is provided by
i2k Connect (i2kconnect.com), whose goal is help
organizations find, filter, and analyze unstructured



data by transformation into structured data. The plat-
form automatically tags documents with accurate
and consistent metadata, guided and enriched by
subject matter expertise. The figures show data from
deployed applications only — 316 of them. The fig-
ures include only 15 of a long tail of more than 100
industry and technology topics that have been cov-
ered in IAAI. Figure 3 also excludes information tech-
nology applications, that is, AI applied to our own
business, which would otherwise be number one. 

Another way of analyzing IAAI topics over the
years is shown in figure 5. The figure shows that the
technology mix has evolved. Expert systems clearly
dominated the early days of IAAI. Machine learning
is notably absent early on. Over time, however, the
mixture has become more diverse, with no topic
clearly dominating in recent conferences. We note
that it is not the case that expert systems died.
Rather, after a few years, they became more standard

practice than innovation. Fewer papers were pub-
lished about novel applications of expert systems.
They disappeared into the fabric, now applied every-
where, from the high-end emulation of rare human
experts, to the embedding and application of rule
books and procedure manuals. However, we will like-
ly see more hybrid machine-learning technologies
that can automatically update their reasoning
engines as the application data change over time.

Some technologies have not been represented
much at IAAI, like speech understanding and robots.
They do appear, just not in the top 15. In the recent
2016 deployed papers track, four technologies are
applied: spatial reasoning, crowdsourcing, machine
learning, and ontologies. We also note that there have
been two papers on deep learning, one in 2015 and
one in 2016, neither documenting a deployed appli-
cation. Some of this may be due to self-selection in
that our data are limited to IAAI conferences, which
may not accurately reflect how often these technolo-
gies are utilized in the overall application world.

In our final analysis of IAAI articles, figure 6 shows
a quick overview of the top concepts mentioned over
the years. The analysis was done with a modified
form of the C-value/NC-value method (Frantzi, Ana-
niadou, and Mima 2000), which extracts significant
concept names found in text, as opposed to just the
most frequently used phrases. Note that there may be
some temporal bias in this analysis due to the data
set reflecting the past decades of IAAI papers, versus
trends in the most recent papers.

High-Impact AI Applications
Many of the past IAAI program chairs and cochairs
and AAAI Fellows kindly responded to a request for
their views on what have been the high-impact appli-
cations, including some that opened up a new area,
presented at IAAI conferences over the years.

Because we have selected high-impact applications
and it takes time to establish whether an application
has had high impact, some of the examples may look
a bit dated. Note, however, that in several cases, a
recent update has been presented at IAAI.

A few of the applications that were singled out by
several respondents as being high impact are sum-
marized in the following.

1983: Process Diagnosis System (PDS) 
The Process Diagnosis System (Fox, Lowenfeld, and
Kleinosky 1983) started out as an expert system shell.
It has been in active use and continuous development
since 1985. 1985! Though the origin of PDS predates
IAAI, it serves as an early example of deployed AI. It
started with a presentation by Mark Fox at Westing-
house. Over the 30-year period, Westinghouse sold
the business to Siemens, where it is now at the heart
of their Power Diagnostics Center that performs cen-
tralized rule-based monitoring of over 1200 gas tur-
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Figure 3. Top 15 Industry Topics in IAAI Articles, 1989–2016.

0%

2%

4%

6%

8%

10%

Te
lec

om
m

un
ica

tio
ns

Re
ta

il

Le
isu

re
 an

d 
En

te
rta

inm
en

t

Oil a
nd

 G
as

Aut
om

ob
ile

s a
nd

 Tr
uc

ks
 

En
er

gy

Hea
lth

 C
ar

e

US G
ov

er
nm

en
t

M
ilit

ar
y

Tra
ns

po
rta

tio
n

Ba
nk

ing
 an

d 
Fin

an
ce

Bu
sin

es
s a

nd
 M

an
uf

ac
tu

rin
g

Ed
uc

at
ion

M
ed

ici
ne

M
ed

ia

Figure 4. Top 15 Technology Topics in IAAI Articles, 1989–2016.
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bines, steam turbines, and generators. Ed Thompson
and Ben Bassford celebrated the 30th anniversary of
the system with the IAAI community when they pre-
sented an update at the 2015 conference in Austin
(Thompson et al. 2015). Their paper summarizes the
many changes that have been incorporated into the
system over its lifetime, to deal with change in
requirements, the customer business organization,
and underlying computer technologies.

1989: Authorizer’s Assistant
A knowledge-based credit-authorization system for
American Express, the Authorizer’s Assistant
(Dzierzanowski et al. 1989) was the forerunner of
now standard credit card transaction analysis. It cre-
ated a capability that we all take for granted today —
and complain about every time we are called to veri-
fy a charge — until at least we ourselves are the vic-
tims of fraud.

Expansion, improvement, and testing were
planned from the start to ensure consistency as the
knowledge base changed as well as ensure general
system performance. The team found that consisten-
cy, audit tracking, and evaluation were key to accept-
ance and return on investment (ROI). They observed,
“the [Authorizer’s Assistant] proved to be better than
all but the most expert credit card authorizers ... and
that translated directly into huge ROI.” The system’s
internal expert system incorporated 890 rules and ran
on rack-mounted Symbolics Lisp machines connect-
ed to an IBM mainframe.

Phil Klahr generously provided these retrospective
insights.

1989: Applications of Artificial Intelligence
to Space Shuttle Mission Control
This NASA application originated in the Mission
Control Center for STS-26 as a rule-based real-time

Figure 5. Mix of Technologies Deployed and Emerging in IAAI Articles, 1989–2016. 

The dominant technologies include expert systems, machine learning, agents, natural language, and statistical learning, and are included
in the figure legend.
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Integrated Communications Officer (INCO) expert
system (Muratore et al. 1989). The system monitored
space shuttle telemetry data and advised flight con-
trollers on fault detection and diagnosis. It provided
fault identification and diagnosis before the tradi-
tional INCO console could update the parameters of
the faulty unit.

The system made use of the C Language Integrat-
ed Production System (CLIPS) Expert System Shell,
now available as open source software.2 It was also
the first of more than 30 NASA applications reported
to date at IAAI and, as is well known, AI systems lat-
er flew in space — and navigated autonomously on
the moon and Mars.

The next two applications are intelligent assistants
that played in center ring from first deployment.
Both have been presented twice at IAAI — covering
initial deployment and a 10-year update.

1989 and 1999: Ford Motor Company
Direct Labor Management System 
The Direct Labor Management System is integrated
into Ford’s Global Study Process Allocation System
(GSPAS) (O’Brien et al. 1989, Rychtyckyj 1999). Its

purpose is the automatic generation of work instruc-
tions for vehicle assembly, with associated times. It
does so by analyzing high-level structured English
descriptions. The system is also able to make accu-
rate estimates of direct versus indirect labor time and
to plan for mix/volume changes and line balancing.
It has become an integral part of Ford’s assembly
process planning business.

The natural language component in this applica-
tion was one of the few from the early days. The sys-
tem was implemented on the NIKL/KL-ONE (Woods
and Schmolze 1992) knowledge representation mod-
el — one of the first such applications.

Over the years, the system has undergone several
knowledge base upgrades and ports to different plat-
forms to keep the system viable and up to date
through various organizational and business practice
changes. It was later called the Global Study Process
Allocation System.

1995: The FinCEN Artificial Intelligence
System and 1999: The NASD Regulation
Advanced-Detection System (ADS)
Created to identify potential money laundering from
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Figure 6. Top Concepts Mentioned in IAAI Papers, 1989–2016.
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reports of large cash transactions, the FinCEN Artifi-
cial Intelligence System (FAIS) used link diagrams to
support detection of money laundering (Senator et
al. 1995). ADS: NASD Regulation Advanced-Detec-
tion System (Kirkland et al. 1999) used temporal
sequences to support detection of securities fraud.
Their different domains of use dictated different
knowledge representations.

FAIS links and evaluates reports of large cash trans-
actions. To give an idea of the money involved, fin-
cen.gov reported suspicious transactions totaling
approximately $28 billion in October 2015. The FAIS
key idea is “connecting the dots” — thus link dia-
grams, now commonplace in social network analy-
sis, was an appropriate choice. The appropriate rep-
resentation choice in FAIS enabled a reporting app
based on the original detection system. This was an
unanticipated bonus.

ADS monitors trades and quotations in the Nasdaq
Stock Market, to identify suspicious patterns and
practices. In this application, temporal sequences are
key — not so much links as in FAIS — so a represen-
tation that supports them was a good choice.

2005 and 2014: Engineering Works 
Scheduling for Hong Kong’s Rail Network 
The Hong Kong rail network moves 5 million pas-
sengers a day through the city’s rapid transit subway,
airport express, and commuter rail lines. The AI
application streamlines the planning, scheduling,
and rescheduling process and provides automatic
detection of potential conflicts as work requests are
entered; verification that no conflicts exist in any
approved work schedules before execution; genera-
tion and optimization of weekly operational sched-
ules; automatic update to repair schedules after
changes; and generation of quarterly schedules for
planning (Chun et al. 2005, Chun and Suen 2014).

To be successful, the system must coordinate with
the staff members who carry out the scheduled work.
To this end, the developers found that the system
must be able to explain the schedules it creates. As a
result, they veered away from the original genetic
algorithms approach toward heuristic search. A
recent report about this system appeared in New Sci-
entist (Hodson 2014).

1994 and 2004: Plastics 
Color Formulation Tool
Since 1994, GE Plastics (later SABIC) has employed a
case-based reasoning (CBR) tool that determines col-
or formulas that match requested colors (Cheetham
2004). FormTool has saved millions of dollars in pro-
ductivity and material (that is, colorant) costs. It is
the basis for the online color-selection service called
ColorXpress Services.

Determining the colorants and loading levels that
can be added so the plastic matches a given color is a
difficult problem for multiple reasons. For example,

there is no accurate method to predict the color pro-
duced when a set of colorants is added to plastic.
Unlike paint, where light primarily reflects off the
surface, in plastics a significant percentage of light
penetrates the surface and reacts with the internal
structure to produce a color that depends on both the
internal structure and the lighting conditions (natur-
al sunlight versus fluorescent lighting).

The AI system used case-based reasoning to replace
programs that used prohibitively expensive exhaus-
tive search to determine the colorant-loading pro-
portions for a color formula that matches a cus-
tomer’s desired color.

1995: Scheduling of 
Port of Singapore Authority
This expert system (Weng et al. 1995) is responsible
for assisting with planning and management of all
operations of the Port of Singapore Authority. With
hundreds of vessels calling at Singapore every day, a
fast and efficient allocation of marine resources to
assist the vessels in navigating in the port waters is
essential. Manual planning using pen and paper was
erroneous, uncoordinated, and slow in coping with
the rapid increase in the vessel traffic. Included in the
purview of the application is scheduling the move-
ment of vessels through channels to terminals,
deploying pilots to tugs and launches, allocating
berths and anchorages to ships, and planning
stowage of containers. 

To generate accurate, executable deployment
schedules, the automated scheduler requires real-
time feedback from the resources on their job status,
any estimated delays, and end times of their jobs.
This is achieved by integrating the system with the
port’s mobile radio data terminal system.

2006: Expressive Commerce 
and Its Application to Sourcing
This application has produced one of the largest ROI
figures of any system thus far reported at IAAI. Orig-
inally CombineNet, later renamed SciQuest, it
improves procurement decisions for spend categories
that are typically beyond the capabilities of tradi-
tional eSourcing software. Even in the early days of
2006, it had already handled $35 billion in auctions
and delivered $4.4 billion in savings to customers
through lower sourcing costs (Sandholm 2007).

The challenge in developing an expressive com-
merce system is handling the combinatorial explo-
sion of possible allocations of businesses to suppliers.
Their key development is a sophisticated tree search
algorithm. Much has been written about this algo-
rithm (refer to Sandholm [2007] for a list of articles),
though some of its details are kept proprietary.

2014: CiteSeerX 
CiteSeerX (Wu et al. 2014) is a database and search
engine for more than 4 million research articles from



various disciplines. Starting in 1997 as CiteSeer, the
service was the first to extract and index citations
from documents automatically. Today, it is also capa-
ble of extracting metadata from individual para-
graphs and sentences as well as tables and figures.
The metadata and the original documents are made
freely available for researchers who work on
advanced information-retrieval algorithms.

The CiteSeerX service is accessed 2 million times
per day and an average of 10 articles are downloaded
per second. The size of the document database (after
deduplication) has grown significantly over the
years, from 500,000 in 2008 (when CiteSeerX
debuted) to nearly 3 million in 2013. Today, between
50,000 and 100,000 PDFs are analyzed per day.

CiteSeerX’s implementation makes use of several
AI components, including document classification,
duplicate detection, metadata extraction, author
name disambiguation, and search indexing. The
researchers’ 25 years of experience is documented
(Wu et al. 2014) and serves as a showcase of the vari-
ety of AI techniques available, for example, rule
engines, neural networks, probabilistic graphical
models, and the importance of choosing the Appro-
priate technique.

Lessons Learned
As the story of developing, implementing, and

upgrading applications has unfolded, so has the con-
ventional wisdom about building successful AI appli-
cations. 

The Power Is in the Knowledge ... But 
Manual Knowledge Acquisition Is Hard
The first lesson learned by builders of early AI systems
is that “the power is in the knowledge.” By 1989,
thanks to the pioneering efforts of Ed Feigenbaum,
Bruce Buchanan, and many others, we understood
that domain-specific knowledge (chemistry, medi-
cine, and others) and task-specific knowledge (tur-
bine maintenance, plant scheduling, and others) are
more important for high performance and accurate
reasoning than general problem-solving approaches.

But manual knowledge acquisition is hard and
takes a long time. In the past, we called this the
“knowledge acquisition bottleneck.” Furthermore,
ongoing knowledge base maintenance and curation
are essential. Knowledge is perishable — everything
changes over the lifetime of an application: the
domain evolves, new use cases arise, new experts
arrive with different knowledge, new data sets
become available, the technology advances, and so
on. If system builders are engaged in manual knowl-
edge acquisition, then they will also need an army of
people to keep the knowledge base up to date. There-
fore, they need a lot of revenue (hence, a lot of users)
to support that effort. Due to the difficulty of knowl-
edge acquisition and maintenance, many systems fell

by the wayside, even if they were excellent at one
time. For example, the field of medicine is too large
and changes too rapidly for manual knowledge
acquisition (Myers, Pople, and Miller 1982).

Today, knowledge comes in a variety of forms. Ear-
ly knowledge systems made use of symbolic rules
that encoded experts’ knowledge because such rules
are compact, they are representationally adequate for
many tasks and domains, and low-powered
machines (by today’s standards) are sufficient to per-
form the required inference procedures. However,
rule-based expert systems are not effective for “big
data” problems such as visual object recognition (for
example, faces) and speech recognition. Progress in
neural networks and deep learning, in particular,
probabilistic graphical models and other machine-
learning (ML) techniques, has greatly expanded the
reach of AI systems. Yet, systems that use machine
learning still use knowledge. Rather than expert-
defined rules, ML systems make use of knowledge in
several forms: training data including procedures for
their acquisition and preprocessing, feature selection,
model selection, and various parameters found by
experimentation. It has been said, “there is no such
thing as a free lunch,” and in AI and ML, there is no
such thing as free knowledge. There is no escape from
the need to maintain and curate knowledge and data,
even if some aspects are automated by machine
learning.

Knowledge Representation Matters
The structure of knowledge in the system has a large
impact on the system’s reasoning capabilities and
performance. The pioneers taught us that selecting
the appropriate representation has a big impact, for
five reasons: adequacy, efficiency, flexibility, main-
tainability, and explainability.

Adequacy
As John McCarthy and his colleagues stated, a system
cannot reason about what it cannot represent
(McCarthy 1960, 1981). Davis, Schrobe, and
Szolovits (1993) referred to a knowledge representa-
tion as a “surrogate” for real-world entities. An ade-
quate surrogate has a “correspondence” with real-
world entities and these correspondences have high
“fidelity,” that is, they closely match the relevant
characteristics of the real-world entities. 

Efficiency
Every programmer knows that representations, or
data structures, can have an impact on efficiency. For
example, linked lists do not support quick random
access while arrays do not support quick addition or
deletion of elements. Similar trade-offs characterize
knowledge representations. In general, the more sim-
plistic the representation, the more efficient the rea-
soning algorithms. For example, reasoning over
propositional logical is often quite efficient, while
few tools exist that are capable of efficiently and reli-
ably reasoning over first-order logic with types (Sut-
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cliffe and Pelletier 2016). Likewise, nearest neighbor
classification procedures require virtually no training
while neural networks typically require significant
training. During inference, however, a naïve nearest
neighbor algorithm (for example, linear lookup) will
likely be significantly slower than a neural network.

Flexibility
A good knowledge representation will support
growth in the knowledge base that was not antici-
pated during initial knowledge acquisition. Addi-
tionally, long-running systems must be capable of
evolving over time as the customer changes and the
context in which the system was initially deployed
migrates to other contexts and use cases. A good
knowledge representation will be able to represent
new knowledge concepts and adapt existing ones
without significant updates to the representation or
reasoning algorithms. The American Authorizer’s
Assistant, the FinCEN system, and the ADS systems
are all good examples of this lesson in action. 

In summarizing 10 years of work on Mycin,
Buchanan and Shortliffe (1984) attributed the success
of the program to flexibility — in the rule-based rep-
resentation that allowed rapid modification and in
the reasoning that allowed reaching reasonable con-
clusions with imperfect or missing information.

Maintainability
It is helpful if the knowledge representation can be
understood and modified by subject matter experts,
who may not be (and typically are not) experts in
computer programming and knowledge representa-
tion. Ideally, software engineers will not need to be
called in whenever the knowledge base needs an
update. As John McCarthy noted, declarative repre-
sentations are more learnable and maintainable than
procedural ones (McCarthy 1960). The reason is that
declarative representations are better separated from
internal conventions of the reasoning algorithms,
thus allowing subject matter experts to focus on the
knowledge being represented. 

Today, it is particularly important for subject matter
experts to be able to interpret and modify the results
of machine-learning systems that are driven primarily
by raw data and empirical validation. They may, for
example, suggest that there are critical data sets miss-
ing that would improve the analysis, and avoid simply
handing the problem over to data scientists.

Explainability
In organizations, the AI system encodes and repre-
sents the decision criteria of the management. Thus,
when the AI system suggests a decision, it should be
able to explain that decision to the user so that the
user (and the management) can “own it and be able to
defend it” in terms of the organization’s decision cri-
teria. Explanation may be unnecessary if the algo-
rithm makes money, for example, Wall Street trading.
But in many other contexts, without an explanation
system, organizational and user acceptance of AI
applications is more challenging. This has been under-

stood since SHRLDU in the Blocks World (Winograd
1972), and Mycin, in the knowledge-intensive world
of medicine (Buchanan and Shortliffe 1984).

Explainability is more problematic in the case of
noninterpretable models such as neural networks, in
which it is not at all clear exactly what knowledge has
been stored as a result of training.

Lately, there has been some discussion in the press
about “algorithmic accountability” (Diakopoulos
2013, Lohr 2015), and several companies are pursu-
ing explanation as a differentiator, for example, Wat-
son Paths and the Narrative Science extension for the
Qlik visual analytics tool (Hammond 2015). 

Separate the Knowledge Base 
and the Inference Engine
As a corollary of the maintainability of declarative
representations, the pioneers also taught us that it is
a good idea to separate the knowledge base and the
inference engine because a separate knowledge base
is easier to change, update, debug, and explain. Rec-
ognizing the importance of separation, from a knowl-
edge representation and a knowledge delivery per-
spective, many people have devoted their time to the
development of expert system shells (for example,
M1, S1, ART and CLIPS), knowledge representation
languages (for example, KL-ONE and OWL), ontol-
ogy editors (for example, Protégé), and general-pur-
pose machine-learning models.

Successful Applications 
Incorporate a Variety of Techniques
Successful AI applications incorporate a wide range of
techniques, strategies, and knowledge, embodying
rules, objects, ontologies, statistics, and signal pro-
cessing to name a few. Self-driving cars are an obvious
example. Their capabilities include modeling, simu-
lation, sensing, motion planning, object recognition,
obstacle avoidance, machine learning, error recovery,
and so on. The learnings have been reported multiple
times at AAAI (Montemerlo et al. 2006, Thrun 2006)
and IAAI (Urmson et al. 2009). 

Modern text-analytics systems also illustrate the
point. For example, the i2k Connect platform uses a
variety of knowledge and AI techniques to perform
document reading and enrichment. It uses ontologies
to represent domain-specific knowledge about, for
example, the oil and gas industry, the field of artificial
intelligence, and topics related to supply-chain man-
agement and health care. Document text and meta-
data are extracted using machine-learning methods.
Visual and language rules are used to extract the doc-
ument’s title and summary. Documents are then ana-
lyzed with a variety of rules in order to identify the
domain-specific topics that the document is about.
Multiple technologies from AI and elsewhere are
needed for this processing pipeline.

A combination of various kinds of knowledge and
techniques should be expected in any large-scale AI



application that is required to integrate multiple
sources and types of information. The architecture of
such an AI application should make such integration
feasible by, for example, separating different process-
ing tasks into distinct modules and supporting a com-
mon interface for communication among the compo-
nents. The Robot Operating System3 is a paradigmatic
example of such an architecture. Different robots may
have vastly different components and purposes, yet
ROS offers high-level abstractions that enable various
sensors, actuators, and algorithms to communicate
using a common language.

AI Applications Must Integrate
into Existing Work Flows

Perhaps the most important lesson learned by AI sys-
tem builders is that success depends on integrating
into existing workflows — the human context of
actual use. It is rare to replace an existing work flow
completely. Thus, the application must play nicely
with the other tools that people use. Put another way,
ease of use delivered by the human interface is the
“license to operate.” Unless designers get that part
right, people may not ever see the AI power under the
hood; they will have already walked away. 

As AI systems began to function well enough that
they were able to play in the center ring, so to speak,
risk mitigation, project management, and budgetary
control became more important. The systems were
no longer in a “research” or “proof of concept”
phase. In other words, standard IT rules — and con-
sumer mobile app acceptance rules — apply. Many AI
practitioners have made these points in the context
of AI applications in particular. But the rules are valid
for all applications of information technology.

In the early days, we talked as if AI systems had a
big box of AI — the important stuff — and a small
box of all that other messy IT stuff. We quickly
learned that in real-world systems, it was mostly the
other way around. The AI was a piece of the puzzle,
and sometimes not a very big piece. 

Consider the Dipmeter Advisor (Smith and Baker
1983), started at Schlumberger in the early 1980s and
based on the knowledge of the legendary oil finder,
Al Gilreath, shown in figure 7. The Dipmeter Advisor
demonstrated the challenges of infrastructure: getting
the data from the field systems was a bigger problem
than originally anticipated; and the challenges of
technology transfer: nontraditional hardware (D-
Machines) and software (Interlisp-D) became major
stumbling blocks, though without these technologies
Schlumberger would have had no system at all. 

The amount of effort that had to be devoted to the
non-AI components was dominant. The user inter-
face accounted for almost half the code. The rule
engine and knowledge base accounted for 30 percent.
Of course, lines of code do not necessarily tell the
whole story, but the numbers are consistent with the
development effort expended. Much of the coding

effort went into the interactive graphics system, not
the AI. For some clients, interactive graphics was the
most important element.

Security and privacy have become increasingly
crucial over time, and the application’s performance
characteristics in the deployed setting must meet
industry or consumer expectations. 

Additionally, change management is unavoidable
(Hiatt 2006). But the amount of change management
required is inversely proportional to the power of the
new technology. It is also directly proportional to the
amount of change in existing work flows required to
adopt it. 

Convincing people to make substantial changes to
their existing work flows to take advantage of a new
technology that isn’t much better than the old tech-
nology requires a great deal of change management
effort. On the other hand, convincing people to
make small changes to their existing work flows to
take advantage of new technology that is an order of
magnitude better than the old technology requires
only modest change management effort.

As Mehmet Goker put it in a private communica-
tion to the authors: “Applications with a small and
flexible core that solve a real-world problem have the
biggest impact and are the easiest to put into the work-
place.”

To summarize, in any large organization, standard
IT rules apply and the AI application should fit into the
broader IT infrastructure to ensure successful adoption.
Management, end user, and IT support and participa-
tion are essential. Budget approval will be challenging
without business unit management support, deploy-
ment into a company’s existing infrastructure is not
possible without support from the IT organization, and
adoption is unlikely without continuous end-user par-
ticipation in system development. 

In the real world of applications, our experience
also suggests that the dichotomy suggested by
Markoff (2015) between artificial intelligence and
intelligence augmentation or amplification does not
exist. They are two ends of a spectrum that meet in
most applications. The successful systems enable
people to do what people do best and use computers
to do what computers do best. 

A Way Around the Knowledge 
Acquisition Bottleneck

Machine learning offers a way around the knowl-
edge acquisition bottleneck ... but success depends
on human insight folded into the methods, like the
choice of features.

One thing has not changed over the history of
IAAI. It is still very hard to build, curate, and main-
tain large knowledge bases by hand. The manual
knowledge-acquisition bottleneck is still firmly in
place.

Aside: This is a special case of a larger point. Manual
information governance is not sustainable. Very few
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humans have the passion and consistency to tag and
manage their own unstructured data ... look at your
own hard drive or your organization’s file shares if you
doubt it. This is one of the main reasons why so much
unstructured corporate data is “lost in the cloud.” It
may be there, but you are likely to struggle to find it if
you didn’t write it yourself. More than half of employ-
ees in companies surveyed worldwide express deep
dissatisfaction with the findability of corporate infor-
mation.4 In contrast to Internet content, today it is
rare to see search engine optimization applied to
intranet content.

But now armed with billions of crowdsourced
examples from the web, we have learned that data-
driven, statistical methods are “unreasonably effec-
tive” in several domains. The statistics bring the abil-
ity to deal with noise and to cover problems where
humans either have difficulty explaining how they
do it, or where they don’t do it very well in the first
place.

The bottom line is that machine learning is a way
around the knowledge-acquisition bottleneck in a
surprisingly broad number of domains, but two
caveats are worth considering:

Howie Shrobe made an observation that rings true. “...

when you look closer at successful statistical approach-
es, a lot of the success is in the choice of features to
attend to or other similar ways of conveying human
insight to the technique ...” (private communication).
Indeed, mitigating this problem is a focus of some
research on deep learning algorithms — to learn fea-
ture representations from unlabeled data.5

There is a very long tail on the types of problems
encountered in the world. Developers will not have
millions of examples for all of them. In those cases,
some kind of reasoning is essential; for example, from
basic principles captured via case-based reasoning or
encoded in a rule-based system.

Apps Can Be Built with Components
That Reason from Different Starting Points.

In the early days of expert systems running on
machines with relatively little processing power and
memory, the standard starting point for delivering
domain and task-specific knowledge can be charac-
terized by labels like slow, cognition, search, top-down,
model-driven.

Today, armed with the compute power, data, and
machine-learning algorithms now available to us, we
are much better equipped to build apps that reason

Figure 7. The Dipmeter Advisor System.



from a starting point characterized by labels like fast,
recognition, look-up, bottom-up, data-driven.

For example, Fast versus Slow. The focus of Daniel
Kahneman’s 2011 book is a dichotomy between
these two modes of thought: “fast, instinctive, and
emotional” and “slow, more deliberative, and more
logical” (Kahneman 2011). 

Alternatively, Herb Simon put it this way: “The sit-
uation has provided a cue; this cue has given the
expert access to information stored in memory, and
the information provides the answer. Intuition is
nothing more and nothing less than recognition.”
(Simon 1992). Fast corresponds to recognition. Slow
corresponds to cognition or search. In this regard, com-
pare the recognition approach of the human chess
master to the search approach of Deep Blue (Camp-
bell, Hoane, and Hsu 1999). (Because of this, a typi-
cal grandmaster does six orders of magnitude less
search per move than Deep Blue did.)

Another example, well known to American foot-
ball fans, is that of the Manning brothers, Peyton and
Eli. It has been widely reported that their father
Archie started the boys learning football and quar-
terbacking at the earliest possible age. This maxi-
mized the time they had to store millions of the small
chunks of recognition knowledge, later buttressed by
countless hours spent studying game film.

Rod Brooks championed what he called a new
approach to artificial intelligence and robot design —
which can be called “bottom-up” — as an alternative
to the “top-down” model-driven approach of the pio-
neers (Brooks 1991).

Today, some authors seem to see a conflict between
“data-driven” (new think) systems and “model-dri-
ven” (old think) systems as if the “good” applications
today are all data driven and work well, in contrast
with the “bad” model-driven applications of the old
days that didn’t work well. 

Many AI apps have combined reasoning from
opposite starting points, going way back to the early
days. The Hearsay II speech-understanding system
combined top-down and bottom-up processing
(Erman et al. 1980). Mycin used backward and for-
ward rule chaining (Buchanan and Shortliffe 1984).
And the Dipmeter Advisor was both data driven, con-
verting raw signals to patterns, and model driven,
using rules to classify stratigraphic and tectonic fea-
tures from the patterns (Smith and Baker 1983).
Overall accuracy depended on the contributions of
all the components — data driven and model driven.

We also don’t accept the criticism that the early AI
community was too focused on model-driven
approaches when it should have been focused on
data-driven approaches. We believe the pioneers were
doing the best they could with the machines and
data available to them. They were forced into cogni-
tive approaches in some cases (for example, vision)
because they had to do something to finesse the need
for orders of magnitude more processing power, stor-

age, and sensors than were available to them in the
day.

The good news these days is that all the compo-
nents are substantially more powerful, thanks to the
computing and data revolutions. We are not restrict-
ed to either a “fast” or a “slow” starting point. We
can have both. 

That said, it is important for developers to give due
consideration to the new possibilities offered by the
substantial increases in processor speed and memo-
ry available today — and to not implicitly be stuck in
the “slow” thinking mind set of the early days.
Going forward, there is the possibility of storing mas-
sively larger knowledge bases that are composed of
small chunks of very specific domain and task
knowledge, retrieved by fast recognition processes
(more of what Simon was referring to). 

Thus, a knowledge base for a domain would have
powerful rules (as in the past, thousands of them)
plus these small chunks of very specific experiential
knowledge (millions of them). With modern sensors,
the small chunks may be very easy to capture. Cer-
tainly, there will be things missing that might have
been implied by rules (that is, not everything possi-
ble is actually observed and remembered as a chunk).
But overall, knowledge acquisition will have become
far easier to do and cheaper. These “hybrid” knowl-
edge base architectures will dominate in applica-
tions. This also seems like a fruitful avenue for recon-
sidering older models of human cognition. (The
authors thank Ed Feigenbaum for this observation.)

Checklist for Tomorrow’s 
Application Builders

Our examination of nearly 30 IAAI conferences, our
personal experiences, and stories related to us by col-
leagues and friends, lead to the checklist in table 3.
We briefly explain each entry in the following.

As will be apparent to experienced application
developers, much of this advice mirrors general soft-
ware engineering best practice. But some of the
points are even more important for AI systems. We
invite your feedback and your own lessons learned. 

Select Problems with a Solid Business Case
Successful IT applications in general start with a focus
on the business case and the customer — not the tech-
nology. This is particularly true for AI applications. In
the early days of AI applications, the mind share of
the developers tended more heavily to the technolo-
gy (the knowledge-representation methods and the
reasoning machinery) than it did to the customer
need. In retrospect, this was to be expected. The early
implementers were almost always AI researchers,
infringing on an IT community that was by and large
skeptical of the hype and the baggage that came along
with the technology — nonstandard hardware and
software, methods that were not understood by the
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Table 3. Checklist for Builders of AI Applications.

 Select problems with a solid business case. 

 Minimize changes required in existing work flows. 

 Identify domain- or task-specific knowledge and data for the problem.

 Select appropriate knowledge representations and data sources. 

 Develop knowledge and data acquisition and maintenance plans. 

 Select appropriate reasoning/learning strategies. 

 Develop a set of test cases and performance metrics. 

 Add safeguards and opt-out capabilities. 

 Test with real data from users or operating environment. 

community, the need to bring in outside experts.
Over the years, AI application developers have

made a major mind shift. We have learned the hard
way that success starts with solving problems impor-
tant to the customer.

One caveat: Although public interest in AI is on the
rise, do not add an AI component to an application
just for the sake of it. AI can introduce complexity,
and systems should always only be as complicated as
is necessary to model the domain and task. Again,
focus on customer over technology. 

Minimize Changes Required 
in Existing Work Flows
Think about the integration of AI with other tools
and parts of the larger system. It is rare to complete-
ly replace an existing work flow. Thus, it is prudent to
build new systems so that they can slot into the
approaches already used by the customers as much
as possible. Few new AI systems solve stand-alone
problems that require no user interaction. Most are
used as “intelligent assistants” and the amount of
change management required to succeed in adoption
is directly proportional to the magnitude of the
changes required in existing work flows. Ease of use
is the “license to operate.”

Identify Domain- or Task-Specific 
Knowledge and Data for the Problem
The history of successful AI applications shows that
“the power is in the knowledge,” both expert-pro-
vided knowledge and knowledge extracted out of
data with the appropriate preprocessing, feature
selection, learning techniques, and parameter tun-
ing. Devote up front the effort needed to acquire
enough of the knowledge and data so that you will
better understand how to design the rest of the sys-
tem to best match the domain and task.

Select Appropriate Knowledge 
Representations and Data Sources
Depending on the nature of the domain- and task-

specific knowledge, choose a knowledge representa-
tion that most closely models the world while still
supporting efficient reasoning strategies. Prefer
declarative knowledge since it is easier to understand,
explain and change than procedural knowledge. For
machine-learning approaches, select high-quality
data sources (for example, data with expert-verified
ground truth) when feasible or develop a strategy for
learning and reasoning with noisy data sources.

Develop Knowledge and Data 
Acquisition and Maintenance Plans
Consider knowledge/data acquisition and mainte-
nance to be an ongoing process. Make the process
iterative: repeatedly evaluate if the knowledge and
data are appropriate for the reasoning/learning strate-
gies and domain/task and refine accordingly.

Select Appropriate Reasoning 
and Learning Strategies
Most large AI systems will require various kinds of
reasoning and learning strategies for various sub-
problems. Design a system architecture that supports
decoupling of these disparate components so that
refinements in one component will not require dras-
tic changes in other components. 

Depending on the constraints dictated by the
domain and task, select an approach and compo-
nents that are data driven or model driven, or use a
combination.

Develop a Set of Test Cases 
and Performance Metrics
Due to the complexity of most AI systems, testing
and performance evaluation are critical. 

The word performance encompasses a variety of
concerns, including run-time speed and use of
resources plus adequacy of the knowledge and rea-
soning components. Run-time speed and use of
resources are standard computational concerns that
must be addressed in any system that is to be
deployed and scaled. They are not specific to AI appli-



cations — but adequacy of the knowl-
edge and reasoning components is spe-
cific to AI applications.

Sometimes the desired behavior of
the system is clear, as was the case
when IBM was developing Watson to
win the Jeopardy! game show against
human contestants (Ferrucci et al.
2010). Keep track of the performance
of every revision and consider a policy
(as IBM did with Watson) that rejects
any revisions that do not push per-
formance closer to the goal. 

When the goal criteria are not as
clear, make extensive use of regression
tests to ensure that solved cases are
never broken in the future. Sometimes,
even regression tests are too precise as
multiple different outcomes may be
equally good. A good technique in
these situations is to build machinery
to automatically identify any changes
in the system’s output after each code
or knowledge base revision. Knowing
what changed after an update is a valu-
able first step in identifying if develop-
ment is on the right track.

Add Safeguards and 
Opt-Out Capabilities
AI has been known, on occasion, to
produce odd and unpredictable results
due to complex reasoning systems,
large data sets, and large knowledge
bases. Hence, special care should be
taken to verify data produced by AI
subsystems. In addition, there is a pre-
mium on testing carefully for
machine-learning systems that do not
have transparent reasoning processes. 

This advice should be heeded more
diligently for builders of AI applications
that make use of human input and
applications that are responsible for
making decisions for users. For that
matter, such applications should pro-
vide an opt-out capability that lets the
user complete an action without AI
assistance. An AI system is even stron -
ger when it can explain its decisions
and can help users make sense of the
AI’s assistance and better decide if they
prefer to continue making use of it.

Test with Real Data from Users
or Operating Environment
At i2k Connect, we have learned that
there is a long tail of the kinds of doc-
uments humans (and computers) pro-

duce and that may be fed into our doc-
ument enrichment service. During the
early development effort, we focused
on straightforward cases such as
research articles in PDF form and
Microsoft Word documents made up
mostly of text. However, real data
from real users can be drastically dif-
ferent and highly variable. For exam-
ple, we learned that our system did
not properly handle large text files
produced by computer software (such
as log files or data dumps), and need-
ed extra logic to examine each file
before deciding what kinds of process-
ing would be appropriate. In other
examples, roboticists know that robots
must be tested in the real world and
not just simulations, and developers of
personal assistants, chatbots, search
engines, and other tools know that
humans are an unpredictable source of
a wide range of inputs.

Conclusion
For AI to benefit humankind it must
be deployed; for successful deploy-
ment, good AI ideas must be integrat-
ed into the human context of actual
use and into the IT context of organi-
zations. In this article, we have tried to
summarize what has been learned
about building, maintaining, and
extending AI applications. We have
boiled it down into a simple checklist
for the developers of today and tomor-
row.

Going forward, we can expect the
landscape of AI applications to contin-
ue to diversify and expand. The revo-
lutions will continue all around us, in
computers and data, as well as sensing.

So, it follows that apps will contin-
ue to get more powerful, more knowl-
edgeable, and cover a broader array of
domains and tasks.

It also follows that apps will be
increasingly data driven, guided by
human knowledge. And they will have
a lot more data available, as the Inter-
net of Things takes off.

Finally, intelligent assistants will be
even more proficient at improving
quality of life. The partnership
between human and machine is going
to be stronger and closer. How will this
improve quality of life? Jobs tend to be
more satisfying when we humans are
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able to focus on the real work we set
out to do, not distracted by the low-
level clutter that most people are
forced to deal with today, because
computers aren’t powerful enough, or
because no attempt has yet been made
to automate the jobs people don’t
want to do. Intelligent assistants will
deal with the clutter of low-level tasks,
or tasks that require extended concen-
tration, consistency, scale, and so on.

As an example, we see big opportu-
nities with unstructured data. It will no
longer be lost in the cloud — whether
the corporate cloud or the Internet
cloud. We will have the tools to find it
and unlock its connections. We will
also have the tools to extract the essen-
tial information from the cluttered
real-time data streams that overwhelm
us today.

As the developers of today and
tomorrow address the new opportuni-
ties, the history of IAAI conferences
offers lessons in how to build success-
ful deployed AI applications. We have
attempted to distill these lessons to
increase the chances of future success.
In these concluding remarks, we have
just a few final bits of advice. 

It is prudent for AI researchers to pay
attention to what is being learned
through engineering practice —
deployed applications — as was hoped
for from the beginning of IAAI. And it
is prudent for practitioners to take
advantage of opportunities to learn
from research, as was hoped for by
colocating the AAAI and IAAI confer-
ences, and by adding the Emerging
Applications track to the IAAI confer-
ence in 1997. 

It is also wise to pay attention to
what is happening in the rest of the
computing, data, and sensing world.
Factors external to AI are likely to have
the largest impact on what matters, or
what is possible, or where opportuni-
ties lie. The biggest impact on how we
are able to build applications today has
come from revolutions that were not
of our own making. Watch for signals
from the periphery. 

And finally, to quote Neil Jacobstein,
“AI expands the range of the possible.”
So keep doing it! 
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heavily from AI applications observa-
tions made by others. We encourage
readers to look back at Feigenbaum,
McCorduck, and Nii (1988); Feigen-
baum (1993); Shrobe (1996); Shrobe
(2000;) and Jacobstein (2007). 
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This article is based on the IAAI-16
Robert S. Engelmore Memorial Lecture
given by the first author at AAAI/IAAI
2016 in honor of Bob Engelmore’s
extraordinary service to AAAI and his
contributions to applied AI.6

Notes
1. See Dennis Bode, The Ivy Bridge Test:
Intel Core i7-3770K and all i5 models (Hard-
ware LUXX), available at www.hardware-
luxx.com/index.php/reviews/hardware/cpu
/21569-ivy-bridge-test-intel-core-i7-3770k-
and-all-i5-models.html?start=13. 

2. For more information about CLIPS see
www.clipsrules.net/?q=AboutCLIPS. 

3. The Enterprise Search and Findability
Survey 2014, by Carl Björnfors and Mattias
Ellison, is available at www2.findwise.com/
findabilitysurvey2014.

4. Robot Operating System (ROS) is avail-
able at www.ros.org. 

5. deeplearning.stanford.edu/wiki/index.ph
p/UFLDL_Tutorial. 

6. Available at www.reidgsmith.com/2016-
02-15_Engelmore_Lecture.pdf
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