Competition Report

The First MicroRTS
Artificial Intelligence Competition

B This article presents the results of the
first edition of the microRTS Al compe-
tition, which was hosted by the IEEE
Computational Intelligence in Games
(CIG) 2017 conference. The goal of the
competition is to spur research on Al
techniques for real-time strategy (RTS)
games. In this first edition, the competi-
tion received three submissions, each
addressing problems such as balancing
long-term and short-term search, using
machine learning to learn how to play
against certain opponents, and finally,
dealing with partial observability in
RTS games.

Copyright © 2018, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Santiago Ontafion, Nicolas A. Barriga, Cleyton R. Silva, Rubens O. Moraes, Levi H. S. Lelis

the IEEE Computational Intelligence in Games (CIG)

2017 conference. The goal of the competition is to spur
research on artificial intelligence techniques for real-time
strategy (RTS) games.

RTS games are a genre of video games that are notoriously
difficult for Al techniques (Buro 2003) since, compared to tra-
ditional board games such as Chess or Go, they have a very
large state space and a very large branching factor. Addition-
ally, these games are executed in real time, which leaves lit-
tle time to decide a move, and they are often nondetermin-
istic and partially observable. For these reasons, and as
evidenced by other AI competitions organized around RTS
games (such as the StarCraft Al competitions [Ontafion et al.
2013]), human players are still much stronger players than
Al bots. Compared to the StarCraft AI competitions, the goal
of the pRTS competition is to focus on the key underlying
research problems that RTS games feature from an Al point of
view, rather than on solving the many engineering problems
that apply when dealing with a full-fledged commercial RTS
game like StarCraft.

The first microRTS (uRTS) Al competition was hosted at

SPRING 2018 75



Competition Report

I
I ]

' units

I O player
: units

O
O

@ 15716

Figure 1. A Screenshot of the uRTS Simulator.

Square units correspond to bases (light grey) that can produce workers, bar-
racks (dark grey) that can produce military units, and resource mines (green)
from which workers can extract resources to produce more units. Circular
units correspond to workers (small, dark grey) and military units (large, yel-
low or light blue).

In this article, we will describe pRTS, emphasizing
the research questions it raises, the rules of the com-
petition, the bots submitted to the competition, and
an analysis of the competition results.

pRTS

URTS! is a minimalist implementation of a two-play-
er RTS game designed specifically for Al research. Fig-
ure 1 shows a screenshot of pRTS. Players in pRTS
play in a rectangular grid-based map of arbitrary size
and control a set of units with the goal of destroying
all the units of the opponent. puRTS features a reduced
set of units compared to other RTS games such as
StarCraft, but this is configurable, so more unit types
can be added if desired. The basic unit types include
bases and barracks (shown as square units in the fig-
ure), which are buildings that cannot move but that
can produce other units; workers (shown as small cir-
cular units in the figure), which can gather resources
and create new buildings; and military units (shown
as larger circular units in the figure). Players need to
gather resources (green squares in the figure) and use
them to expand either their economy (build more
workers, bases, or barracks) or their military force.
From an Al point of view, uRTS raises some of the

76 Al MAGAZINE

same theoretical challenges raised by other, more
complex RTS games. pRTS has a huge decision space.
The branching factor of games like Chess or Go has
been estimated to be about 35 and 180, respectively.
By contrast, in uRTS, branching factors of over 1022
have been reported (Ontaiién 2017) for 16 X 16
maps. The branching factor in the game state shown
in figure 1, for example, is 1,008,288 for the max
player and 1,680,550 for the min player. pRTS also
has real-time constraints, meaning that the game is
designed to execute about 10 decision cycles per sec-
ond, leaving players with just a fraction of a second
to decide the next action. Moreover, players can issue
actions simultaneously, and actions are durative.

uRTS can be configured to be deterministic or non-
deterministic. When it is configured to be nondeter-
ministic, if two units issue contradicting actions
simultaneously, one action is executed at random
and the other is canceled. The damage that units deal
each other when attacking is also stochastic.

uRTS can be configured to be fully or only partial-
ly observable. When it is configured to be partially
observable, each unit has a predefined sight range,
and a player can see only those parts of the map that
her units can see. This is often referred to as the fog
of war.

Finally, pRTS comes with a built-in forward model
that can be used by the bots to simulate the effect of
actions. This simplifies the development of search-
based techniques (as explored, for example, by
Churchill and Buro [2013]; Justesen et al. [2014];
Ontanon [2017]; Barriga, Stanescu, and Buro [2017D];
Lelis [2017]). However, while pRTS does not encour-
age learning forward models (as shown, for example,
by Uriarte and Ontafién [2017]) for domains where
they are not already available or developing tech-
niques that do away with the need for forward mod-
els altogether, we would like to point out that these
lines of work are important research directions both
for RTS game Al and for game Al in general. This is
the case because in most real-world situations where
these algorithms might find application, it is likely
that those forward models will not be available.

Previous research in pRTS has focused on areas
such as Monte Carlo tree search (MCTS) (Ontafién
2013; Ontafién 2017, 2016; Shleyfman, Komenda,
and Domshlak 2014; Komenda, Shleyfman, and
Domshlak 2014); adversarial search algorithms that
perform search at some level of abstraction, such as
Puppet Search (Barriga, Stanescu, and Buro 2017b) or
adversarial HTN planning (Erol, Hendler, and Nau
1994); and even deep learning for RTS games (Stanes-
cu et al. 2016).

In summary, we can see that pRTS has been used
mainly to study the scalability problems that arise in
RTS games. The goal of having several tracks in the
uRTS competition was to also spur research into two
of the other main problems in RTS games: nondeter-
minism and partial observability. We detail the tracks



Competition Report

Figure 2. The Four Open Maps Used in the Competition.

Figure 3. The Four Hidden Maps Used in the Competition.

available in the competition, as well as the rules for
each, in the section that follows.

Competition Rules

The competition was organized around three sepa-
rate tracks: standard, nondeterminism, and partial
observability. Each track was run as a series of round-
robin tournaments, where each bot played against all
other bots in a collection of eight different maps. Five
round-robin tournaments were run in each of the
eight maps, for a total of 40 round-robin rounds per
track.

Each game in the competition was a full-game,
two-player match. Each bot was given a computation
budget of 100 milliseconds per game cycle. Multiple
threads were allowed, but once the 100 milliseconds
were up, all threads were stopped so as to prevent one
bot from using the CPU during the other bot’s time.
An upper limit was set on the length of games and if
a game went beyond that limit, it was considered a
draw. The three tracks were the standard track (fully
observable and deterministic); the nondeterminism

track (fully observable, but nondeterministic); and
the partial observability track (deterministic, but par-
tially observable using the concept of fog of war,
common to RTS games).

Eight maps were used for the competition. Four of
them were known beforehand to all participants
(open maps), and four of them were kept secret (hid-
den maps). Results are reported below both on the
open maps and on the set of all maps. Figures 2 and
3 show the open and hidden maps, respectively. As
the figures show, the open maps represented con-
ventional, RTS game-start situations, whereas the
hidden maps represented nonconventional start
positions. For example, in the last hidden map, bots
had to play two parallel games and win both to win
the match. The open maps are numbered 1 through
4; the hidden maps, 5 through 8.

To assess the performance of the submissions, in
addition to the competition entries, we included five
preexisting bots: (1) RandomBiased, a bot that picks
actions randomly (but with a bias to attack or har-
vest); (2) POWorkerRush, a hard-coded bot that
always uses one worker to harvest resources, while

SPRING 2018 77




Competition Report

constantly training and sending the remaining work-
ers to attack; (3) POLightRush, a hard-coded bot that
also uses one worker to harvest resources, following
which it builds a barracks and constantly trains and
sends light units to attack; (4) NaiveMCTS, an MCTS
bot that uses Naive Sampling (Ontannén 2017); and
(5) PuppetSearch, a bot that uses nondeterministic
scripts as the basis for search and then does adversar-
ial search by considering only the choice points
offered by the scripts (Barriga, Stanescu, and Buro
2017b).

Competition Entries

The 2017 competition received three submissions:
StrategyTactics,? Strategy Creation through Voting
(SCV),3 and BS3NaiveMCTS.# We describe each of the
submissions in the following paragraphs.

Entry 1: StrategyTactics

StrategyTactics (Barriga, Stanescu, and Buro 2017a)
builds on the strategic strengths of PuppetSearch
(Barriga, Stanescu, and Buro 2017b) and the tactical
performance of NaiveMCTS (Ontafién 2017). Most
strategic algorithms suffer from weak tactical deci-
sions due to the coarse abstractions necessary for
long-term planning. Conversely, algorithms that
make good low-level decisions usually don't scale
well to larger scenarios with higher branching factors
or long-term action consequences.

StrategyTactics splits the search time between both
algorithms. First, a reduced game state is generated,
one which includes only those units from both sides
that are at most one tile away from the sight range of
opponent units. Then, if this game state is empty,
PuppetSearch is executed as usual on the full game
state. Alternatively, if the reduced state has units,
PuppetSearch is run for 20 percent of the time avail-
able on the complete game state, and then NaiveM-
CTS is executed for the rest of the time on the
reduced game state. The actions this second search
produces then replace the ones produced by Puppet-
Search. In summary, PuppetSearch produces actions
for all units and NaiveMCTS then refines the actions
of units in combat.

Entry 2: Strategy Creation
Through Voting (SCV)

Strategy Creation Through Voting (SCV)> uses a set
of base strategies P, to create a larger set of novel
strategies P. It does this by using a voting scheme
with subsets of base strategies. For example, a subset
of base strategies {A, B, C} of P, defines a novel
strategy by deciding on an action for each unit u
through voting (4, B, and C each vote on one action
for each unit). Draws are broken deterministically
assuming an ordering of the strategies from most to
least preferred.

The initial set of strategies P, ,, used in the compe-

ase

78 Al MAGAZINE

tition contains 10 strategies similar to the bots Ran-
domBiasedAl, POWorkerRush, and POLightRush
described earlier. P contains all subsets of P, with
size 1 to 4, which resulted in 385 novel strategies. We
do not use the powerset of P, as SCV’s P because
that would substantially increase the algorithm’s
training time.

SCV assumes a set of opponent types as well as a
set of map types. During the match, SCV predicts the
opponent and map types based on what it observes.
Then, SCV selects from P the strategy that maximizes
its end-game value for the predicted opponent and
map types. The set of opponent types included hard-
coded bots such as RandomBiasedAI, POWorkerRush,
and POLightRush as well as search-based bots such as
PuppetSearch and NaiveMCTS. The set of map types
included the maps shown in figure 2 — map1 (8 X 8),
map2 (16 X 16), map3 (32 X 32), map4 (64 X 64) —
and a map that is similar to map3 but with size 24 X
24.

SCV has an offline training phase in which it tests
all 385 strategies against all predefined opponents in
all predefined maps, as well as features of the game
state every 100 game cycles. At run time, SCV runs its
classifier every 100 game cycles to predict the type of
opponent it is playing against and which map is
being used, so as to choose the strategy with the
largest expected end-game value.

Entry 3: BS3NaiveMCTS

BS3NaiveMCTS (Uriarte and Ontanén 2016) is an
extension of NaiveMCTS to handle partial observ-
ability in RTS games. To the best of our knowledge,
BS3NaiveMCTS is the first attempt to deal with par-
tial observability in RTS games in the context of
game tree search.

BS3NaiveMCTS assumes that both players know
the initial board configuration. With this assump-
tion, BS3NaiveMCTS uses the idea of determinization
(Corlett and Todd 1986; Whitehouse, Powley, and
Cowling 2011): infer the whole game state (the
believe state) from the parts of it that can be
observed, and then perform game tree search as if we
were in a fully observable scenario.

To generate the believe state, BS3NaiveMCTS
records the position of all the enemy units that
become visible during the game, and remembers
their position even if we are not currently seeing
them. Additionally, it performs a limited form of
inference to infer units that must be there but we
have not seen (for example, having melee units
implies having barracks).

Competition Results

This section presents the results of each of the three
tracks of the competition.



Competition Report

RandomBiased
POWorkerRush
POLightRush
NaiveMCTS
PuppetSearch
StrategyTactics
SCcv
BS3NaiveMCTS

T

Open Map

Hidden Maps

All Maps

Figure 4. Win Ratios of the Bots in the Standard Track, by Map Type.

Standard Track

Eight bots were used for the standard track: the five
preexisting bots (RandomBiased, POWorkerRush,
POLightRush, NaiveMCTS, PuppetSearch) and all
three competition entries (StrategyTactics, SCV,
BS3NaiveMCTS).

Each round robin tournament consisted of 8§ X 7 =
56 games (since we discarded self-play matches), and
we performed five full round-robin tournaments in
each of the eight maps, for a total of 5 X 8 X 56 = 2,
240 games.

Figure 4 shows the win ratios achieved by each of
the bots in this track, organized by type of map. The
bot that achieved the highest win ratio over all maps
was StrategyTactics, with a win ratio of 0.682. The
second-best bot in this scenario was POLightRush,
one of the preexisting bots, with a win ratio of 0.672.
Figure 4 also shows the win ratio averaged over the
open and the hidden maps, and, as can be seen, the
win ratios of the different bots vary widely between
those two.

We can draw a few interesting observations from
these results. First, hard-coded bots perform very well
in maps that capture standard situations (for exam-
ple, where the game starts with a base and some
workers, and the strategy hard-coded into the bots
applies). This can be seen by the great performance of
POWorkerRush and POLightRush in the open maps.
These hard-coded bots perform poorly, however, in
situations where their scripts do not apply, as can be
seen by their lower performance on the hidden
maps. This turned out particularly to be the case with
map7.

Conversely, game tree search excels precisely in

nonstandard situations, where the lack of appropri-
ateness of the hard-coded bots can be exploited. This
can be seen by the performance of NaiveMCTS,
BS3NaiveMCTS, and StrategyTactics on the hidden
maps. However, some game tree search bots
(NaiveMCTS and BS3NaiveMCTS) struggle in larger
maps like map3 and map4, likely because they are
unable to search deep enough for the size of the map.

StrategyTactics achieved the highest win ratio
overall in all maps, since it was robust enough to per-
form well in most maps (except map7), whereas oth-
er bots performed less consistently. StrategyTactics’s
high win ratio was due to its mix of high-level and
low-level search.

SCV performed extremely well on standard maps
— and most especially on map3 and map4, likely due
to its being trained on these map types. However, it
struggled in nonstandard maps, which hurt its over-
all win ratio.

Interestingly, although StrategyTactics is an inte-
gration of PuppetSearch and NaiveMCTS, SCV per-
formed better than PuppetSearch on the open maps,
where high-level search is more important. This
result indicates that a StrategyTactics-like bot that
integrates SCV with NaiveMCTS could potentially
outperform this year’s competition bots. Additional-
ly, SCV used very little computation time, and thus,
it would lend itself very well to such integration.

Another factor that plays an important role in the
performance of the bots is the size of the map. Figure
5 shows the win ratio of the different bots in this
track plotted as a function of map size. We can see
clearly that the performance of game tree search bots
(NaiveMCTS and BS3NaiveMCTS) decreases as the

SPRING 2018 79



Competition Report

RandomBiased
POWorkerRush
POLightRush
NaiveMCTS
PuppetSearch
StrategyTactics
SCV
BS3NaiveMCTS

Figure 5. Win Ratios of the Bots in the Standard Track Plotted as a Function of Map Size.

Open Maps Hidden Maps

RandomBiased
POWorkerRush
POLightRush
NaiveMCTS
PuppetSearch
StrategyTactics
SCcv

I

All Maps

Figure 6. Win Ratios of the Bots in the Nondeterminism Track, by Map Type.

map grows in size, while the performance of bots that
have more high-level reasoning capabilities (Strate-
gyTactics and SCV) increases.

Nondeterminism Track

Seven bots were used for the nondeterminism track:
the five preexisting bots (RandomBiased, POWorker-
Rush, POLightRush, NaiveMCTS, PuppetSearch) and
two of the competition entries, StrategyTactics and
SCV. Each round robin tournament consisted of 7 X

80 AI MAGAZINE

6 = 42 games (since we discarded self-play matches),
and we performed five full round-robin tournaments
in each of the eight maps, for a total of 5 X 8 X 42 =
1,680 games.

Figure 6 shows the win ratios achieved by each of
the bots in this track, organized by type of map. The
bot that achieved the highest win ratio over all maps
was StrategyTactics, with a win ratio of 0.655. The
second-best bot in this scenario was again
POLightRush, with a win ratio of 0.643. Figure 6 also



Competition Report

0 NaiveMCTS
I BS3NaiveMCTS

1 T
I RandomBiased
I POWorkerRush
0.8 [| mmm@m POLightRush
06— -
04 - ----------
02 —--10 | B---------
Open Maps

Hidden Maps

All Maps

Figure 7. Win Ratios of the Bots in the Partial Observability Track, by Map Type.

The left plot shows the win ratios averaged over only the open maps; the center over the hidden maps; and the right plot the average of all

maps.

shows the win ratio averaged over the open and the
hidden maps. As with the standard track, there are
substantial differences in the performance of the bots
between the two.

The same observations apply as in the standard
track: hard-coded bots perform well in standard situ-
ations, and not as well in nonstandard situations.
Adding nondeterminism did not change this fact.

POWorkerRush, PuppetSearch, and SCV performed
better in this track than in the standard track, where-
as NaiveMCTS performed worse, being outperformed
by SCV. POLightRush and StrategyTactics performed
slightly worse in this track, but that result follows
from the first three bots having performed better. The
lower performance of NaiveMCTS, in particular, was
to be expected, since its game tree search nature
assumes a deterministic game. Overall, however, it
seems that the low amount of nondeterminism pres-
ent in this track, which is representative of commer-
cial RTS games, did not affect the performance of
most bots excessively. The exception is NaiveMCTS,
which performed significantly worse in the open
maps.

Partial Observability Track

Five bots were used for the partial observability track:
four of the preexisting bots (RandomBiased,
POWorkerRush, POLightRush, NaiveMCTS) and one
competition entry, BS3NaiveMCTS. Each round
robin tournament consisted of 5 X 4 = 20 games
(since we discarded self-play matches), and we per-
formed five full round-robin tournaments in each of

the eight maps, for a total of 5 X 8 X 20 = 800 games.

Figure 7 shows the win ratios achieved by each of
the bots in this track, organized by type of map. The
bot that achieved the highest win ratio over all maps
was POLightRush, with a win ratio of 0.670. The sec-
ond-best bot in this scenario was BS3NaiveMCTS, the
competition entry, with a win ratio of 0.617. Figure 7
also shows the win ratio averaged over the open and
the hidden maps.

In terms of the observations to be made, the first
thing we see is that the random bot (RandomBiased)
performed much better in this track, which might be
due to the fact that, since there is partial observabil-
ity, it is harder for the other bots to pinpoint where
the opponent is. The random bot also tends to create
a large number of workers, which can be hard to deal
with later in the game.

We see that BS3NaiveMCTS performs significantly
better than NaiveMCTS, which is to be expected,
since there is a direct improvement over it to handle
partial observability.

We can also see that BS3NaiveMCTS outperformed
both hard-coded bots in the hidden maps, whereas
this did not happen in the standard track. Hard-cod-
ed bots still have an advantage, though, on the open
maps.

Looking at the per-map results, we see that in this
partially observable setting, no bot managed to win
a single game in the very large map4, so all games
there ended in a tie. The main problem is that in
such a large map, it was difficult for the bots to find
each other, which highlights the importance of

SPRING 2018 81



Competition Report

Track Open Maps Hidden Maps All Maps
Standard POLightRush NaiveMCTS StrategyTactics
Nondeterminism StrategyTactics NaiveMCTS StrategyTactics
Partially Observable POLightRush ~ BS3NaiveMCTS POLightRush

Table 1. Competition Winners.

scouting and exploration in partial observability set-
tings. A similar, but not as extreme, situation can be
seen in the 32 X 32 maps (map3 and map8), where
there were also a large number of ties.

Conclusions

This article has presented the results of the first uRTS
Al competition. The competition was organized
around three tracks, each of which used four open
and four hidden maps. Winners of the competition
are shown in table 1. Observing the results of all
three tracks, we can see that hard-coded bots
(POWorkerRush and POLightRush) perform very well
in standard maps, where their hard-coded rules
apply, but they perform worse on nonstandard maps.
These results are consistent with results from the
StarCraft Al competitions (Churchill et al. 2016),
where all maps are standard, and thus hard-coded
bots still dominate. We have also seen that game tree
search bots perform better on nonstandard maps, but
struggle with larger maps. Additionally, we have seen
that the concept used by StrategyTactics of integrat-
ing long-term script-based search with low-level
game tree search can achieve very good performance,
being the only approach that outperformed the hard-
coded bots consistently. Finally, we have seen that
the one machine learning-based bot (SCV) performs
very well in scenarios similar to its training data, but
struggles when the maps look very different. One
strong point of the machine learning approaches is
the low CPU requirements, which leaves a lot of free
CPU time for potential integration with other tech-
niques.

The good performance of the hard-coded bots,
which would not be difficult for a human to beat,
indicates that there is significant room for improve-
ment, and plenty of work yet to be done, to achieve
human-level Al bots in RTS games.

From the results, we can also see that the largest
factors in determining the performance of a bot are
(1) the size of the map (scalability), (2) the type of
map (whether standard or not, and thus whether
hard-coded strategies will work or not), and (3) par-
tial observability. We observed that the small amount
of nondeterminism in RTS games did not have as
much effect as these three factors, which might pro-

82 Al MAGAZINE

vide hints as to which aspects to focus on in future
work.

A final thought, for future competitions, is that
although the bots presented in this edition represent
a wide spectrum of Al approaches, many others that
have performed well in related domains (such as
reinforcement learning or evolutionary algorithms)
were not represented. The results of this first edition
of the competition, however, provide a good baseline
for comparison, and hint at the different strengths
and weaknesses of the different approaches.

Notes
1. github.com/santiontanon/microrts.
2. github.com/nbarriga/microRTSbot.
3. github.com/rubensolv/SCV.
4. Incorporated into the main branch of pRTS at
github.com/santiontanon/microrts.
5. SCV was referred to as PVAIML ED in the competition
website.

References

Barriga, N. A.; Stanescu, M.; and Buro, M. 2017a. Combin-
ing Strategic Learning and Tactical Search in Real-Time
Strategy games. In Proceedings of the Thirteenth Annual AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE). Palo Alto, CA: AAAI Press.
doi.org/10.1109/TCIAIG.2017.2717902

Barriga, N. A.; Stanescu, M.; and Buro, M. 2017b. Game Tree
Search based on Non-Deterministic Action Scripts in Real-
Time Strategy Games. IEEE Transactions on Computational
Intelligence and Al in Games (PP)99. doi.org/10.1109/TCI-
AIG.2017.2717902

Buro, M. 2003. Real-Time Strategy Games: A New Al
Research Challenge. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence, 1534-1535.
San Francisco: Morgan Kaufmann.

Churchill, D., and Buro, M. 2013. Portfolio Greedy Search
and Simulation for Large-Scale Combat in StarCraft. In Pro-
ceedings of the 2013 IEEE Conference on Computational Intelli-
gence in Games (CIG), 2, 1-8. Piscataway, NJ: Institute for
Electrical and Electronics Engineers. doi.org/10.1109/
CIG.2013.6633643

Churchill, D.; Preuss, M.; Richoux, F; Synnaeve, G.; Uriarte,
A.; Ontanodn, S.; and Certicky, M. 2016. StarCraft Bots and
Competitions. Springer Encyclopedia of Computer Graphics and
Games. Berlin: Springer.

Corlett, R. A., and Todd, S. J. 1986. A Monte-Carlo Approach



to Uncertain Inference. In Artificial Intelligence and Its Appli-
cations, 127-137. New York: John Wiley & Sons.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN Planning:
Complexity and Expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence, 1123-1128.
Menlo Park, CA: AAAI Press.

Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and Cluster-Based UCT for StarCraft. In Proceedings of
the 2013 IEEE Conference on Computational Intelligence in
Games (CIG), 1-8. Piscataway, NJ: Institute for Electrical and
Electronics Engineers. doi.org/10.1109/CIG.2014.6932900

Komenda, A.; Shleyfman, A.; and Domshlak, C. 2014. On
Robustness of CMAB Algorithms: Experimental Approach.
In The Third Workshop on Computer Games, 16-28. Berlin:
Springer.

Lelis, L. H. S. 2017. Stratified Strategy Selection for Unit
Control in Real-Time Strategy Games. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, 3735-3741. Vienna, Austria: [JCAII, Inc.

Ontanon, S. 2013. The Combinatorial Multi-Armed Bandit
Problem and its Application to Real-Time Strategy Games.
In Proceedings of the Ninth AAAI Artificial Intelligence and
Interactive Digital Entertainment Conference. Palo Alto, CA:
AAAI Press.

Ontanoén, S. 2016. Informed Monte Carlo Tree Search for
Real-Time Strategy Games. In Proceedings of the 2016 IEEE
Conference on Computational Intelligence in Games (CIG), 1-8.
Piscataway, NJ: Institute for Electrical and Electronics Engi-
neers. doi.org/10.1109/CIG.2016.7860394

Ontanoén, S. 2017. Combinatorial Multi-Armed Bandits for
Real-Time Strategy Games. Journal of Artificial Intelligence
Research 58: 665-702.

Ontafién, S.; Synnaeve, G.; Uriarte, A.; Richoux, F;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game Al Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and Al in
Games 5(4): 293-311. doi.org/10.1109/TCIAIG.2013.
2286295

Shleyfman, A.; Komenda, A.; and Domshlak, C. 2014. On
Combinatorial Actions and CMABs with Linear Side Infor-
mation. In Proceedings of the 21st European Conference on Arti-
ficial Intelligence, 825-830. Amsterdam, The Netherlands:
1OS Press.

Stanescu, M.; Barriga, N. A.; Hess, A.; and Buro, M. 2016.
Evaluating Real-Time Strategy Game States Using Convolu-
tional Neural Networks. In Proceedings of the 2016 IEEE Con-
ference on Computational Intelligence in Games (CIG), 1-7. Pis-
cataway, NJ: Institute for Electrical and Electronics
Engineers. doi.org/10.1109/CIG.2016.7860439

Uriarte, A., and Ontafon, S. 2016. Single Believe State Gen-
eration for Partially Observable Real-Time Strategy Games.
In Proceedings of the 2017 IEEE Conference on Computational
Intelligence in Games (CIG), 296-303. Piscataway, NJ: Insti-
tute for Electrical and Electronics Engineers.

Uriarte, A., and Ontafnion, S. 2017. Combat Models for RTS
Games. [EEE Transactions on Computational Intelligence and
Al in Games (PP)99. doi.org/10.1109/TCIAIG.2017.2669895
Whitehouse, D.; Powley, E. J.; and Cowling, P. I. 2011.
Determinization and Information Set Monte Carlo Tree
Search for the Card Game Dou Di Zhu. In Proceedings of the
2011 IEEE Conference on Computational Intelligence in Games
(CIG), 87-94. Piscataway, NJ: Institute for Electrical and
Electronics Engineers. doi.org/10.1109/CIG.2011.6031993

Competition Report

Santiago Ontafion is an associate professor in the Com-
puter Science Department at Drexel University. His main
research interests are game Al, case-based reasoning, and
machine learning, fields in which he has published more
than 150 peer-reviewed papers. He obtained his PhD from
the Autonomous University of Barcelona, Spain. Before
joining Drexel University, he held postdoctoral research
positions at the Artificial Intelligence Research Institute in
Barcelona and at the Georgia Institute of Technology in
Atlanta, and he lectured at the University of Barcelona.

Nicolas A. Barriga holds a PhD in computing science from
the University of Alberta as well as a BSc, in engineering and
a MSc in informatics engineering from Universidad Técnica
Federico Santa Maria. After a few years working as a software
engineer for the Gemini and ALMA astronomical observa-
tories, he turned to game Al research, in which domain he
is currently working on learning, search, and abstraction
mechanisms for RTS games.

Cleyton R. Silva has a bachelor’s degree in computer sci-
ence from the Universidade Federal de Vicosa, Brazil, and
he is currently a master’s student at the same institution. He
is interested in Al and intelligent agents.

Rubens O. Moraes has a bachelor’s degree in computer sci-
ence from Universidade Candido Mendes, Brazil, and a spe-
cialization in project management and computer informa-
tion systems from Instituto Federal Fluminense. Moraes is
currently a master’s student at Universidade Federal de
Vicosa, and he is interested in Al, machine learning, and
real-time strategy games.

Levi H. S. Lelis is an assistant professor in the Departa-
mento de Informética at Universidade Federal de Vicosa
(UFV), Brazil. He is interested in AI and has focused his
research on the subfields of heuristic search and planning.
Lelis joined UFV after obtaining his PhD from the Universi-
ty of Alberta, Canada.

SPRING 2018 83



