
An Omnipresent Phenomenon
The popular 1946 film It’s a Wonderful Life focuses on the tri-
als and tribulations of George Bailey, who decides on the
objective of suicide as the best remedy for his seemingly
insurmountable situation. At the film’s crucial turning point,
an event occurs that compels George to instead save Clarence
Odbody, his guardian angel. Clarence helps George to see the
great value of his life, which leads George to abandon death
and instead choose life. This dramatic change in goals has
many other examples in storytelling and cinema. In the 2015
film The Force Awakens, for example, we encounter FN-2187,
a reluctant stormtrooper (later dubbed “Finn”) who, after
observing a horrific event, decides to rebel against his supe-
riors by shifting his allegiance from the evil Galactic Empire
to the good Resistance. Again, this represents not only a
change in plans, but a change in objectives.

Dynamic goal reprioritization is not limited to the enter-
tainment realm. Before the events of December 7, 1941, for
example, the USA pursued the stated objective of peace with
the Axis powers, but this soon changed. Governments con-
tinue to alter their goals based on the results of elections, on
international incidents, and on other motivating factors.
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■ Goal reasoning has a bright future as
a foundation for the research and devel-
opment of intelligent agents. Goal rea-
soning is the study of agents that can
deliberate on and self-select their objec-
tives, which is a desirable capability for
some applications of deliberative auton-
omy. This capability is of interest to sev-
eral AI subcommunities and applica-
tions. Our group has focused on how
goal reasoning can assist with control-
ling autonomous systems. The impor-
tance of how agents reason about goals
is growing and it merits increased atten-
tion, particularly from the perspective of
research on AI safety. In this article, I
introduce goal reasoning, briefly relate
it to other AI topics, summarize some of
our group’s work on goal reasoning
foundations and emerging applications,
and describe some current and future
research directions.



There is also evidence that we humans continually
manage our own goals as we react to our evolving sit-
uation (Altmann and Trafton 2002). We may suspend
current goals to pursue others (for example, that
relate to biological, emotional, or social needs), or
even abandon goals we deem to be unachievable or
of lower priority. Such goal switching may occur, for
example, when we receive a request from our super-
visor, when we unexpectedly encounter an old
friend, or when we are given tickets to attend a
favorite event. 

Similarly, intelligent agents may benefit from
deliberating about, and changing, their active goals
when warranted. This flexibility may allow them to
behave competently when they are not preencoded
with a model that dictates what goals they should
pursue in all encounterable situations.

I refer to goal reasoning (GR) as the process by
which intelligent agents continually reason about
the goals they are pursuing, which may lead to goal
change (Cox 2007; Muñoz-Avila et al. 2010; Klenk et
al. 2013; Vattam et al. 2013). This general topic has
been studied, using different terminology, in multi-
ple disciplines for several decades. In this article, I
summarize our group’s research on GR, which has

been strongly influenced by perspectives on cogni-
tive architectures and symbolic task planning. 

Situating Goal Reasoning Agents
Figure 1 highlights a key property of interactive GR
agents, where we use an observe, orient, decide, act
(OODA) loop to frame the agent’s decision cycle.1 In
this figure, we assume a human operator can interact
with the agent, at least to provide an initial objective
or objectives. In contrast to some others, GR agents
can deliberate on a space of goals, dynamically adjust
goal priorities, and perform goal-management func-
tions (for example, formulation, commitment, and
suspense). 

Many dimensions for goals exist. For example, bor-
rowing and adapting from van Riemsdijk et al.’s
(2008) taxonomy, these include (among others) type,
specificity, duration, purpose, condition, and persist-
ence.

Type: Goals can be declarative (referring to belief
states) or procedural (referring to actions).

Specificity: Goals may refer to a concrete instance or an
abstraction (for example, region of belief states,
sequence of actions).
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Figure 1. Goal Reasoning Agents Can Formulate Their Own Goals.
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Duration: Goals may refer to a static time point or be
durative.

Purpose: Some goals are designed to learn world knowl-
edge (that is, query or knowledge goals [Bengfort and
Cox 2015]), while others are attainment goals (that is,
they exploit such knowledge).

Condition: Goals can be unconditional, or conditioned
on beliefs or other goals.

Persistence: Goals may, or may not, be interruptible.

Here I focus on goals that are declarative, that are
specific points in belief space not involving knowl-
edge acquisition, that are unconditional and that can
be interrupted, though extensions of GR should be
amenable to other types of goals and dimensions. 

GR agents are intended for use in complex envi-
ronments (Russell and Norvig 2016), meaning that
they are characterized by some of the properties
highlighted in table 1. 

Most of these properties are well studied — for
example, a dynamic environment is one in which
other agents and effectors (such as weather) can
modify the environment during the agent’s decision-
making cycle. However, two properties are especially
relevant to goal reasoning: operator availability and
goal model.

Operator availability: If the agent’s human operator is
always available, then they could potentially provide
continuous control, alleviating any need for agent
self-control. GR is relevant in situations where the
operator is not always available.2

Goal model: If the agent is given a complete function
Fg: S → G that determines what goal g ∊ G should be
pursued for all encounterable situations s ∊ S, then

there is no need to perform dynamic inference in sup-
port of goal reasoning. Rather, GR becomes a (degen-
erate) retrieval task. We are interested in rich environ-
ments where it is infeasible to provide such a complete
function.

GR agents are not intended for all environments
and scenarios. In particular, their ability to perform
goal reprioritization is not useful unless they
encounter situations that warrant goal reprioritiza-
tion (for example, impasses or affordances requiring
goal deliberation).

Inspirations
Topics relevant to goal reasoning have been studied
in computer science (for example, software engineer-
ing, AI), cognitive science (for example, cognitive
modeling, cognitive architectures), robotics, and phi-
losophy, among other disciplines. We briefly sum-
marize a small subset of related work in symbolic
planning, cognitive architectures, and intelligent
agents that has motivated our group’s research.

Planning
Most research on symbolic task planning pertains to
the following problem: given initial and goal states i,
g ∊ S from a set of states S, and a model MΣ of actions
that can be applied to traverse among these states,
generate a plan π that can be applied in i to traverse
into g. In this classical formulation, no monitoring
of the plan’s execution takes place, and the agent
cannot change g. Many investigations have relaxed
these assumptions, as can be seen, for example, in

Environment Dimension Simple Complex

Operator Availability Constant Intermittent or Inaccessible

Goal Model Complete Partial

Accessibility Full Partial

Updates Static Dynamic

Action Effects Discrete Continuous

Action Outcomes Deterministic Stochastic

Agents Single Multiple

Table 1. Goal Reasoning Agents Are Most Appropriate for Complex Environments.



continual planning (Chien et al. 2000), where
human operators can provide an agent with addi-
tional goals during run time, and oversubscription
planning (Smith 2004), where the planner must rea-
son about which among conflicting goal(s) it should
attempt to achieve. More recent work has described
planning in the context of a class of conditional
goals by reasoning about trade-offs among sensing
costs and goal rewards (Talamadupula et al. 2010).
These and other dynamic deliberation tasks closely
relate to GR, and one perspective is that GR is a
methodology for plan monitoring in the context of
planning and acting (Ghallab et al. 2014). In the sec-
tion on foundations, I describe a process model of
goal reasoning that borrows heavily from symbolic
task planning models.

Cognitive Architectures
Solutions for GR have frequently been included in
cognitive architectures. For example, Soar’s universal
subgoaling provides a process for responding to
impasses during problem solving by posting a new
subgoal to solve (Laird and Newell 1983). To use this
approach, TacAir-Soar was provided with a top-down
goal hierarchy that encodes doctrine, missions, and
tactics for its simulated air vehicles to perform, along
with a bottom-up hierarchy of rules to guide inter-
rupt processing (Jones and Laird 1997). An extreme
form of this approach would provide an agent with a
complete goal hierarchy, relieving any need for goal
deliberation but requiring a complete model Mg for
dynamic goal selection. Marinier, van Lent, and
Jones (2010) later discussed the use of appraisal the-
ories in SOAR to support GR processes. Choi (2011)
instead extended Icarus (Langley et al. 2004) to nom-
inate top-level goals (from a long-term memory of
general goals) and continuously manage them
through a prioritization function. Altmann and
Trafton (2002) describe the integration of a model in
Act-R (Anderson and Lebiere 1998) to replace its
architectural goal stack for managing goals, and show
that goal-directed behavior can be explained using
mechanisms of goal activation and associative prim-
ing. Finally, Cox et al. (2016) describe MIDCA, which
models a metacognitive process for goal change and
a cognitive process for goal generation. It manages
unexpected events in dynamic environments. Our
work differs from this body of research in that we
investigate a variety of GR process models independ-
ent of a broad psychological theory that guides and
constrains cognitive architecture design. 

Intelligent Agents
Many GR contributions have been proposed in the
context of intelligent agents. Cox (2007) describes a
perpetual self-aware cognitive agent that was
designed for continuous autonomous operation in
complex environments. Its integration of planning,
execution, and goal generation components directly

inspired our research on GR. Coddington and Luck
(2004) describe how an agent’s context (that is, its
environment situation) can be used to constrain goal
selection and prioritization. Coddington (2006) later
describes MADbot, an agent that dynamically gener-
ates goals in response to its internal motivation mod-
el. Research on motivated agents (Hawes 2011), large-
ly inspired by belief-desire-intention (BDI)
architectures, has addressed the representation of
goal types, their properties, and reasoning lifecycles
(for example, Braubach et al. 2004; Dastani and van
der Torre 2004; Harland et al. 2014). Many agent pro-
gramming languages support automated planning in
the context of BDI architectures (Meneguzzi and de
Silva 2015); they relax several environment assump-
tions that are common to earlier research. While we
share interest in such environments, we do not
always use a BDI-inspired framework for our GR
agents, nor encode them in a specific agent pro-
gramming language. 

Foundations
Cox (2018) presents a formal model of goal reason-
ing, defining goal transformation function β(s, g) → gʹ

to return a (possibly new) goal gʹ given current state
s and goal g. β(∙) maps ⟨state,goal⟩ pairs to a new goal,
thus modeling a GR agent’s function for dynamical-
ly selecting goals. Cox further introduces a model of
goal change Δ = {δ|δ: G → G} that represents a set of
potential transformations on goals (for example,
null, deletion, subgoaling) that the agent may select.
For a sequence of decisions δ1δ2, … δn ∊ Δ, the result
will be

Cox uses this model as the basis to formalize notions
of planning, acting, and interpretation. Cox also
shows how this formalization can be applied to
describe the GR model we introduce next. 

Our GR research began with investigations of goal-
driven autonomy (GDA) (Molineaux, Klenk, and Aha
2010), which is a simple anomaly-driven agent mod-
el. GDA extends Nau’s (2007) framework for online
planning by introducing a process for its controller.
In figure 2, we display this extended framework by
decomposing Nau’s controller into orient and decide
subprocesses. As is common, we model the environ-
ment as a tuple MΣ = (S, A, E, γ) with states3 S, actions
A, exogenous events E, and state transition functionγ: S ⨉ (A ∪ E) → 2S, which describes how an action’s
execution (or an event’s occurrence) transforms the
environment from one state to another in S. (We do
not assume that MΣ is complete or correct.) The ini-
tial state, obtained from Observe’s sensors, is stored
in s, while the operator provides goal g. The planner,
given both of these and MΣ, generates plan π = ⟨a1, …,
an⟩ (that is, a sequence of actions, each in A) and

!n …!2 !1 g( )( )( ) = !g
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expectations χ = ⟨χ1,…, χn⟩ (that is, distributions of
expected states in S after executing each sequential
action a1 ∊ π, starting in s).

The GDA model monitors π’s execution. This
involves four steps: (1) discrepancy detection, (2)
explanation generation, (3) goal formulation, and (4)
goal management.

Step 1, discrepancy detection, compares the observations
obtained from executing action ai in belief state si with
expectation χi (that is, this tests whether any con-
straints are violated, corresponding to unexpected
observations). If a discrepancy d is found, then it is
given to step 2.

Step 2, explanation generation. Given next state s(i+1)
(provided by γ), si, and d, this process hypothesizes an
explanation e ∊ E (not shown in figure 2) of its cause.

Step 3, goal formulation. Given d, e, and s(i+1), this
process generates a goal gʹ ∊ G (not shown). 

Step 4, goal management. Given a set (initially empty)
of pending goals GP ⊆ G and gʹ, this process may
update GP and will select the next goal g to feed to the
planner.

GDA does not specify what algorithms to use for
these processes or what representations to use for

these data models. Details of our initial GDA agent,
ARTUE, and its analysis are given in Klenk et al.
(2013). 

Several groups have used GDA as a starting point
for research on GR. For example, Molineaux and Aha
(2015) describe an abductive method for continuous
explanation generation that employs a constrained
heuristic search to identify plausible explanations,
given unexpected observations.4 This method may
result in modifying initial state assumptions or the
action models of other agents in the environment.
Revised models can be learned and used to interpret
future similar occurrences (Molineaux and Aha
2014). Powell et al. (2011) use active learning tech-
niques with GDA to acquire a function that maps
states to goals. Weber, Mateas, and Jhala’s (2012) EIS-
Bot plays a complete real-time strategy (RTS) game
that uses GDA to select objectives (that is, which
units to produce). Jaidee, Muñoz-Avila, and Aha
(2013) describe a GDA variant that uses reinforce-
ment learning to learn a goal selection function for
each unit type in an RTS game. Paisner et al. (2014)
describe how to model GDA in MIDCA. Dannen-
hauer, Muñoz-Avila, and Cox (2016) instead extend
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Figure 2. A Depiction of the Goal-Driven Autonomy (GDA) Model of Goal Reasoning.
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the GDA model to reason about sensing actions that
have associated costs and about the way in which dif-
ferent methods for generating expectations impact a
GDA model’s performance. 

While GDA can model simple GR processes, it does
not explicitly model goal constraints, the relation of
goals to tasks for achieving them, or processes for sus-
pending or revising goals whose plans are not exe-
cutable. This limitation motivated the development
of a more comprehensive process model for GR. In
Roberts et al. (2014), we introduced such a model,
based on goal refinement, an extension of plan
refinement (Kambhampati, Knoblock, and Yang
1995) that models the progressive refinement of
goals through the addition of constraints. Goal
refinement can represent the context in which a goal
is pursued by a GR agent. Our goal refinement
process model is the Goal Lifecycle. Figure 3 displays
a simplified version of it. This model transitions a
goal node (that is, a pairing GN = (g, C) of goal g with
constraint set C) through increasingly detailed
modes (for example, formulated, selected) by apply-
ing constraint-refinement strategies that progress
goal nodes toward completion. The strategies include
formulate, select, expand, commit, and dispatch.

Formulate creates a new goal node and enters it into
the Goal Lifecycle by defining its initial constraints,
criteria, and prerequisites.

Select chooses which goal(s) to actively pursue; it
ensures that the goals’ prerequisites are met and that
the agent has the resources to pursue them. 

Expand generates a set of expansions X (for example,
plans, decompositions of nonprimitive goals, or tra-
jectories of primitive goals) to achieve a goal g in goal
node GN, and a set of expectations for each. 

Commit picks an expansion x ∊ X to pursue from those
generated by expand.

Dispatch executes the committed expansion and
defines the criteria by which g can be evaluated during
execution.

The Goal Lifecycle also includes strategies for
reacting to events and changes during execution.
After being dispatched, a goal expansion is moni-
tored and, if a discrepancy is detected, it can be eval-
uated. As a result, the GR agent may continue exe-
cuting the expansion, it may drop GN (as either
completed or failed), or it may try to resolve the dis-
crepancy through one of several strategies (for exam-
ple, repair, defer) that transition GN to an earlier
mode before execution resumes. This approach sup-
ports goal adaptation, deferment, and even reformu-
lation. The Goal Lifecycle captures decision points
during a goal’s activation, and can be represented as
a set of decide subprocesses (figure 4) where this life-
cycle’s strategies subsume the decision processes
denoted in figure 2, and we introduce a data struc-
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Figure 3. The Goal Lifecycle — A Goal Refinement Model of Goal Reasoning.
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ture (GN) that records substantial information asso-
ciated with each goal node (for example, goal, asso-
ciated constraints, mode, selected expansion/plan,
plan expectation, associated discrepancies).

Goal refinement is only one extension of plan
refinement, which equates multiple planning algo-
rithms in plan-space and state-space planning. Oth-
er extensions incorporate different forms of planning
and clarify issues in the Modal Truth Criterion
(Kambhampati and Nau 1994). More recent for-
malisms (for example, Angelic Hierarchical Plans
[Marthi, Russell, and Wolfe 2008] and Hierarchical
Goal Networks [Shivashankar, Alford, and Aha 2017])
can also be viewed as leveraging plan refinement.
Employing constraints in plan refinement allows a
natural extension to the many integrated planning
and scheduling systems that use constraints for tem-
poral and resource reasoning.

Our Goal Lifecycle resembles the one proposed by
Harland et al. (2014) for BDI agents, which they pro-
vide operational semantics for and demonstrate on a
Mars rover scenario. Winikoff, Dastani, and van
Riemsdijk (2010) have linked linear temporal logic
(LTL) to the expression of goals. As described later, we
have as well, though our work with Goal Reasoning
with Information Measures (GRIM) focuses on agent
teams rather than single agents.

In summary, the Goal Lifecycle provides a formal
structure for goal refinement, such that the GR agent
can deliberate on and adapt its goals in response to
dynamic and unpredictable events. As described
next, our GR agents employ variants of GDA or more
comprehensive Goal Lifecycle models. 

Emerging Applications
To date, our GR applications have focused on con-
trolling autonomous unmanned vehicles, either sim-
ulated or hardware. This section summarizes three
such applications: the first employs the GDA model,
the second uses a substantial modification of it, and
the third instantiates the Goal Lifecycle. 

Underwater Vehicles 
This section briefly summarizes initial studies on
using GR to control an unmanned underwater vehi-
cle (UUV). Details on the implementation and results
can be found in Wilson et al. (2018).

UUVs can perform several important missions (for
example, surveillance, mine countermeasures, plume
source localization, hull inspection), which motivate
a high demand for robust UUV control methods.
These vehicles must operate in mission environ-
ments that, unlike others (for example, ground, air,
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Figure 4. A Depiction of a Goal Lifecycle Model of Goal Reasoning.

2. Orient
• Discrepancy Detector
• Explanation Generator

3. Decide
• Goal Lifecycle Strategies

1. Observe
    (Sensors)

D
at

a 
M

o
d

el
s

A
g

en
t

4. Act
    (Effectors)

Operator

Other
Agents

Event
Generators

UId,eM GNs

Environment ∑

g´
gΣ



near-earth space), may prevent their communication
with human operators for long durations (for exam-
ple, weeks). Also, most UUV sensors (for example,
acoustic sonar) cannot provide rich situation assess-
ment information, which exacerbates the challenge
of operating in an environment subject to several
hazards (for example, fishnets, marine life, mines,
uneven bathymetry, other vehicles) and effectors (for
example, currents, sea state). This combination of
factors motivates the investigation of intelligent con-
trol strategies, such as GR techniques, to assist with
ensuring that a UUV operates competently when
unexpected states arise.

While some studies apply GR agents to robotics
tasks (for example, Cox et al. 2016), these agents
have rarely been applied to control UUVs. Similarly,
while many researchers use AI techniques for UUV
control (for example, Cashmore et al. 2015; McMa-
hon and Plaku 2016; Rajan and Py 2012), few employ
GR techniques. One exception is the recent work by
Oxenham and Green (2017), who use a GDA model
(in MIDCA) for dynamic power management of a
UUV’s multicore processor during long-duration mis-
sions. Their initial work concerns simulated scenarios
involving a discrete domain; in-water tests are
planned in the future. In contrast, our GR agent, also
based on GDA, performs deliberative mission man-
agement and can support multiple UUV missions.

We installed our agent in a dedicated single-core
CPU aboard an OceanServer Iver2,5 a low-cost, light-
weight UUV (of diameter 14.7 centimeters, length 12
centimeters, and weight 19 kilograms, with a top
speed of about 2.0 meters per second). The Iver2’s
Underwater Vehicle Console (UVC) processes raw
sensor data. We use MOOS-IvP (Benjamin et al. 2010)
to connect our agent with the UVC, and specifically
iOceanServerComms.6 MOOS-IvP receives updates
from the UVC and posts them to MOOSDB, a cen-
tralized server that coordinates message passing
among autonomy applications. Our agent receives
updates to relevant variables in MOOSDB, from
iOceanServerComms or MOOS-IvP simulation soft-
ware, to populate its state. For actuation, our agent
sends commands to IvP Helm, a reactive, behavior-
based motion controller that sets navigation param-
eters to generate collision-free trajectories. IvP Helm
uses an interval programming technique that per-
forms multiobjective optimization over the active
behaviors’ objective functions in the navigation
space (typically, heading, speed, and depth). To
match the dynamics of MOOS-IvP’s simulator with
our vehicle, we use several default MOOS-IvP values
(for example, buoyancy rate, maximum acceleration)
that accurately capture the UUV’s dynamics in field
trials (McMahon and Plaku 2016). 

Figure 5 displays our GR agent architecture, which
is an adaptation of ARTUE (Molineaux, Klenk, and
Aha 2010). Our agent employs a variant of the Plan-
ning Domain Definition Language (PDDL) for plan-

ning and explanation, based on features of PDDL+,
which is a symbolic language for specifying planning
domains with discrete actions (Coles and Coles
2014). It can represent and reason with continuous
state values, exogenous events, and continuous
processes, all of which are pertinent to the underwa-
ter environment.

Our agent’s discrepancy detector compares expect-
ed with observed states (constructed from processed
sensor data and simulated environmental elements).
It compares them using set-difference for facts and
value comparison with a floating-point tolerance for
numerically valued fluents, using the same predicate-
logic representation of states as our planner. To
explain a discrepancy, it uses a C++ reimplementa-
tion of DiscoverHistory (Molineaux and Aha 2015).
The goal manager formulates a goal using a simple
rule-based system, where rules evaluate the current
state and, when triggered, generate a priority value
with each formulated goal. Our hierarchical task net-
work planner is PHOBOS, which we designed to
model expectations in noisy environments. PHOBOS
generates fluent values by incorporating acceptable
ranges of possible values (per action) so as to reduce
false discrepancy rates (Wilson, McMahon, and Aha
2014). Finally, the goal manager simply ranks (by pri-
ority) all formulated goals, and the agent generates a
plan for the highest-priority goal.

We have completed initial in-water demonstra-
tions of our agent’s in situ capability at NRL’s Chesa-
peake Bay Detachment (CBD) facility. Our objective
was to show that it can respond competently to basic
maritime events. Our scenario involves reacting to
unexpected observations during execution of a sur-
vey task that would typically be performed in mine
countermeasures missions. We tasked the vehicle
with three goals: (1) reach a start location (after
departing a launch point), (2) complete the survey of
a predefined region from that location, and (3) reach
its launch point.7 During this scenario, we also sim-
ulated the transit of an unexpected unmanned sur-
face vehicle (USV) that emits engine noise and, in
some cases, active sonar pings (indicating that it is
searching for the UUV with hostile intent). Both
noise and pings generate discrepancies, and for pings
we defined as the UUV’s appropriate response to pur-
sue the goal of reaching a “safe point” (that is,
retreat). Figure 6 depicts the UUV’s area of opera-
tions, showing the survey region, the UUV’s launch
point, and the endpoint regions for the simulated
USV.

For this scenario, the agent’s PDDL domain
description included (1) the vehicle’s location, depth,
speed, and heading; (2) notional processed input
from passive sonar sensors (classified as “engine
noise” or “active pings”); (3) actions for traversing to
a waypoint and surveying a region (which causes the
vehicle to execute “lawnmower” motion patterns);
and (4) exogenous events for state changes as com-
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municated by the UVC. These events may be antici-
pated by the planner or inferred during explanation
generation.

We first tested our agent in simulated neutral and
hostile mode scenarios, where only the latter includ-
ed active sonar pings. The simulated USV starts in the
center of the UUV’s target survey region, picks a
heading to one of the two endpoint regions, loiters
for a specified time (to ensure the UUV encounters
it), and then begins traversing. The USV emits an

engine noise with a detectable radius. Meanwhile,
the UUV departs its launch point toward its survey
region. It detects the unexpected engine noise and
interprets it as a discrepancy that triggers the expla-
nation generator to identify that a contact is within
range, but without detecting a (hostile) ping, no new
goal will be formulated. In contrast, when a ping is
encountered, the explanation generator concludes
that there is a hostile vehicle within range, and goal
formulation recommends (with high priority) a goal
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Figure 5. A GDA Model of Goal Reasoning for Unmanned Underwater Vehicle (UUV) Control.
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to retreat to the safe point. When the pinging is no
longer detected, the explanation generator will con-
clude that there is no hostile vehicle in that region.
At this time, goal generation directs the UUV to
resume its prior goal, and it completes its mission. In
25 trials, in which the mode was randomly varied
along with other independent variables (for example,
the simulated USV’s route), the UUV responded
appropriately each time.

We then tested our agent at CBD using the same
scenarios. From six trials we collected data with the
UUV traversing at the sea surface or maintaining a
depth of 0.75 meters. Equal numbers of trials were
used for hostile and neutral USVs. In each trial, the
UUV correctly detected the USV and its active ping-
ing (for the hostile condition), and reacted by
explaining the discrepancy and formulating the cor-
rect goal in response. Due to our calm marine envi-
ronment, we did not encounter significant position-
al sensor drift during the relatively short mission.
Generously modeling our expectations using PHO-
BOS’s ranged values provided sufficient tolerance for
the noise that we did observe in the surface and
underwater trials. Figure 7 depicts traces from a hos-
tile and nonhostile trial, respectively.

In summary, our GR agent can successfully control

an Iver2 UUV in at-sea tests in simple scenarios using
only the limited computational resources typically
available on UUV platforms. It can formulate goals
and execute plans based on the user’s input. It can
recognize completion of prior goals, detect discrep-
ancies, and formulate (and act on) new goals in
response. Our future work plans include testing more
advanced goal formulation techniques (Wilson,
Molineaux, and Aha 2013), which will reduce the
need for domain-specific knowledge. We will also
integrate a more advanced motion path planner that
can provide cost (that is, time, energy) estimates for
plan execution (McMahon and Plaku 2016), which
will allow our agent to make more informed goal
selection decisions. Finally, we will explore more
challenging scenarios that include noise in sensor
models; maritime sources of sensor interference; real
(rather than simulated) sensors; more advanced
motion behavior (for example, vehicle tracking);
UUV hardware faults; multiple surface vehicles;
mine-like objects that can be discovered during sur-
veys; and a larger space of goals (for example, for
communicating events of interest to human opera-
tors, patrolling a region, or gathering information
about encountered objects).
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Figure 6. Overhead View of NRL’s Chesapeake Bay Detachment (CBD) 
with Key Locations Highlighted Pertaining to Our In-Water Tests.
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Beyond-Visual Range Air Combat
Unlike with UUVs, our work on unmanned air vehi-
cles (UAVs) is in the context of human-agent teams
that may include multiple vehicles, and it is focused
on one mission type. We briefly summarize these
efforts. Additional details can be found, for example,
in Floyd, Karneeb, and Aha (2017) and Karneeb et al.
(2018). 

The United States Air Force (USAF) envisions
future roles for autonomous platforms (for example,
UAVs) (James and Welsh 2015), including in human-
machine combat teaming operations. Among these
is beyond-visual-range (BVR) air combat (or, simply,
BVR), which is a modern form of air-to-air warfight-
ing. In BVR, opposing teams of aircraft engage over
large distances (that is, over 100 kilometers), where
each team attempts to destroy their enemy (using
active radar homing missiles with ranges of approxi-
mately 50 kilometers) or to force them to retreat.
Similar to close-range dogfighting, BVR engagements
can involve multiple aircraft (teammates and adver-
saries) operating in a contested airspace. However,
BVR is less reactive and involves more deliberation,
with positioning and timing being more important
than motion planning. Still, the BVR environment is
continuous, partially observable (due to limited sen-
sor ranges), and noisy (due to sensor errors); and air-
craft behaviors must satisfy tight real-time con-
straints to evade opponent attacks and avoid
dangerous maneuvers (for example, flying too low,
colliding with teammates). BVR scenarios also incur
substantial uncertainty, as the adversary’s assets (air
and ground), configurations, and preferred tactics are
not always known a priori. Finally, as BVR scenarios
unfold, the battle situation can change rapidly,
which can present opportunities and problems that
encourage changes in mission objectives. Thus, con-
trolling wingmen UAVs in future mixed human-UAV

BVR teams motivates the development of GR-con-
trolled agents. 

We studied this task in the context of two high-
fidelity simulators, NGTS (NAVAIR 2013) and AFSIM
(Clive et al. 2015), which are used for research and
operations analysis and which include models of
weapons, sensors, and communication networks.
Few other applications of AI agents have been report-
ed for this context. One exception is RIPR (Clive et al.
2015), which was designed with the assistance of sub-
ject-matter experts (that is, ex-fighter pilots). RIPR
performs competently in BVR scenarios across all
aspects of an encounter (for example, target pursuit,
attacking, escaping danger). Another example is
Alpha (Ernest et al. 2016), which employs tactics,
represented as fuzzy trees, that are learned by genet-
ic algorithms. Alpha performs well against expert
pilots, and is designed as an AFSIM “red” team for
training. Unlike our GR agent, RIPR and Alpha are
not designed to deliberate about dynamic unexpect-
ed events. In research with low-fidelity simulators
(that is, simple 2D environments with no sophisti-
cated flight and aircraft models), genetic algorithms
have been used to optimally assign targets to each
aircraft (Luo et al. 2005) and to select initial team for-
mations (Mulgund et al. 1998). These approaches
support a subset of our agent’s behaviors, they are
performed only before a scenario starts, and they do
not respond to changes in the environment or to
unexpected opponent behavior.

Our GR agent, the tactical battle manager (TBM), is
designed to control one or more UAVs in mixed
human-UAV BVR mission scenarios, where the UAVs
serve as wingmen to the human pilot. At the start of
a scenario, the TBM receives a mission briefing con-
taining information about its team, which is
assumed to be correct, and the opponents, which
may be incorrect. Team information includes team
leader, capabilities (for example, each teammate’s air-
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Figure 7. Traces from a Hostile and NonHostile Trial.

The left image depicts mission traces when a hostile USV’s active sonar pings are encountered, in which case the UUV retreated to its safe
point and circled until the USV departed, while the right image depicts a mission trace with a neutral or nonhostile USV. 



craft type, missiles), tactics (for example, preferred
altitudes for engagement, preferred approach angles),
speed (for example, passive, approach, engagement,
escape), and weapons (for example, distances at
which missiles are expected to hit, distance from an
opponent that is considered dangerous). Information
about the opponents includes their number of air-
craft, aircraft type, and weapons capabilities. Many
challenging situations can arise during these scenar-
ios. For example, the human pilot may become
unavailable (for example, distracted or departed), the
hostiles’ capabilities may exceed expectations, or
additional friendly assets may become available. 

To address these challenges, the TBM integrates
several components that can (in parallel) access, cre-

ate, and modify information in the shared data mod-
els (figure 8), where β is the current belief state. This
design allows the components to process informa-
tion in real time and avoids delays caused by slower
components. The TBM’s agent interpreter recognizes
the behaviors of hostile aircraft using its models of
them (MA). We showed that a case-based reasoning
technique (Borck et al. 2015), which uses features
that model an agent’s prior behaviors, performs well
on this task. We later extended it with an active plan-
ner that “teases out” a hostile’s behavior (to disam-
biguate it from others) and showed that this active
planner further improves performance (Alford et al.
2015). After belief revision takes place (not shown in
figure 8), the TBM’s state assessor calculates the
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Figure 8. A Modified GDA Model of Goal Reasoning for Controlling a UAV Wingman in a Mixed Human / UAV Beyond-Visual-
Range (BVR) Air Combat Team.
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degree to which the current beliefs satisfy the desires
data model (Δ), where example desires are to main-
tain the TBM’s safety or disrupt hostile movements.
Inspired by BDI theory (Rao and Georgeff 1991),
these (criticality-weighted) desires (Δ = ⟨Δ1, ⋯, Δm⟩)
are functions that map the current sensor stream to
[0,1], where higher values indicate higher satisfac-
tion. The TBM represents a goal as a set of preferred
desire values g = ⟨pref1, ⋯, pref m⟩, and it attempts to
achieve environment states that satisfy its active
goal’s desires. The TBM’s discrepancy detector tests
the following discrepancies (D), some of which refer
to preferred desires: Incoming Missile; Model Changed;
Flanking Hostile; Expectations Violated; Out of Ammo;
Low on Fuel; and Opportunistic Target (Karneeb et al.
2018). For example, Incoming Missile identifies unex-
pected hostile missiles (which allows the TBM to
dynamically respond to an attack and attempt to
evade the missile), Low on Fuel tests whether that
resource is running low, and Expectations Violated
tests for violations of any of the current plan’s expec-
tations, which are generated by the state predictor. 

The TBM’s goal manager will change the active
goal upon receiving a command from the human
pilot or when it generates a new goal. The latter can
occur when the TBM successfully achieves its current
goal, when it predicts it will fail to achieve it (for
example, when unanticipated hostile behaviors are
expected to thwart the current plan), or when it rec-
ognizes an opportunistic situation that will benefit
its mission (for example, a more appropriate target).
The TBM continuously monitors for discrepancies D
and uses a set of rules to determine whether a goal
change is warranted. If so, the planner takes as inputβ, the new goal, the environment model MΣ, and the
recognized plans of other entities to generate a new
plan to execute. Ours is a plan library planner (Bor-
rajo, Roubícková, and Serina 2015) that uses a library
of ungrounded plan templates, provided by BVR
domain experts, to represent desirable air combat tac-
tics. The planner generates instantiations of applica-
ble plans, abiding by constraints defined in the mis-
sion briefing (for example, maximum attack speed,
attack angle) or resource availability (for example,
number of remaining missiles). To evaluate each can-
didate plan, the TBM predicts its outcome using the
state predictor (which uses AFSIM), calculates how
well each plan achieves each desire, and selects the
plan that is predicted to best achieve the TBM’s cur-
rent goal. For some discrepancies, the TBM invokes
the planner to find a new plan to satisfy the current
goal. If one is found, then this replanning obviates
the need for goal formulation.

We conducted several simulation studies to test
the TBM’s capabilities, including the component
ablation study summarized here. We wanted to test
whether the TBM can outperform RIPR and whether
each key TBM component contributes positively to
overall mission performance. To do this, we aug-

mented a CMASI message set (Duquette 2011) to
enable communication between the TBM and
AFSIM’s reactive UAV controller. We developed TBM
ablations where we replaced one component with a
simplified (but still functional) version (for example,
the default discrepancy detector detects only Incom-
ing Missile). We defined constrained random 4v4 sce-
narios (figure 9), where the TBM controlled the blue
team, and RIPR or an ablated TBM variant controlled
the red team. In each scenario, each team is aligned
in a column with opposing teams spaced 4.5 times
the distance among team members. In 100 random
scenarios, each aircraft’s 2D position was modified by
a small amount, and the scenarios were repeated
with teams in switched positions. Each of the 200 tri-
als ended when one team was completely destroyed
(a “win”) or 20 minutes elapsed. For this study, we
created a representation for the weapon engagement
zone (WEZ) (for example, flight characteristics of a
missile at different altitudes and flight durations, and
aircraft rate of escape). We used a tree-induction algo-
rithm to learn weapon models from observations,
and applied them to facilitate more accurate plan-
ning (of controlled UAVs) and prediction of hostile
asset behavior. We used the WEZ to calculate the
expected range for a missile strike and to reason
about future hostile engagements (for example, if the
TBM’s UAV is flanking, and the targeted hostile has
an inferior WEZ model, then engage it at a closer dis-
tance). We also created a model of several coopera-
tive tactics (for example, decoy, scatter, bracket,
grinder) that the TBM’s planner could select to
accomplish a given goal. 

Figure 10 summarizes the results of the ablations
in the 4x4 scenarios. The TBM significantly outper-
formed its ablations (single-tailed t-test, p < 0.01),
where the average increase in win percentage varied
between 58 and 154 percent. For example, versus a
fully-ablated version (All Ablations), the TBM won
127 times and lost 50 times. 
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Figure 9. Starting Conditions for Testing the TBM GR Agent’s Team
(blue) versus a Team Controlled by a Different Agent (red) in a Con-

strained Random 4v4 Scenario. 

AFSIM screenshot; aircraft size is not to scale.



50 times. Performance improvement versus RIPR
(not shown in the figure) was more dramatic: 3200
percent. The TBM won 165 times and lost only 5
times. This result suggests that the TBM was per-
forming fairly well and that its components were use-
ful, at least for these scenarios. The TBM changed its
goals approximately five times more frequently than
when the default discrepancy detector was used, and
the most frequent discrepancies for triggering goal
formulation were (in order) Expectations Violated (due
to a plan prediction failure), Opportunistic Target (due
to opportunities to switch to a more viable target),
and Flanking Hostile.

We assisted AFRL with integrating the TBM with
their pilot-vehicle interface, which permitted testing
the TBM with subjects (fighter pilots) in BVR scenar-
ios using AFSIM. Studies were run with each pilot
leading a team of one to three TBM-controlled UAVs.
Afterward, pilots were asked to assess the TBM’s
impact on mission performance and its usability.
They reported that the TBM reduced their workload
and helped them complete their missions, and they
generally had an overall positive assessment of TBM-
controlled teammates.

In summary, dynamically modifying its own goals
allowed the TBM to respond to unanticipated events
while relaxing, to some extent, reliance on preen-
coded/instantiated plans for all possible contingen-
cies. The TBM combines techniques from GR, auto-
mated planning, opponent behavior recognition,
state prediction, and discrepancy detection. Our
empirical study demonstrated that it significantly

outperforms an expert-authored BVR agent in a set of
combat scenarios and that each reasoning compo-
nent positively influenced mission performance. Sys-
tem performance required real-time execution of all
components, which the TBM supports. Future work
should focus on integrating learning techniques into
the discrepancy detection process. As one example of
such work, the TBM should dynamically learn mod-
els of opponent aircraft and missiles (for example,
using a strategy similar to the one described in
Molineaux and Aha [2014]) and use them to detect
novel hardware configurations (for example, types of
aircraft or more advanced missiles). We also plan to
add capabilities that identify opportunistic targets
and communicate with other UAVs to more effec-
tively perform small-team tactics (for example, sur-
round the opponent, create a diversion).

Foreign Disaster Response
I next summarize our application of GR to foreign
disaster response (FDR) mission scenarios, which
focuses on the centralized control of a set of agents
using an instantiation of the Goal Lifecycle. Addi-
tional details can be found in Roberts et al. (2015),
Apker, Johnson, and Humphrey (2016), and Johnson
et al. (2016). 

An FDR mission’s objective is to provide, across the
globe, humanitarian aid after a natural disaster strike,
when many lives can be in peril and first responders
must react quickly (DOD 2011). These missions can
benefit from a heterogeneous team of UAVs and
unmanned ground vehicles (UGVs) that rapidly sur-
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Figure 10. The TBM Outperformed Its Ablations in 4v4 Scenarios
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vey the area, that identify key locations (for example,
of survivors, damaged infrastructure) and traversable
routes for ingress and egress, that locate VIPs, and
that serve as mobile communication relays. Human
coordination of such a team can be challenging, as
commands must be translated to actions by appro-
priate team members, the team must keep the
human operator informed, and the robots must react
intelligently to changes in their environment (for
example, unexpected situations or events) or their
internal state. These dynamic conditions may cause
them to change their tasks or even their objectives
(for example, if the current one is unachievable).

To address this problem, we designed the situated
decision process (SDP), which (under operator guid-
ance) uses a GR approach to control and coordinate a
robot team (that is, managing and executing their
goals) and which is designed for use by a forward
operating base. The SDP uses a centralized control
approach that provides commands to independent
vehicles. The SDP (figure 11) takes as input an opera-
tor’s commands (that is, goal updates with con-
straints) and passes them to the mission manager,
whose GR agent (informed by our subject matter
expert’s goal network, encoded in the domain man-
ager) selects a goal8 g, expands g (that is, generates
plans to achieve g), commits to one such plan πg (with
expectations χg), creates a schedule for executing πg,
and passes it to the coordination manager. This mod-
ule interprets the schedule and passes applicable com-

mands to a team executive, which assigns the com-
mands to each vehicle. Each vehicle interprets their
command as an input to a finite state automaton
(FSA), which the synthesis manager automatically
synthesizes from a variant of an LTL specification,
called general reactivity 1 (Bloem et al. 2012), and is
guaranteed to satisfy it (Kress-Gazit et al. 2009). The
FSA specifies the regions for executing the behaviors
and mission sensors that cause a behavior change
when a vehicle observes a notable event. This strate-
gy yields a play-calling architecture (Apker et al. 2016)
that provides guarantees on the execution of goals
chosen by the mission manager. Health sensors estab-
lish the conditions before a vehicle can pursue a goal
(for example, it requires sufficient fuel to reach a goal
location), while contingency behaviors ensure that it
maintains a safe posture (for example, landing an air
vehicle) or attends to the health sensor (for example,
returns to a base station to refuel). In summary, the
SDP adjusts its goals autonomously and pursues them
while constrained to abide by specific guarantees.

Our group implemented and applied, in simulated
FDR scenarios, a variant of the SDP named Goal Rea-
soning with Information Measures (GRIM),9 which
employs a single measure to assess goal utility and
communicates this utility to an operator (Johnson et
al. 2016). GRIM controls a team of two vehicles that
must survey a set of regions to locate a VIP and estab-
lish communications (figure 12). Each region (an air-
port and two office buildings) corresponds to a sur-
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Figure 11. Conceptual Design of the Situated Decision Process (SDP). 
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vey goal, where surveys follow a waypoint sequence.
The remaining uncertainty in an area survey is the
length of the search pattern that has yet to be tra-
versed by an assigned vehicle. 
Figure 13 shows the plots of the four Goal Lifecycle
strategies. Graph 13a depicts that each survey goal is
formulated by generating constraints on the maxi-
mum allowable uncertainty over time. GRIM selects
a single goal (the airport survey goal) to pursue and
expands it (that is, generates plans to achieve it).
These plans’ expectations (depicted as a change in
the uncertainty over time) are shown in graph 13b.
GRIM commits to a single expansion and dispatches
it to the vehicles. Graph 13c depicts the correspon-
ding expectations and performance bounds that are
generated by the dispatch strategy. Graph 13d dis-
plays execution performance over time, as obtained
by the monitor strategy. During execution, when the
vehicle’s performance is predicted to violate a goal
constraint (for example, in graph 13d, when its exe-
cution reaches the worst-case time bound), GRIM
triggers the evaluate strategy to determine what vio-
lation occurred. If the execution satisfies the com-
pletion criteria, the goal is marked as completed and

dropped. If it instead violates the goal’s constraints,
it is marked as failed and dropped. Otherwise, if the
performance violates the execution bounds, a resolve
strategy is activated to adjust the goal (for example,
its expansion) before continuing execution. The
selected resolve strategy can transition the goal back
to an earlier Goal Lifecycle mode (see figure 3) (for
example, it may repair the committed expansion by
adjusting parameters that affect the expectations and
bounds). Alternately, a resolve strategy may force
GRIM to expand the goal again and then commit to
and dispatch one of the new expansions.

We conducted an ablation study with GRIM’s
resolve strategies (Johnson et al. 2016) on simulated
FDR scenarios. We found that they allow GRIM to
perform GR during execution, that they improve its
performance, and that they enable it to successfully
complete more goals under uncertain and changing
conditions. By associating the Goal Lifecycle strate-
gies with a single measure, GRIM can define clear
decision points that increase the transparency of its
decision process. For an agent that can change its
goals and plans, transparency in how those decisions
are made is critical for promoting operator trust.

GRIM automatically synthesize FSAs whose execu-
tion by individual vehicles is guaranteed to satisfy
their LTL specification. Balch et al. (2006) also use
FSAs for mobile robot guidance. Hand-coding an FSA
for each execution of a robot is tedious and error
prone. Kress-Gazit, Fainekos, and Pappas (2009)
instead synthesize an FSA from an LTL specification
using a game-theoretic approach in which the robot
acts to achieve its goals versus actions taken by an
adversary. This strategy guarantees correct behavior if
the LTL specification is never violated, but synthesis
is quadratic in the number of goals (Bloem et al.
2012) and is thus intractable for large robot teams.
GRIM instead preselects missions for vehicles prior to
FSA synthesis, which reduces the size of the LTL spec-
ification and the computation time required for syn-
thesis.

Goal Lifecycle strategies are themselves important
research topics, and each can be accomplished using
a variety of algorithms. For example, the goal selec-
tion method can vary widely, from domain-specific
rule-based selection (Thangarajah et al. 2010) to the
evaluation of domain-independent heuristics (Wil-
son, Molineaux, and Aha 2013), or goal priorities
(Young and Hawes 2012). Many planning algorithms
can be used for goal expansion, including the sophis-
ticated hierarchical (Shivashankar, Alford, and Aha
2017) and temporal planners (To et al. 2017) that our
group developed and plan to integrate with future
GR agents. Finally, in many cases the planner can
generate plan execution expectations, but in some
situations additional simulations and deliberation
may be required (Auslander et al. 2015).

Future extensions of GRIM will investigate addi-
tional goal types (for example, a communications
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Figure 12. Scenario for Testing GRIM’s Ability to Control Two Vehicles
in a Simulated Foreign Disaster Relief Operation. 

The vehicles’ goals include completing a survey of the airport and office
buildings, and establishing a communications relay for any VIPs found.
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relay for a discovered VIP) and more comprehensive
algorithms and information measures. The uncer-
tainty of an area survey was approximated, for expec-
tations and progress of the goal, by the length of the
lawnmower search pattern. A more accurate measure
of uncertainty (for example, tracking the total area
covered by the vehicle’s sensors) and corresponding
expectations in an area survey would allow GRIM to
improve its performance estimates and react accord-
ingly. Also, a more intelligent goal selection
approach should consult with the expansion strategy
on the likelihood of discovering a VIP in each region.
Likewise, adapting plan expectations (for example,
recognizing that the vehicles are not completing the
survey at the expected rate, and changing the expec-
tations accordingly) would enable GRIM to more
quickly identify and evaluate problems, and thus
improve the likelihood that it could resolve any dis-
crepancies. Finally, our studies to date have been in
simulation; we intend to test extensions of GRIM in
robotics scenarios in the future.

Prospects
Many interesting research issues deserve attention in
the study of GR agents. Our group has made some
progress, as described below. Information on other
relevant work has been reported, for example, at the
Goal Reasoning Workshop series10 and in a recent
special issue in AI Communications.

While our focus has been on autonomous vehicle
control, GR can be a foundation for (unembodied)
proactive decision aids in collaborative decision-
making contexts. One compelling example is in sup-
port of a military command staff, where the agent
could monitor an ongoing mission’s status (for exam-
ple, the area of operations, the status of friendly and
other known assets, the probability of achieving the
mission objectives), observe interactions among staff
members as they consider alternative courses of
action, provide information when prompted, formu-
late its own recommendations, and recognize when
to share these with the staff. These capabilities could
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Figure 13. Plots of Four Goal Lifecycle Strategies from the Execution of GRIM on Simulated FDR Scenarios.
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also help civilian groups, such as those responsible
for marketing, financial investment, and budgeting
decisions. 

A more sophisticated GR agent would be required
to assist these human-agent teams. For example, it
would need to perform automated scene under-
standing and situation assessment. Although we
integrated deep learning (for image recognition)
(Bonanno et al. 2016) and natural language under-
standing techniques (Gillespie et al. 2015) with GR
agents, these have been in constrained settings. Our
GR agent would also need to detect and reason about
observations not anticipated by its action, event, or
agent models. For this purpose, we developed Dis-
coverHistory, which performs continuous explana-
tion generation by using heuristic constraints to
search the space of plausible explanations (Molin-
eaux and Aha 2015). Event models can be learned
from these explanations and applied to more quick-
ly reason about future similar occurrences (Molin-
eaux and Aha 2014). The actions of agents in the
environment (that is, team members and others) will
need to be monitored by our GR agent to help iden-
tify their goals and plans. We developed a plan recog-
nition algorithm for noisy environments (Vattam
and Aha 2015), but this algorithm requires extension
to dynamically recognize changes to an observed
agent’s plans. Our agent would also benefit from
algorithms that reason with mental models to infer
information about a given situation (Khemlani, Hin-
terecker, and Johnson-Laird 2017). We will soon inte-
grate, in a GR agent, an extension of this approach
that can reason with qualitative spatial representa-
tions (that is, the relation of objects in a scene).

Our agent would also need extensions for more
robust decision making. For example, our GR agents
that instantiate the Goal Lifecycle assume there
exists only a single goal node, and only one algo-
rithm for each of its strategies (for example, selection,
expansion). This approach is limiting: we would like
our agents to compare the utilities of different goal
nodes before selecting which one to process, and not
necessarily discard ones that are not immediately
selected. Also, different algorithms for a lifecycle
strategy (for example, planners for the expansion
strategy) may be appropriate for different problem-
solving contexts and could be made available to a GR
agent for selection. Thus, we are investigating a
metareasoning method for selecting a goal node (or
nodes) and a strategy algorithm (or algorithms) to
apply. We also seek methods that reason about how
to proceed if a goal cannot be processed in its current
form (for example, can more specific versions of it be
processed that would satisfy a human operator’s
intent?). This goal-changing behavior may be accom-
plished by incorporating a process that can transform
unachievable goals into ones that can be pursued by
a GR agent (Cox, Dannenhauer, and Kondrakunta
2017). This process must learn a model for determin-

ing when to perform goal transformation and which
transformation operator to apply in a given context.
Although we have collaboratively investigated learn-
ing algorithms for goal selection (for example, Pow-
ell, Molineaux, and Aha 2011; Jaidee, Muñoz-Avila,
and Aha 2013), learning goal transformation knowl-
edge has received less attention.

Finally, a GR agent that serves as a proactive intel-
ligent decision aid must be able to explain its models,
its reasoning for a recommendation (and other deci-
sions), and the expected outcomes from applying a
recommendation to its human teammates. That is, a
GR agent should be transparent so that its teammates
can calibrate their trust in it and, in doing so, make
appropriate decisions. Indeed, Selkowicz, Lakhmani,
and Chen (2017) reported that a user interface
designed to expose a GR agent’s models and reason-
ing can increase an operator’s situation awareness
and trust in the agent’s decision making. These find-
ings relate to research on Explainable AI (XAI),11

which has focused narrowly on machine learning
techniques and more broadly on AI (Aha et al. 2017).
In future work, we will develop and assess the utility
of explainable GR agents in human-agent teaming
contexts. 

Most GR agents accept commands from a human
operator and do not deviate from these commands
unless they are in a fully autonomous mode (for
example, when the operator is unavailable for con-
sultation), at which time they may consider alterna-
tive objectives so long as they are constrained by
operator intent. However, there is need for more
proactive agents that can object to, or even reject, an
operator-provided command when the operator is
accessible. Such rebel agents may rebel for several rea-
sons. For example, they may have access to informa-
tion that is unavailable to the operator which indi-
cates that a current action, plan, or objective will fail;
they may recognize that an operator (or others) is in
an unsafe situation; they may object due to an ethi-
cal dilemma; or they may prioritize another objective
more highly for reasons of social justice. Acting rebel-
liously in these contexts can impact operator trust in
the GR agent, either positively or negatively. If
designed appropriately, there are substantial benefits
for modeling rebel agents, both to assist human oper-
ators directly and to notify operators about the pre-
dicted rebellious behavior of other agents (that is,
that may act contrary to the operators’ objectives).
Our group developed a framework for AI rebellion,
identified its stages, described factors that motivate
or support it (Aha and Coman 2017), and discussed
how social rebel agents can benefit by producing and
using alternative narratives to justify their rebellion
(Coman and Aha 2017). Our current work includes
demonstrating the utility of agent rebellion in a vari-
ety of mission scenarios.

GR is inherently dangerous if not properly con-
strained. How can we ensure that an agent’s decisions
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to change its objectives, plans, or actions are consis-
tent with operator/command intent? Guarantees are
required that a GR agent will operate correctly, both
when an operator provides direct oversight and
when it acts autonomously, which is complicated
when operating in complex environments where not
all situations can be predicted. This complexity is
exacerbated if these agents use online learning tech-
niques to acquire or refine models of their environ-
ment and other agents. Related to the motivations
for and study of safe AI (Vassev 2016; Omohundro
2014), additional research is needed to develop best
practices for safe goal reasoning so that GR agents
can be deployed confidently as productive and
appropriately trusted partners in human-agent teams
and in autonomous settings. 

Conclusion
Intelligent agents that dynamically deliberate on,
reprioritize, and self-select their goals have a long his-
tory of study (for example, Norman and Long 1996;
Altmann and Trafton, 2002; Cox, 2007; Tala-
madupula et al. 2010; Thangarajah et al. 2010;
Weber, Mateas, and Jhala 2012; Jaidee, Muñoz-Avila,
and Aha 2013; Klenk, Molineaux, and Aha 2013; Har-
land et al. 2014; Dannenhauer and Muñoz-Avila
2015; Cox, Dannenhauer, and Kondrakunta 2017).
Researchers studying these types of agents are moti-
vated by the challenges of deploying them in com-
plex environments, including to serve as members of
human-agent teams. Our group refers to these as goal
reasoning (GR) agents, and in this article I described
some of our inspirations, foundations, and emerging
applications. Although few applications of these
agents exist, demand for them should increase
because GR can serve as the foundation of highly
autonomous and proactive approaches for vehicle
control and intelligent decision aids. Many impor-
tant research directions on GR require further atten-
tion, in addition to those I noted previously. These
include, for example, representing and reasoning
with additional goal types (van Riemsdijk, Dastani,
and Winikoff 2008), dynamically recognizing other
agents’ goals (Vered and Kaminka 2017), recognizing
team intent (Franke et al. 2000), and methods for
learning goal priorities (Young and Hawes 2012).
Suitably constrained GR agents have tremendous
potential for applications of critical interest, but the
task of designing and developing them is AI-com-
plete (Shapiro 1992), as such agents must perform
comprehensive situation assessment and decision-
making tasks. For this reason I encourage AI
researchers to consider how their work relates to GR,
and to contribute to this interesting topic. 

Acknowledgements
This article is based on my Robert S. Engelmore
Memorial Lecture, given at IAAI 2017 in honor of

Engelmore’s extraordinary service to AAAI and con-
tributions to applied AI. I did not survey the broader
topic of GR, including many contributions from, for
example, Daniel Borrajo, Nick Hawes, Tom Hinrichs,
Gal Kaminka, Mary Lou Maher, and Okun Topçu. For
more information, please see, as a start, the 2018 AI
Communications special issue on goal reasoning and
the proceedings from GR workshops held at AAAI-10,
ACS-13, ACS-15, IJCAI-16, and IJCAI-17.

Thanks to the many colleagues who have con-
tributed to our group’s work, including Ron Alford,
Tom Apker, Bryan Auslander, Dave Bonanno, Hayley
Borck, Dongkyu Choi, Alexandra Coman, Dustin
Dannenhauer, Michael Floyd, Keith Frazer, Kellen
Gillespie, Brian Houston, Ulit Jaidee, Ben Johnson,
Justin Karneeb, Matt Klenk, Michael Leece, Michael
Maynord, Jim McMahon, David Menager, Matt
Molineaux, Phil Moore, Héctor Muñoz-Avila, Jay
Powell, Mak Roberts, Vikas Shivashankar, Christine
Task, Son To, Swaroop Vattam, Mark Wilson, and
Artur Wolek. Thanks also to our sponsors (AFOSR,
DARPA, NRL, ONR, OSD ASD (R&E), with special
thanks to Michael Cox for steering us toward this
topic and to AAAI for providing this opportunity.

Notes
1. Although I use an OODA loop (pogoarchives.org/m/dni/
john_boyd_compendium/essence_of_winning_losing.pdf),
I do not intend this as a constraint. GR can be expressed in
many other agent reasoning frameworks.

2. I’m referring to agreeable, rather than rebel, GR agents
here. That is, while GR agency can be useful when an oper-
ator is available, it is particularly well motivated when the
operator is inaccessible during complex environment sce-
narios.

3. This should read belief state throughout, but is shortened
for brevity.

4. Using the situation calculus, Task et al. (2018) provide a
formalization of the solution space through which this
search takes place so as to inform the selection of future
heuristic approaches.

5. www.iver-auv.com/Iver2_AUV_Brochure.pdf.

6. oceanai.mit.edu/moos-ivp/docs/GuideTo_iOceanServer-
Comms.pdf.

7. Returning is important. In 2010, four Navy AUVs, with a
collective value of one million dollars, were lost during a
training exercise. They were found only after an intense
search effort.

8. I often use goal as shorthand for goal node in this section.

9. GRIM was implemented using our group’s ActorSim plat-
form (makro.ink/actorsim).

10. For example, the IJCAI-17 Workshop on Goal Reasoning
(makro.ink/ijcai2017grw).

11. www.darpa.mil/program/explainable-artificial-intelli-
gence.
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