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W A] is related to information fusion
(IF). Many methods in Al that use
perception and reasoning align to the
functionalities of high-level IF (HLIF)
operations that estimate situational
and impact states. To achieve HLIF
sensor, user, and mission management
operations, Al elements of planning,
control, and knowledge representation
are needed. Both Al reasoning and IF
inferencing and estimation exploit
context as a basis for achieving deeper
levels of understanding of complex
world conditions. Open challenges for
Al researchers include achieving con-
cept generalization, response adapta-
tion, and situation assessment. This
article presents a brief survey of recent
and current research on the exploita-
tion of context in IF and discusses the
interplay and similarities between IF,
context exploitation, and Al. In addi-
tion, it highlights the role that contex-
tual information can provide in the
next generation of adaptive intelligent
systems based on explainable Al. The
article describes terminology, addresses
notional processing concepts, and lists
references for readers to follow up and
explore ideas offered herein.

and has since gone through three major instantia-

tions. Typically, Al is meant to emulate human rea-
soning and planning. The first AI methods trained on sim-
ple use cases employing handcrafted knowledge. The second
phase of Al focused on computer methods but was limited
by insufficient data for training and development. The third
phase is based on statistical-based deep learning, which re-
quires many training exemplars and for which, in an era of
big data, there is great hope for the realization of advanced
capabilities. In all three cases, context extends use cases in
the path toward generalization by determining which data
were needed and bounding the type of data assessed.

g rtificial intelligence (AI) was popularized in the 1950s
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Development of explainable intelligent systems
has been identified as a key area of research and a
possible major step in Al The recent DARPA explain-
able artificial intelligence program is the subject of
significant funding and is expected to close by 2021.!
Presented at the 2017 International Joint Conference
on Artificial Intelligence workshop on explainable
Al, a survey by Biran and Cotton (2017) indicated
Al paradigms whose output can be understood by
humans, by introspection or by building explana-
tions. Most current machine- learning techniques
are difficult to explain because their models are
complex, usually of black-box type, and therefore
not easily interpretable. Other classic methods are
instead inherently interpretable, as is the case of
rule-based systems, decision trees, causal networks,
or hidden Markov models. Context-aware systems
are mentioned as advanced methods for sensing the
environment to enable self-adaptation. With sensing
and adaptation, the interaction with users gains in
understanding when high-level concepts are man-
aged by the system to explain the changes learned.

This article highlights three concepts that them-
selves are complex and multidisciplinary: Context in-
formation (CI), information fusion (IF), and situation
awareness (SAW), each with long histories of research
and publications (Snidaro et al. 2016; Snidaro, Garcia,
and Llinas 2015). Adding to these foundations, ele-
ments of Al related research are organized in relation to
the concepts. Context allows systems to augment the
observations and enhance meaning, with the goal of
developing solutions for inferences contextualized in a
domain with mechanisms for adaptation to situations.

In this article we will first present the IF terminology
and problems addressed, followed by an introduction
of the role of context in IF. Next, we will detail context
adaptation from the viewpoint of Al research, high-
lighting the expectations and open challenges for Al
research. We will then present the role of Al in IF
problems, with an emphasis on the processes needed
for situation understanding, give some perspectives
on the current research on Al and IF systems lever-
aging context adaptation, and finally present our
conclusions.

An Introduction to IF

IF is an area of research and development now
maturing in certain ways, as well as an area of expand-
ing study. In its early development (in the 1980s),
and perhaps typical for emerging areas of science
and technology, normalizing the language of the
field was an initial complexity, and the status of that
language remains somewhat inconsistent and am-
biguous. Therefore, this article does not focus on
debatable terminology but points out agreed upon
concepts. For example, the boundaries between
sensor fusion, data fusion, and IF (as well as knowl-
edge fusion) are generalized to IF to provide readers
with normalized concepts. The choice is partly

motivated by the focus of this article, that is, to dis-
cern the concepts, techniques, and applications of
IF that use contextual material, because we argue
that the categories of information falling into the
class of contextual are generally broader and more
informative than those of data, especially for sensor
data that generally comprise discrete quantitative
measurements.

Definition of Data (Information) Fusion

The initial data fusion lexicon, produced by the US
Joint Directors of Laboratories (JDL) Data Fusion
Subgroup in 1987, defined data fusion as

a process dealing with the association, correlation,
and combination of data and information from sin-
gle and multiple sources to achieve refined position
and identity estimates, and complete and timely as-
sessments of situations and threats, and their signif-
icance. The process is characterized by continuous
refinements of its estimates and assessments, and the
evaluation of the need for additional sources, or mod-
ification of the process itself, to achieve improved
results. (White 1987)

A simpler version might be “a process of combining
data or information to develop improved estimates
or predictions of entity states.” The point is, data
fusion — henceforth IF in the paper — is an auto-
mated information process that combines data, in
the broadest sense, to estimate or predict the state of
some aspect of a problem space of interest and thus
to improve those values beyond what could be done
without such integration. The notion of estimation
should also be clearly understood. Few would argue
that the inputs into an IF process are random varia-
bles, where sensor responses are typically modeled
using statistical concepts to represent the imper-
fections in sensing operations and the resultant
observables or measurements. In the broadest sense
the IF process, whatever it does, can be conceptu-
alized as a function, and clearly any function of a
random variable yields a random variable; in other
words, the fused estimate, no matter how elegantly
calculated, is a random variable having a statistical
distribution. A major focus of IF processing is to
develop techniques that optimize resultant estimates,
based on multisource inputs, usually in some sta-
tistical sense, to reduce the variance, uncertainty,
or ambiguity.

This broad concept of IF is an important topic for
a unified theoretical approach and therefore deserves
its own label.?

IF Levels

Of the many possible ways to differentiate among
types of IF functions, the JDL data fusion subpanel
has become the most popular. This JDL model dif-
ferentiates functions into fusion levels (depicted in
figure 1) that provide a useful distinction among IF
processes related to the assessment and refinement
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Figure 1. Classic JDL Data Fusion Process Model.
From Kessler et al. (1992).

of estimates for parameters of interest related to
objects, situations, threats, and processes (Hall
and Llinas 1997). Figure 1 depicts either a single
IF node or the aggregate processing of a suite of
IF nodes, each with similar structure. Figure 1 is
strictly a discussion aid and not an architecture or
processing diagram.

The JDL model (Hall and Llinas 1997) and subse-
quent revisions (Steinberg, Bowman, and White 1999;
Llinas et al. 2004; Blasch et al. 2006), were proposed
to provide a useful categorization representing logi-
cally different types of problems, generally (although
not necessarily) solved by different techniques, and
to maintain a degree of consistency with the main-
stream of technical usage. Much of the discussion on
IF models is drawn, either directly or in modified form,
from the revisions to the JDL model by Steinberg,
Bowman, and White (1999). We will use the follow-
ing definitions:

Level 0 — Subobject data assessment. Estimation
and prediction of signal/object observable states
on the basis of pixel/signal level data associa-
tion and characterization. This is a new level
added to the JDL process model, ascribed to the
data sources. One clear example of this type of
processing is the detection of blobs of interest
in imagery, which signify an unknown entity of
interest not having a semantic label.
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Level 1 — Object assessment. Estimation and
prediction of (ideally) single entity states on the
basis of inferences from observations. A frequent
example is the estimation of the kinematic
properties and the identification or classifica-
tion of single objects of interest in a situation.

Level 2 — Situation assessment. Estimation and
prediction of entity states on the basis of in-
ferred relations among entities. For a variety of
applications, this level strives to develop situa-
tion assessments based on the collective dynamics
among entities as well as the estimated rela-
tionships among them.

Level 3 — Impact assessment. Estimation and
prediction of effects on situations of planned or
estimated/predicted actions by participants (for
example, assessing susceptibilities and vulner-
abilities to estimated/predicted threat actions
given one’s own planned actions). In military
applications, a major concern is threat estimation
that involves estimating most likely or most
damaging potential of an adversary.

Level 4 — Process refinement (an element of
resource management). Adaptive data acquisi-
tion and processing to support mission object-
ives. A frequent focus of level 4 design and
development is for a sensor management func-
tionality, where observational strategies that



improve the quality or reliability of fused esti-
mates are developed.

Level 5 — User refinement (an element of knowl-
edge management). Adaptive determination and
retrieval of data to support cognitive decision
making and action; this is a new level added to
the JDL process model that extends the func-
tions of the human-computer interface. For many
applications, the human can provide a number of
useful functions to the operations of a fusion pro-
cess, especially to include aspects of priority or
value or of human intent.

IF and Context

One overarching assertion made in this article is
that IF is fundamentally an estimation process,
specifically an autonomous or largely autonomous
estimation process. The central focus in this article is
on algorithmic or otherwise autonomous processes,
although the insertion of human intelligence with
the automated systems is not disallowed. These
automated processes are enabled in software and
thus are vulnerable to the bad-data-in/bad-data-out
constraint. IF functional capabilities, especially at
the highest levels, are developed to estimate some
aspect of a real world of interest to some user, from
which those capabilities are bounded by a number
of factors, such as the quality of the available data
or information used to form the estimates,® as well
as the complexity of the world being observed.
Gauging the complexity of any world situation
includes the degree to which that world is hospitable
to, or cooperative with, the observational or other
information-providing mechanisms on which the IF
estimation processes depend. In adversarial domains
such as defense and security domains, including
adversarial business postures in the business world,
there can be purposeful actions to deceive or corrupt
any IF process; such environments lead to the end-
less exchange of actions intended to overcome each
step of an adversary, in an endless game (counter-
measures on countermeasures). IF researchers and
developers hope to enable an IF capability that aids
human sensemaking (Klein, Moon, and Hoffman 2006;
Pirolli and Card 2005) or, in general, reasoning. Thus,
it is not unexpected that IF process designs strive to
mimic, support, or augment human reasoning.

Reasoning is generally seen as a means to improve
knowledge and make better decisions, although em-
pirical evidence quantifies a number of error types,
biases, and inefficiencies in human reasoning. The
literature distinguishes between reasoning and in-
ferencing; for example, see Steinberg and Bowman
(2009). Mercier and Sperber (2011) define inferencing
as follows:

Inference (as the term is most commonly under-
stood in psychology) is the production of new
mental representations on the basis of previously

held representations. ... Reasoning, as commonly
understood, refers to a very special form of infer-
ence at the conceptual level, where not only is a new
mental representation (or conclusion) consciously
produced, but the previously held representations
(or premises) that warrant it are also consciously
entertained.

Continuing, Mercier and Sperber (2011) say that
what characterizes reasoning is that it includes and
is distinguished by the notion of a formed argu-
ment, its purpose oriented to persuasion. In the
argument approach, the premises that are reasoned
over are seen as providing reasons to accept or
reject a conclusion. Thus, what characterizes rea-
soning from inferencing is the awareness not just
of a conclusion but of an argument that justifies
accepting that conclusion. Furthermore, the dis-
tinction between reasoning and inference is based
on a premise, most definitions labeling a premise
as a statement that is assumed to be true and from
which a conclusion can be drawn.* So, premises are
statements or assertions that support the forming
of a conclusion. Utilizing a statement to support a
conclusion in high-level IF (HLIF) processes requires
the use of contextual information together with
observed evidence.

In broad terms, contextual information is informa-
tion that surrounds a situation of interest in the world —
information that aids in understanding the (esti-
mated) situation and also in reacting to the situation,
if reaction is required. Most problems addressed by
IF systems are related to interpretation and develop-
ment of meaning from multisource data. Therefore,
there is usually some focal data collected to develop
such understanding. For instance, in a surveillance
application, these are sensor data and possibly
human-based observational data. Through analysis,
these data can support the formation of focal prem-
ises (statements about some aspect of the condition
or situation of interest). To the extent that separate
contextual data or information is available, these
too can be analyzed to form additional premises —
propositions that we call contextual premises — that,
together with the focal premises, can lead to the
formation of an argument, that is, a conclusion
traceable to the foundations of the joint set of these
premises.

Context exploitation can provide benefits in IF by
establishing expectations of world states, explain-
ing and constraining received data, and resolving
ambiguous interpretations (Rogova and Steinberg
2016). Context allows for improving the associability
between problem-space knowledge, derived models,
and observational data. These a priori (that is,
mathematical) models can better explain data by
exploiting the semantics provided by contextual
information (Gémez-Romero et al. 2015; Snidaro
et al. 2013).

The typically rich semantics associated with con-
textual data can also help build systems that can
explain their reasoning process. Hence, contextual
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First Wave
Years 1960s-1980s

Technology Expert Systems

Algorithms Logical rules

Expert knowledge Expert knowledge

Rules
Learning
Algorithm application Rules
Data
Handling of uncertainty NO
Abstraction NO
Interpretable YES

Second Wave

1980s-2010s

Machine Learning

Statistical methods

Third Wave

2010s-

Deep Learning

Statistical methods

Expert knowledge Expert knowledge
Model, Features Model
Parameters Parameters
Data Data
Model Model
Data Data
YES YES
NO YES
NO NO

Table 1. Major Phases in Al History.

information can enhance Al systems for explana-
tions of decisions.

Context and Al

The goal of Al research is to bestow on machines the
ability to solve problems by mimicking human in-
telligence. The inherent power of modern electronic
devices to process enormous quantities of data and
information would therefore be augmented with
humanlike intelligence.

Al research spans many areas, among which
perception and cognition play a pivotal role in
developing systems that need to be aware of the
surrounding environment and have the capa-
bility to assess and adapt to it. The term cognition
covers fundamentals concepts such as reasoning
and learning.
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As discussed in a recent overview on the state of
Al research (Deng 2018), since the 1960s, the develop-
ment of algorithms simulating human intelligence
has gone through three major phases or waves. Table 1
summarizes the technology and capabilities charac-
terizing the solutions that have been developed in
these three phases, mostly regarding attempts made
over the years to address aspects relating to human
cognition.

The first wave defines expert systems that tried to
simulate human reasoning to solve specific problems
in very narrow domains (such as medical diagnoses).
The intelligence of the software is mainly encoded
in a set of logic rules that make up a rule base able to
process (mostly in a deductive manner) the queries
of the user according to the known facts contained
in a knowledge base.

The development of the rule base was a pains-
taking and laborious process that had to be carried



out to encode, in the form of logic rules, using the
knowledge of a human expert (such as a medic).
Expert systems were unable to learn from data, were
brittle at handling uncertainty, and had no ability
to abstract new concepts (that is, develop more gen-
eral rules) from data. The major advantage of these
systems was their interpretability, that is, the possi-
bility to trace exactly, in a humanly understandable
way, the chain of reasoning that led to certain con-
clusions. The trace usually meant looking at the
sequence of logic rules firing on a given input.
Given their overall simplicity and amenable prop-
erty of relying on an interpretable reasoning mech-
anism, expert systems are still used today, especially
considering the development that has been added
to them over the years to mitigate their shortcom-
ings (for example, adding uncertainty management
via fuzzy logic to subsume both predicate logic and
probability theory [Zadeh 1983]).

The second wave marks the advent of machine
learning, such as statistical learning methods that
are able to solve a given problem (for example, a
classification problem) by learning from a num-
ber of examples and their corresponding expected
output. In statistical learning, there are no explicit
rules being provided to the system, and the effort of
the developer is in choosing the most convenient
model and parameters, describing the problem in
terms of a number of characteristics or features, and
having the system learn from examples according
to a learning algorithm (for example, backpropaga-
tion). The learning process discerns the internal
parameters of the statistical model so that the system
is flexible to variations of the input features and
provides a confidence level on its output. There-
fore, on being presented a new input, the system is
able to provide a classification result accompanied
by a degree of confidence. These statistical learn-
ing systems can handle never-seen-before and noisy
inputs. However, these methods, especially neural
networks, operate like black boxes, making it is impos-
sible to attribute semantics to the values of the param-
eters learned during the training phase. Statistical
learning algorithms such as neural networks are, in
general, not interpretable, making it very difficult to
explain or visualize the reasoning behind the results.

In the past few years, the interest in Al has grown
considerably thanks to the advent of what Deng
(2018) describes as the third wave, that is, a new par-
adigm called deep-structured machine learning or
deep learning. The approach involves the use of deep
neural networks comprising several hidden layers.
These models, trained on very large data sets with
sufficient computing power (boosted by the availa-
bility of specific architectures, such as graphics pro-
cessing units), have far surpassed the performance
of the shallow neural network models typical of the
second wave. For example, speech and image rec-
ognition are tasks for which the deep paradigm has
been particularly successful and is starting to show
human-level performance.

The success of deep neural networks mostly relies
on their ability to create abstractions from the
observed training data. The abstraction ability
gives them great generalization capabilities that al-
low them to perform better in the presence of noisy
input data. The abstraction capability marks another
significant difference with respect to the previous
generation. For example, the careful features engi-
neering process is no longer required in tasks like
image classification, where the raw data (for exam-
ple, image pixels) are directly fed to the network.
Hence, deep networks can take as input raw signals,
or a subsampled version of them, and directly learn
the most significant features through different layers
of abstraction for the classification task at hand.
These models require the developer to focus only
on the selection of the most appropriate model, its
configuration, and choice of hyperparameters (for
example, learning rate, number of epochs). One
shortcoming of the deep neural network paradigm,
however, inherited from previous-generation shal-
low models, is again the nonexplainability of the
results. Once again, the networks operate as a black
box on the inputs and transform them into an out-
put based on the weights and parameters of the
network learned during the training phase. How-
ever, active research is being done on the subject
with some very recent promising results, as in the
case of Shapley additive explanations (Lundberg
and Lee 2017).

In all phases of Al, CI has played a significant
role, even when not explicitly recognized. Expert
systems were developed for specific problems in
specific contexts, and the failure to correctly rep-
resent the contextual factors was often one of the
causes of their malfunctioning. The systems were
not portable or easily transferrable to conditions
different from those for which they had been
developed. In a sense, all the contextual knowl-
edge that the expert had provided was so hard
coded and built-in that any attempt to test the sys-
tem even slightly outside of that context produced
unreliable outputs. In the second phase, context
was exploited only in recent years (Snidaro, Garcia,
and Llinas 2015) as a way to boost the performance of
certain tasks. For example, object classification in
images was shown to benefit from considering the
pixels surrounding the object of interest. The sur-
rounding pixels provided additional information
that allowed computations to better recognize a
certain object given its background and context.
More direct approaches have been taken with the
explicit design of additional nodes or layers to store
contextual information on deep learning, as by
Delcroix et al. (2016).

The next wave of Al will need to put more focus on
how to reason over data by considering contextual fac-
tors and by incorporating contextual models over time
in the learning process. The ability to understand and
exploit contextual elements will drive the development
of future intelligent systems toward explainable results.
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Context

Artificial Intelligence Information Fusion JDL Level
Perception Machine perception Low-level information fusion 0,1
Cognition Reasoning High-level information fusion 2,3,5
Adaptation Learning Process refinement 4

Table 2. Dimensions and Key Technologies for Advanced Al and IF Systems.

Whereas the second wave of research emphasized
inductive learning of statistical distributions or
discrimination functions, a more general approach
is required for the future of Al systems to provide
explainable decisions, which should be based on
conceptual representation and allow automatic
adaptation to the conditions of the domain. For
instance, a model focused on concepts and concept
learning is the model of rational rules (Goodman
et al. 2008; Lake, Salakhutdinov, and Tenebaum
2015), which combines the inferential power
of Bayesian induction with the representational
power of mathematical logic and generative gram-
mars for concept generalization. Similarly, Markov
logic networks (see the work of Snidaro, Visentini,
and Bryan [2015] for an application for maritime
SAW) integrate logic representation with models of
uncertainty. These are probabilistic models devel-
oped on Markov networks with first-order logic to
enable inferences under uncertainty. In these cases,
the possibility of using a symbolic representation
of the concepts learned allows the system both to
generalize and to adapt to specific conditions for
each domain.

A fundamental challenge for next-generation Al
systems, moving toward even more intelligent capa-
bilities, will be the ability to adapt to contextual con-
ditions, as discussed in the following sections.

Fusion and Al

The next wave of Al challenges should emphasize
explainable models instead of black-box paradigms.
The key is providing explanations to users, especially
in the mission-critical applications required to facilitate
human-machine interaction. In this regard, there is a
parallelism between the goals of the Al and IF research
communities in the current strategies to achieve pro-
gress in several dimensions, identified in table 2. There
are distinguishable layers of functionalities needed to
develop intelligent systems: perception is the connec-
tion with the physical world, access to data about
entities to be represented and characterized; cognition
is the process of understanding the perceived world,
where situation is the key concept for this layer, as we
will explain below; and adaptation is the strategy to
optimize the performance of perception and/or cogni-
tion to better reach a certain goal.
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In the development of IF systems for decision
support (where high-level fusion processes are
involved), the representation of the world accord-
ing to a certain model should explain decisions
made. The HLIF model (for example, see the work
of Blasch, Bosse, and Lambert [2012]) can be directly
aligned with Endsley’s SAW model (Endsley 1995),
as used by the IF community to characterize the
mental process carried out by experts to under-
stand situations. The SAW model could provide
inspiration toward explainable results of future Al
systems. Per Endsley,

Situation awareness is the perception of elements in
the environment within a volume of time and space,
the comprehension of their meaning, and the projec-
tion of their status in the near future.

The SAW model is basically organized into three
levels that correspond with the JDL data fusion
model described earlier, where cognition and com-
prehension are similar, while projection is a subset
of adaptation. Note that the IF community has fur-
thered the concept of a human computer interface
of the JDL model by developing the methods for
level 5 user refinement utilizing the SAW model
concepts, which allow the user to input cognition
(Blasch, Bosse, and Lambert 2012).

The alignment of the JDL and the SAW models
supports perception of situational elements, such as
objects and events, comprehension as understanding
the meaning of situational elements, and projection
as awareness of the future evolution of the situation.
Perception involves the detection of entities and
events by sensors and data fusion techniques. This
level can be correlated with machine perception, the
first stage of intelligent systems to take input data
from real-world scenes. Comprehension is focused
on situation understanding by analysis of the rela-
tionships among the detected entities and events.
This process usually requires a formal representation
to detect and instantiate the relationships among the
detected entities and requires reasoning techniques
able to deal with their evolution in time. A process
of projection estimates the evolution of a situation
by using inference processes This level benefits from
machine learning by intelligent systems to forecast
situations based on models.

Therefore, the two main aspects to developing HLIF
systems are representation of situations and reasoning



about their expected outcomes. Regarding representa-
tion strategies, Strang and Linnhoff-Popien (2004)
considered several major types of models, of which
three are most applicable to IF: key-value models,
ontology-based models, and logic-based models
(for example, the ontology web language [OWL]).
A formal approach for reasoning about situations
(Powell et al. 20006) is the use of ontologies to rep-
resent objects and relationships as well as their
evolution over time. An ontology is a specification
of concepts and relationships among entities that
can exist in a given setting (Kokar, Matheus, and
Baclawski 2009). In the ideal case, this description
can express in a reasonable way the evolution of
objects and their relationships (G6émez-Romero,
Bobillo, and Delgado 2011). Recent researchers in IF
have recognized the advantages of cognitive situa-
tion models, pointing out the importance of formal
context knowledge to achieve scene understanding.
Steinberg and Bowman (2009) emphasized the impor-
tance of context knowledge, for instance, when visual
inputs are to be interpreted (Gémez-Romero et al.
2012). Sycara et al. (2009) state that parts of the con-
text are the significant features or the history of a situ-
ation that influence the features of other situations,
as well as the expectations on what is to be observed
and the interpretation of what has been observed.

With respect to reasoning, ontological representa-
tions provide a logically robust classification of the
entities in its domain, which can be used to analyze
and derive relationships among instances of entities
in certain situations. Ontologies formally describe
the core concepts, the facts, and their interrelation-
ships, which can be used to build realistic representa-
tions of context (Gémez-Romero et al. 2010), and they
can be extended with ad hoc logic-based models
for knowledge-intensive applications. Ontologies
represent context as facts and information inferred
from rules to allow for the development of more
sophisticated representations and reasoning proce-
dures. Ontologies must use highly expressive, logic-
based knowledge models to describe a domain with
an automatically processable language. Description
logics (DLs) are a family of logics used to represent
this structured knowledge (Baader, Horrocks, and
Sattler 2005) and have proved to be suitable ontology
languages. Ontology languages are usually equivalent
to a decidable DL, as occurs in the case of OWL2. DLs
are categorized by level, according to the allowed
expressions in them. In general, the more expressive
a language, the greater the computational complex-
ity required for inferences. The situation theory
ontology, modeled in OWL, is the result of extensive
research in situation theory and provides a formal
language for representing relationships between sit-
uational elements.

With respect to inference and reasoning processes
for situation and impact refinement (JDL level 2 or 3),
some initiatives such as the rule interchange format
search formats for the interchange of rules in rule-
based systems to create a common interchange format

for different rule languages and inference engines.
The basic reasoning task regarding ontology con-
cepts is satisfiability, which implies there are no con-
tradictions with the rest of the stored knowledge.
Another important task is the concept of subsump-
tion, which occurs when a concept is more general
than another concept. So, a typical inference done
over ontology instances is to test whether there are
not contradictions in the axioms in the knowledge
base. The DL inference engines execute these types
of tasks over ontologies built with OWL and/or
OWL 2 languages, such as Pellet (Sirin et al. 2007)
and RACER (Haarslev and Moller, 2001) as two rep-
resentative examples of DL reasoners. The compu-
tational complexity of the reasoning procedures
depends on the expressivity of the language consid-
ered. Rule-based reasoning is not directly supported
by OWL, but several extensions have been proposed.
One of the most interesting is the semantic web rule
language (Sirin et al. 2007), an extension of OWL,
which includes deductive inference within OWL
ontologies.

Therefore, context adaptation is one of the top
challenges identified for the next wave of Al research,
a goal aligned with the IF research community to de-
velop advanced systems able to represent situations
and reason about them. Developing adaptive processes
(that is, JDL level 4 processes according to the model
presented at the beginning of this article) requires an
explicit representation of situations and contextual
premises in the pathway to reason about the process
and to trigger appropriate adaptation mechanisms.
Likewise, user refinement (that is, level 5 fusion) re-
quires systems with human explainable reasoning
for interpretability.

Perspectives on
Context for IF and Al

A cornerstone for new advances in the Al field is
the development of interpretable models, a funda-
mental aspect to explaining observations accord-
ing to the knowledge acquired and explaining the
decisions made depending on situations. These
interpretable models should take into account the
available contextual data (static and dynamic),
which implies adaptation to the conditions of the
problems addressed. In the same way, context is
fundamental to deriving adaptive IF systems. This
section analyzes the role of context in the research
of both communities.

Context Representation and Semantics:
Joint Perspective on Context from Al and IF

Historically, Al has always dealt with the notion
of context, which has now become the focus of
challenges in the next wave of intelligent systems.
A pioneering approximation to context formaliza-
tion in the field of Al is by McCarthy (1993), who
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proposed extensions of logic relations to explicitly
include context. Giunchiglia (1992) defines an anal-
ogous framework in which the context is a subset of
the complete state of an entity used to solve a task.
These approaches have been investigated to address
context modeling with ontologies in the semantic
web. From that context modeling perspective, and
directly related to reasoning, context representation
in Al can be related to maintaining SAW for under-
standing an evolving situation (Kokar, Matheus, and
Baclawski 2009). Another aspect, and a key challenge
for Al researchers, is the development of common-
sense reasoning, identified as a fundamental problem
in complex real-world tasks such as computer vision,
robotic manipulation, and temporal planning (Davis
and Marcus 2015). A clear example is autonomous
systems working in real environments with unpre-
dictable situations, where the systems must react
appropriately to unanticipated events and so need
a type of reasoning that allows them to effectively
react and avoid nonsense inferences. A possible strat-
egy to implement common sense in intelligent sys-
tems is to use taxonomic reasoning with a corpus of
events, actions, and expected changes. A taxonomy
is a collection of categories and individuals and the
relationships between them, and it can be assimilated
within the ontologies representing the situations
indicated earlier. Thus, developing models integrat-
ing the known taxonomies of a certain domain is a
way to build explainable models that are sensitive
to context.

Building explainable models is also directly related
to the paradigm of general intelligence and cognitive
architectures. Toward upgrading machine learning to
human-level learning and problem-solving abilities,
a goal known as artificial general intelligence has
been chased by several Al researchers (Voss 2007). The
basic assumption of this paradigm is that the study of
human cognition can generate computational models
of human behavior.

Cognitive architectures are based on the model of
interactive learning, adapting to changing circum-
stances, abstraction, and reuse of knowledge and skills,
as well as reasoning and language understanding.
The path to artificial general intelligence with cog-
nitive architectures is based on the active search
and accumulation of knowledge from various (or
changing) environments, with the same basic mech-
anism of SAW: perceptive observation of features
from the world, cognitive representation of the
knowledge obtained, and adaptive output/actuation
mechanisms.

In this way, cognitive architectures (Langley 2006;
Langley 2012) focus on autonomous concept building.
The notion of a cognitive architecture is associated
with the approach of agent design in terms of or-
ganizing short-term and long-term memories that
store the content and control of its behavior. One
or more long-term memories contain knowledge and
procedures (skills), along with short-term memories
that store the agent’s beliefs and goals. In addition,

22 AI MAGAZINE

functional processes operate on these structures,
such as learning mechanisms. The cognitive para-
digm corresponds well with the framework explored
by community research of autonomous agents,
known as belief-desire-intention (Rao and Georgeff
1995), where a decision model for logic deliberation
is based on available perceptions and knowledge
represented as a tree of possible worlds, each one
named as a situation. A balance between reactive and
planned behavior is achieved by committing agents
to plans but periodically reconsidering the plans ac-
cording to the perceptions of dynamic situations. A
high-level conceptual representation of the world in-
cludes knowledge about a domain, but, at the same
time, the plan building mechanism allows reactivity
to the context of situations.

From the perspective of IF design, as mentioned,
computational SAW has been supported by exten-
sive research in the theory of SAW and technolo-
gies of the Semantic Web (ontologies and inference
engines). The resource description framework and
OWL, both W3C recommendations, are expressive
graph-based knowledge representation languages
that provide the ability to effectively represent rela-
tionships. A strategy known as semantic enhance-
ment of data is based on ontologies and links built
to provide better retrieval and integration. Further,
ontologies for semantic enhancement enable ana-
lytics tools to see through the inconsistencies and
redundancies in data. For example, in the decision
support domain, new search techniques are needed
for human analysts to deal with heterogeneous data
scattered in different corpora with multiple terms
and data models (Smith et al. 2011).

Perspectives on
Context for Fusion Adaptation

With the goal of developing an automated IF
system exploiting contextual information, it must
be considered that context can be dynamic and
changing at perhaps a different rate than how the
problem’s variables evolve. A context middleware
concept has been proposed (Snidaro et al. 2015) to
retrieve and provide timely CI to the fusion processes
affected by this information. Additionally, it includes
assessing relevance for deciding whether the details
of the data and information surrounding an area of
interest are pertinent and, following the terminology
introduced in the section on context and Al, what
contextual premises will influence the arguments
about the situation that the fusion system is trying
to develop. Thus, a fundamental decision in the life
cycle of the IF system of interest, when this question
about relevance will be asked, leads to the two main
alternatives for context integration as described by
Rogova and Snidaro (2018).

The a priori CI exploitation framework takes
advantage of knowing the arguments or estimates
the IF system is designed to perform. In the a priori



case, at design time, one knows the goal arguments
that the system will be trying to develop, taking into
account the physical, social, and perhaps other con-
textual information that could be available, from
which relevant premises could be formed.* With
goal arguments, the a priori label for the framework
formed at design time for the exploitation of contex-
tual information attempts to account for the effects
of contextual premises on goal argument formation
(such as situational estimation). Integrating the
focal, sensor-data-derived premises with the context-
information-derived premises into a combined
argument framework is a separate design problem,
with the associated ease or difficulty involved in
integrating contextual premises into a fusion sys-
tem design or into any Al algorithm design. In the
a priori framework, the system assumes designers
know beforehand what CI-type information is rel-
evant to the intended goal arguments of the fusion
process.

In a different scenario, an a posteriori CI exploita-
tion framework can be proposed for the case when
all relevant CI may not be known at system or algo-
rithm design time and may have to be searched and
discovered at run time as a function of the current
goal argument or situation estimate and evolving
mission objectives. Some CI may not be of a type
that allows easy integration into the system or
algorithm designs at design time and so may not be
easily integrated into the goal argument or situation
estimation process. In this case, at least part of the a
posteriori exploitation task should be to check the
consistency of a current fused argument with the
newly discovered (and relevant) CI, adding explan-
atory aspects to the declared hypothesis. That is, if
the current argument or hypothesis is also consistent
with the new, additional CI, that argument should
be tagged as such, indicating that it is a stronger
hypothesis.

Context Adaptation Architecture

A middleware-based context-enhanced IF architec-
ture design was proposed by (Snidaro et al. 2015).
The basic mechanism proposed follows a query-
response middleware interface between fusion
processes and CI — where the selected relevant CI
from available sources is available according to the
values inferred and hypotheses proposed by fusion
processes. Two basic elements can be identified in
both sides.

At the context side, the middleware is responsible
for collecting and updating context knowledge and
making it usable by fusion processes. At the fusion
side, the fusion adaptation logic uses the contextual
inputs, so all processes and modules need to be de-
scribed in terms of context input and interconnections
to apply the adaptation.

At the fusion process side, the CI reported as rel-
evant in the response to a query is exploited to
improve the performance following an adaptive

strategy. The adaptation mechanisms are based on
alternative models when they can be selected accord-
ing to context (such as on/off road motion models);
measurable impact of applicable models, sets of
parameters, and algorithms; and applicable rules
to drive the fusion processes, such as constraints,
applicable models, and hypotheses.

Context can be exploited in any of these func-
tions, independently or jointly, to adapt the process
to the available knowledge. The adaptation of the
fusion system is motivated and guided by two sources
of change: the purpose of the system (desired data
products and their features) and the quality/perfor-
mance of the fusion processes. The purpose is the
most ambitious, an online reconfiguration logic of
the problem space originated either by human op-
erators or by intelligent external entities controlling
the fusion system. The quality and performance of
the fusion process can be evaluated locally at each
fusion node through the analysis of intermediate
indicators or results. The quality of the fusion prod-
ucts, thus, is the principal driver for the adaptation
process.

The adaptation architecture facilitates adaptation
processes through the scheme indicated in figure 2 at
two levels: adapting the configuration of individual
components as sensors or fusion nodes and adapt-
ing the structure of the solution. As shown, context-
based adaptation takes place in several places, as
follows.

A sensor management module has a global view
of the sensor set, geographical disposition, and the
data needed by the fusion process. It is in charge of
managing parameters such as deployment or space-
time scheduling of sensors that best satisfy data
needs.

Individual sensor modules have adaptive logics
responsible for adjusting the internal parameters of
their sensors. These parameters respond to two needs:
improve overall quality of the data and maximize
certain features of the obtained data (for example, a
radar can be configured to improve refresh rate, or to
discern the shape/size of a target).

The overall quality control process module is in
charge of evaluating the combined fusion product
to identify performance impacts and opportuni-
ties at an interlevel view. This information is used
to control two aspects of the fusion process: orient
each level of the fusion system (this can affect its
relationship with other levels or modify its goals)
and request changes in the sensor set (scheduling
and management).

Internodal adaptive logic modules evaluate the
combined fusion products generated by fusion
nodes at a certain level. They are used to determine
how to control two aspects of the fusion process:
individual parameterization/algorithm selection at
each fusion node and relationship between fusion
nodes.

At the top of level 4 processes, the fusion adap-
tation block is the access point to the available

Context
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Figure 2. Data Flow View of the Context-Based Adaptation Process.

contextual information and can also access a descrip-
tion of the problem space. Context is used by adap-
tation management to identify needs or desired
changes in the flow control and sensor scheduling.
These needs and changes are disseminated together
with relevant context data to the sensor manage-
ment module and the interlevel adaptive logic.
Once the system has the relevant context data,
the interlevel logic can define the actions to be taken
to improve the process, both inter- and intralevel.
Context-based sensor management receives requests
for data, data features, and sensor time-space point-
ing from other components of the IF system. It is in
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charge of managing the sensor sets to satisfy requests
as well as possible.

A sensor adaptive logic knows the relationship
between the configuration parameters and the
effect on the data captured by the sensor. The logic
knows how to change sensor parameterization
(capabilities/features of the sensor: frequency, res-
olution, type of information) to obtain the desired
effect. The reasoning process of the sensor adap-
tive logic is expected to be fairly simple. Referring
to the previous example, a radar sensor adap-
tation process could ask for better resolution of
target sizes or shapes in a certain region, which is



translated into a different pulse width or antenna
rotational speed.

Finally, the internal configuration logics are used
to provide the adaptation module with the infor-
mation it needs to plan the adaptive actions. The
mission of the online reconfiguration module is to
change the internal structure of the fusion solution
to satisfy the goals or better respond to external cir-
cumstances (context). Therefore, the relevant con-
text and changes in the goals are the two sources
used to decide actions over the structure of the fusion
solution — activation/deactivation of fusion nodes
or changes in the control flow.

Conclusions

The article identifies handling of CI and an appropri-
ate situation representation as key elements to develop
adaptive and explainable Al systems. Although Al
is certainly present in current applications and has
become a popular area of computer science, in part
because of business investments and media coverage
of Al success in games, some open challenges have
been discussed to motivate progress in this area,
called the next milestone or the third wave of Al
Whereas previous milestones have been character-
ized by manually crafted knowledge (expert systems)
and statistical machine learning, the open challenge
is now to learn paradigms with explainable models
and context adaptation to gain generalization capa-
bility. Explainable Al can benefit from IF develop-
ments, context enhancement, and decision support
systems.

Al must address many problems that are current
in the area of IF: perception and object recogni-
tion from sensory data or SAW. A basic challenge
identified for both AI and IF future systems is
understanding context, the ability to represent and
relate how relevant the context is to the inference
problems addressed, and mechanisms to adapt the
inference processes to this context. In this paral-
lelism, the challenges include perception, reason-
ing, and adaptation toward deploying AI and IF
systems to support knowledge representation and
situation understanding.

The preeminent challenge is context adapta-
tion common to both AI and IF research. A basic
objective is the capability to learn interpretable
models from contextual data to bind observations
with knowledge and use the semantics provided by
context. Current strategies for situation assessment
and HLIF have been reviewed and related with the
ongoing research in Al branches of computer sci-
ence (compositional learning models, cognitive
architectures, common-sense reasoning, and ra-
tional agents). A general approach for Al systems
should be based on conceptual representation to
allow automatic adaptation to domain conditions.
Future breakthroughs will stem from an architec-
ture to represent, access (middleware), and exploit

the context in IF processes that provide context-
enhanced systems.

Notes

1. See www.darpa.mil/program/explainable-artificial-
intelligence.

2. Terms like information integration have been preferred
by some to connote greater generality than earlier, narrower
definitions of data fusion (and, perhaps, for distance from
old data fusion approaches and programs), but such manip-
ulations do not contribute toward better representation or
understanding.

3. Quality is another term for which it is difficult to
achieve consensus; data quality has been written about
for general applications (Sycara et al. 2009) as well as
for IF-specific applications (Zadeh 1983). We address the
quality issue as part of the general content of this article
in various ways.

4. A definition of a priori is “formed or conceived before-
hand,” and here we mean it in the sense of incorporating
contextual aspects in a design at the outset.
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