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Knowledge Representation  
and Reasoning — A History of  

DARPA Leadership

A fundamental goal of artificial intelligence (AI) is the 
creation of machines that demonstrate intelligent  
behavior, including, for example, the ability to assim-

ilate and interpret information from the environment; adapt 
to environmental changes; formulate goals, and the proce-
dures to accomplish them; communicate effectively with 
both people and other machines; and learn from and inter-
act with the environment to effect desired changes. Effective 
knowledge representation and reasoning (KR&R) methods 
are a foundational requirement for achieving those capa-
bilities whether the knowledge is represented in symbolic 
world models, in procedures, or in neural nets, and whether 
the reasoning methods are based on symbolic deduction or 
deep learning. Accordingly, the development of methodolo-
gies for representing knowledge in intelligent machines and 
of reasoning processes that operate over those representa-
tions has been a central activity in the field of AI through-
out its history. This article highlights the development of 
symbolic KR&R technology with particular attention to 
planning and to the important ways in which the Defense 
Advanced Research Projects Agency (DARPA) has shaped that 
development.

The selection of KR&R methods for an AI system is driven 
by the characteristics of the problems to be solved by the sys-
tem and the desired properties of the solutions. Desiderata 

 A fundamental goal of artificial intel-
ligence research and development is the 
creation of machines that demonstrate 
what humans consider to be intelli-
gent behavior. Effective knowledge rep-
resentation and reasoning methods are 
a foundational requirement for intel-
ligent machines. The development of 
these methods remains a rich and active 
area of artificial intelligence research 
in which advances have been moti-
vated by many factors, including inter-
est in new challenge problems, interest 
in more complex domains, shortcom-
ings of current methods, improved 
computational support, increases in 
requirements to interact effectively with 
humans, and ongoing funding from 
the Defense Advanced Research Pro-
jects Agency and other agencies. This 
article highlights several decades of 
advances in knowledge representation 
and reasoning methods, paying par-
ticular attention to research on plan-
ning and on the impact of the Defense 
Advanced Research Projects Agency’s 
support.
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include the ability to prove solution qualities such 
as correctness, completeness, and optimality; gener-
ate multiple hypotheses to explain observations; learn 
from a set of examples; capture problem-solving expe-
rience and bring it to bear on new problems; handle 
approximate or uncertain information and knowl-
edge; and capitalize on massive amounts of data for 
solving problems.

KR&R is a broad field, and we only touch on  
a sampling of prominent steps in its development in 
which the results of DARPA’s investment have been 
significant. Key historical KR&R programs, systems, 
and technologies that are discussed in this article 
are highlighted in figure 1. Advances in KR&R have 
been driven by interest in new challenge problems, 
the demands of more complex domains of interest, 
and the availability of improved computational sup-
port. In several cases, research success has led to the 
identification of new subfields and the attraction of 
additional support from other government agencies 
as well as commercial investors.1

Knowledge Representation  
and Reasoning in Early AI Systems

Early AI systems tended to focus on broad-based 
reasoning methods (e.g., heuristic search, problem 
decomposition, means-ends analysis, Alpha-Beta game 
tree search, resolution theorem proving) that operated 
independently with little or no domain or task exper-
tise. Representations of worlds of interest were mini-
mal with highly restrictive expressive power (e.g., legal 
moves in a search tree, distance to a goal, if-then rules).

The academic centers of this early AI research were 
the Massachusetts Institute of Technology (MIT), 
The Carnegie Institute of Technology (later Carnegie 
Mellon University or CMU), and Stanford University. 
Researchers, including John McCarthy, Marvin 
Minsky, Allen Newell, and Edward Feigenbaum, could 
conduct their institutions’ research during the first 10 
to 15 years of DARPA’s AI funding essentially unfet-
tered by immediate applications. Thus, AI was ideally 
suited to graduate education, and enrollments at 
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Figure 1. The Key Historical KR&R Programs, Systems, and Technologies that DARPA has Contributed  
to from the Beginning of AI Research into the Early 2000s.

Figure courtesy of DARPA.
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each of the AI centers grew rapidly during the first 
decade of DARPA funding.

DARPA’s early support launched a golden age of 
AI research and rapidly advanced the emergence of 
a formal discipline. Much of DARPA’s funding for AI 
was contained in larger program initiatives. For exam-
ple, as Director of DARPA’s Information Processing 
Techniques Office, J.C.R. Licklider considered AI a 
part of his general charter of Computers, Command, 
and Control; and Project Mathematics and Compu-
tation (Project MAC), a project on time-shared com-
puting at MIT, allocated roughly one-third of its $2.3 
million annual budget to AI research with few specific 
objectives (Committee on Innovations in Computing 
and Communications 1999).

Commenting in 1984 about the migration of 
AI-related research from Carnegie Institute of Tech-
nology’s Graduate School of Industrial Adminis-
tration to an autonomous department (and later 
a college) of Carnegie Mellon University (CMU), 
Allen Newell captured the transformation wrought 
by DARPA:

… the DARPA support of AI and computer science is a 
remarkable story of the nurturing of a new scientific 
field. Not only with MIT, Stanford, and CMU, which 
are now seen as the main DARPA-supported universi-
ty computer-science research environments, but with 
other universities as well ... DARPA began to build ex-
cellence in information processing in whatever fash-
ion we thought best.... The DARPA effort, or anything 
similar, had not been in our wildest imaginings.... 
(Newell 1984)

As AI research progressed, systems tackled increas-
ingly complex and broad-based task domains, thus 
creating the need for representing domain knowledge 
more thoroughly and accurately to better support 
sophisticated computations using the knowledge. The 
first significant efforts to integrate domain knowledge 
into AI systems were in human language understand-
ing, mobile robotics (AI Magazine DARPA leadership in 
AI, 2020), and expert systems. The perceived potential 
of expert system technology made its development a 
major focus of AI research starting in the early 1960s.

Expert Systems
Expert systems emulate the decision-making ability 
of human experts by using if-then inference rules 
and if-then situation-action rules obtained directly 
from experts. Prominent early expert systems that 
motivated further DARPA investment include: 
DENDRAL, for analyzing chemical compounds, 
developed by Edward Feigenbaum, Joshua Lederberg, 
and Bruce Buchanan at Stanford University starting in 
1965 (Feigenbaum and Buchanan 1994); MYCIN, for 
diagnosing and treating blood infections, developed 
primarily by Ted Shortliffe and Bruce Buchanan at 
Stanford University starting in 1972 (Shortliffe 1976); 
and PROSPECTOR, for consultation with exploration 
geologists about mineral deposits, developed primarily 

by Richard Duda, Peter Hart, and Nils Nilsson at SRI 
International (formerly called Stanford Research Insti-
tute - SRI) starting in 1974 (Benson 1986).

The simple if-then rule formulation used in early 
expert systems allowed for the rapid development 
of impressive capabilities; however, limitations in 
expert systems were equally rapidly discovered. As 
Bruce Buchanan and Ted Shortliffe observed,

“A reasoning program using only homogeneous rules 
with no internal distinctions among them thus fails to 
distinguish among several things, chance associations, 
statistical correlations, heuristics based on experience, 
cause of associations, definitions, knowledge about 
structure, taxonomic knowledge ….” (Buchanan and 
Shortliffe 1984).

If-then rules produced useful results, but they could not 
take the place of a human expert’s decision-making.

The PROSPECTOR system notably overcame some 
of these limitations by expanding the if-then rule 
formulation to include semantic networks, pioneered 
in early natural language understanding systems, to 
represent taxonomic knowledge and to directly link 
the if side of each rule to the then side of other rules. 
Taxonomic knowledge enabled PROSPECTOR to infer 
the answers to interview questions it would otherwise 
need to ask the geologist. For example, if the geologist 
had already noted the presence of pyrites, a standard 
PROSPECTOR question “Are sulfides present?” would 
be skipped as taxonomic knowledge would show 
pyrites as a member of the class sulfides. The linking 
of rules enabled the system to quickly identify rules 
that were relevant to a given task.

Representation of Uncertainty
Expert systems highlighted the need for understanding 
uncertainty in domain knowledge because the if-then 
rules provided by domain experts for use in expert sys-
tems often stated conclusions that were only sugges-
tive. Early attempts to represent uncertainty include 
MYCIN, which used certainty factors valued between 
–1 and 1 to represent confidence, and PROSPECTOR, 
which introduced Bayesian odds likelihood ratios.

These early methods for reasoning with uncertain 
information produced unpredictably inadequate and 
anomalous results in important situations. Research 
began to focus increasingly on Bayesian reasoning 
that uses evidence to update prior probabilities to new 
probabilities based on the evidence. Estimating prior 
probabilities, typically required for Bayesian reasoning, 
is often challenging and default estimates are often 
made from an assumption of a particular distribution 
(typically uniform). Non-Bayesian methods were also 
explored, including evidential reasoning based on 
the Dempster–Shafer generalization of probabilistic 
techniques for combination of evidence (Ruspini,  
Lowrance, and Strat 1992) and fuzzy sets (Zadeh 1975).

Bayesian networks (Pearl 1988) brought a rigorous 
foundation to reasoning from uncertain information 
and eventually emerged as the formalism of choice. 
A Bayes net is a directed acyclic graph that represents 
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probabilistic variables with their value or distribu-
tion as nodes and their conditional dependencies as 
values on directed arcs between nodes. For example, 
a Bayesian network could represent the probabilistic 
relationships between diseases and symptoms — given 
symptoms, the network can be used to compute the 
probabilities of the presence of various diseases. Sim-
ilar networks could be used to confirm the presence 
of a disease (or rule out other hypotheses) by com-
puting the likelihood that certain symptoms should 
be observed when a particular disease is present.

The study and development of Bayes nets has become 
its own subfield. Efficient algorithms can perform 
inference and learning in Bayesian networks. Dynamic 
Bayesian networks can model sequences of variables 
(for example, speech signals or protein sequences). 
Generalizations of Bayesian networks, called influence 
diagrams, can represent, and solve, decision problems.

Strategic Computing Initiative (SCI)
DARPA’s emphasis on real-world relevance in AI 
research grew during the late 1970s and 1980s and 
moved toward “mission-oriented direct research, 
rather than basic undirected research” (Fleck 1982). 
The changes led to increased funding for AI research 
as exemplified by the Strategic Computing Initiative 
(SCI; Roland, Shiman, and Aspray 2002), announced 
in 1983. DARPA committed $1 billion over the 
planned 10-year course of the program to “create 
machine intelligence,” and established three specific 
applications as research and development (R&D) 
objectives for SCI: a pilot’s associate designated for 
the Air Force, an autonomous land vehicle for the 
Army, and a maritime battle management system for 
the Navy. The applications were intended to spark 
the military services’ interest in developing AI tech-
nologies based on fundamental research. The SCI 
differed from most other large-scale national efforts 
in that its extremely ambitious goals required major 
advances in the underlying technology.

Because expert systems appeared promising in the 
late 1970s, they were slated for a prominent role in SCI: 
Expert systems were to be the reasoning agents that 
would give intelligence to the SCI applications. SCI 
provided significant funding to support the continuing 
development of expert system technology, including 
the addition of facilities for explaining conclusions and 
maintaining logical consistency as new knowledge is 
added. In particular, a number of environments (shells) 
to facilitate expert system construction were devel-
oped, including the Knowledge Engineering Environ-
ment (IntelliCorp 1985), ABE for building distributed 
expert systems (Erman, Lark, and Hayes-Roth 1988), 
and OPS5 (Forgy 1981).

Formalization of KR&R
Throughout the 1980s, DARPA supported the devel-
opment of AI systems that tackled increasingly chal-
lenging problems, requiring representing knowledge 
of greater complexity and reasoning with greater 

sophistication. Those requirements prompted the 
emergence of KR&R as a substantial subfield of AI R&D 
and, in 1989, the initiation of an ongoing series of 
biannual international conferences.2 Much of the focus 
of the subfield was, and continues to be, on formal 
specifications of knowledge representation languages 
(KRLs) and reasoning methods, and on the design of 
KRLs for which core reasoning problems can be solved 
efficiently. As knowledge representation study pro-
gressed, a KRL came to be thought of as comprising the 
following components: A logical formalism providing 
a syntax for expressions in the language, a vocabulary 
of logical symbols, and an interpretation semantics for 
the logical symbols; a proof theory specifying the rea-
soning steps that are logically sound in the language; 
and an ontology that specifies a vocabulary of nonlog-
ical symbols (that is, relations, functions, and object 
classes) for expressing knowledge in the language.

Also during the 1980s, knowledge representa-
tion subsystems evolved to include built-in meth-
ods for efficiently performing frequently occurring 
core reasoning tasks such as inheriting properties 
in a class-subclass hierarchy, determining the location 
of a newly described object class in a class-subclass 
hierarchy, and enforcing numerical and type con-
straints on the values a given property can have for a 
given class of objects (Brachman and Schmolze 1985).

Further development of reasoning technologies 
focused on various forms of logics such as temporal, 
context, modal, default, and nonmonotonic logics, 
and on methods for solving a variety of types of prob-
lems including: adding statements to and removing 
statements from a knowledge base (KB) in a manner 
that maintains the logical consistency of world mod-
els and logical support for derived sentences in the 
KB; asking whether a statement is entailed (theorem 
proving); asking for entailed instances of a statement 
schema (query answering and constraint satisfac-
tion); asking for the effects of performing an action 
in a state (projection); asking for a plan to achieve a 
goal (automatic planning); and asking for a model 
that explains observations (diagnosis).

Scaling Up Knowledge- 
Based Systems

The logical formalism and proof theory of most rep-
resentation languages are domain independent (for 
example, for predicate calculus and description logics), 
and are therefore applicable to a broad spectrum of 
application domains. Typically, therefore, the key step 
in developing a representation language for a given 
task domain is providing a domain-specific ontology to 
enable the expression of knowledge required to accom-
plish desired tasks.

As the quantity, breadth, and complexity of knowl-
edge that AI systems needed grew, the task of build-
ing ontologies to express a system’s knowledge and 
of building a system’s KBs using those ontologies 
becomes a serious bottleneck in the development of 
large-scale AI systems.
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Knowledge Representation and Reasoning

Sometime in the spring of 1978, I was contacted by William A. (Bill) Woods, who was then Direc-
tor of the AI Department at Bolt Beranek and Newman (BBN) and the Principle Investigator of a 
large DARPA Project on Knowledge Representation for Natural Language Understanding (KRNLU). 
At the time, I was a 35-year-old philosophy professor and had no idea who Bill Woods was, nor 
what BBN was, pretty much no idea of what DARPA was, and could only guess at what was 
meant by “knowledge representation for NLU.” Bill was interested in hiring me as a consultant 
for the KRNLU project because he had heard that I knew something about Montague Grammar, a 
research program initiated in the late-1960s by the logician Richard Montague aimed at treating 
English (in principle, any natural language) as a formal language.

What did this have to do with KRNLU? One of Bill’s PhD students, Ronald J. (Ron) Brachman, 
had joined him at BBN to work on the KRNLU Project and had been further developing a knowl-
edge representation language (KRL) called KL-1 (or KL-ONE) (Brachman and Schmolze 1985) into 
which English statements would be translated and over which reasoning would be performed. 
My job was to develop a model-theoretical semantics for KL-1. KRLs were of course artificial lan-
guages, like programming languages and, more to the point, like the formal languages that logi-
cians created and then analyzed such as first-order languages and Montague’s intentional logic. 
The problem, I was told, was that most AI KRLs were not well-specified, especially not with respect 
to their semantics. And the KL-1 team was determined that their language would be different.

Much of the AI work at that time was influenced by then current forms of associationism in 
cognitive psychology. The results and insights of cognitive psychology were mixed up in AI with 
common-sense psychologic musings plus a good deal of armchair introspection —introspection 
by some very, very smart people, mind you, but still…. All of these ingredients, and more besides, 
were put in a blender and out came semantic networks! These really were networks; the formal-
isms involved graphs whose nodes and edges were typically labeled with bits and pieces of Eng-
lish. Given these labels, it was easy to be charitable and use your command of English to figure 
out what exemplars of the semantic networks were supposed to be saying; but really, there was no 
clear syntax. And there was nothing in the vicinity of a systematic semantic account beyond that 
yielded by charitable translation from semantic networks to English.

Although they were still committed to the idea of a graphical language, that is, to a semantic 
network formalism, Woods and Brachman deplored this state of affairs. Ron’s thesis project was to 
develop a network formalism with a clear and well-specified syntax and a well-specified semantics 
that he called a structured inheritance network. (That name invokes another oddity with respect 
to the KL-1 team’s commitments: an intense focus on taxonomies and taxonomic reasoning. 
This, too, I would claim, was motivated more by work in cognitive psychology; for example, on 
stereotypes and on priming relations between stereotypes than by any requirements analysis of 
the domains and applications for which KL-1 was intended.) So, Ron and Co. specified different 
types of nodes and edges in their networks and criteria of well-formedness for graphical (sub) 
structures: One could only link up a node of type X with one of type Y via an edge of type Z. Thus, 
one could define analogs of sentences or well-formed formulas, and specify their truth-claims. 
In sum, the KL-1 team was aiming at a formalism for which one could provide a syntax-directed 
semantic account and hence, provide a rationale and justification for a set of sound (validity- or 
truth-preserving) rules of inference.

Crucially, the aim was to treat KL-1 in the way that logicians treat formal languages. The cen-
tral issues had to do with the notion(s) of logical form, of the distinction between the purely 
logical and the nonlogical (domain/application-specific) aspects of the overall structure of a rep-
resentation, and of the specification and justification of rules of inference some of which, at 
least, depended solely on the logical forms of the representations. This approach to defining KR 
languages proved to be seminal in the development of KR&R.

At the end of the academic year 1978/1979, BBN offered me a full-time position as a computer 
scientist, although I had never taken a computer-science course, and I decided to accept — a deci-
sion I never regretted. Roughly 30 years later, I was the principal investigator of the SRI-led team 
in DARPA’s machine reading program, a program that might as well have been called KRNLU.

I think my history exemplifies the interdisciplinary nature of AI research. And, from my paro-
chial perspective, it also illustrates that DARPA’s continued funding was absolutely essential to 
basic research in KR&R — funding that supported development of a core generic capability that 
underlies many of the central application areas in AI.

– David Israel
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The major approaches to reducing that bottle-
neck were to develop technologies and methods 
for reusing KBs; enable multiple teams working 
from different sites to collaborate in building a 
large-scale AI system; and enable AI systems to 
communicate with other systems to cooperatively 
perform tasks.

Because vocabularies of many worlds of interest 
and substantial knowledge about those worlds are 
stable over time and support performing a wide vari-
ety of tasks in those worlds, KBs describing important 
aspects of many worlds of interest are potentially 
useable in multiple AI systems. Major efforts in the 
knowledge representation R&D community emerged 
to enable both ontologies, and KBs using those ontol-
ogies, to be constructed in a manner that allowed 
them to be reused in multiple systems for multiple 
tasks.

DARPA played a key role in catalyzing and sup-
porting those efforts. It did so in multiple ways that 
illustrate DARPA’s ability to bring together diverse 
research communities to work on important prob-
lems and then to provide continuing support of 
the progression of that work over an extended time 
frame.

Knowledge Sharing Effort (KSE) and  
Intelligent Information Integration (I3) 
In 1990, DARPA joined with the National Science 
Foundation to bring together top AI and database 
researchers for a three-day workshop to consider how 
to enable the sharing and reuse of KBs and knowl-
edge-based systems. That workshop resulted in the 
formation of the Knowledge Sharing Effort (KSE; 
Neches et al. 1991), a consortium of participants 
from over a dozen research centers with a goal to 
define, develop, and test infrastructure and sup-
porting technologies to enable participants to build 
significantly bigger and more broadly functional sys-
tems. An important focus of KSE was the development 
of consensus-standard, domain-independent logi-
cal formalisms (for example, Knowledge Interchange 
Format; Genesereth and Fikes 1992) for use as the 
representation language for modular multiuse ontol-
ogies. DARPA jointly sponsored KSE with the Air 
Force Office of Scientific Research, the Corporation 
for National Research Initiatives, and the National 
Science Foundation.

In 1992, DARPA continued and expanded its 
support of multiuse knowledge by incorporating 
the objectives of KSE into a new initiative called 
I3 (ISX Corporation 1995). The Intelligent Infor-
mation Integration objective was to enable the use 
of multiple heterogeneous distributed information 
sources (e.g., data bases, text, Web pages) in synergy 
with existing KBs. A significant Intelligent Infor-
mation Integration initiative development was an 
architecture for information integration featuring 
a software module called a mediator (Wiederhold 
and Genesereth 1997). Mediators used knowledge 
about specific sets of data to provide information 

to consumer system modules expressed in the rep-
resentation language of the consumers.

High Performance Knowledge Base (HPKB)
KSE and the I3 demonstrated the importance of KB 
building, and in 1997 DARPA continued its support 
by initiating the High-Performance Knowledge Base 
(HPKB) program (Cohen, Schrag, and Burke 1998). 
With the advent of increasingly powerful computer 
hardware, the need arose to rapidly (within months) 
produce and test the technology needed to enable sys-
tem developers to construct large (100K–1M axiom/
rule/frame) KBs. Requirements included compre-
hensive coverage of topics of interest, reusability by 
multiple applications with diverse problem-solving 
strategies, and maintainability in rapidly changing 
environments. The program supported the devel-
opment of methods for creating KBs by selecting, 
composing, extending, specializing, and modifying 
components from a library of reusable ontologies, 
common domain theories, and generic problem-solv-
ing strategies.

Challenge problems from two broad areas, Crisis 
Management and Battlespace Reasoning, were used to 
provide specific requirements for technical advances. 
They further provided shared data sources for use by 
the developers and a common framework for evalua-
tion. These challenge problems were the centerpiece 
of the HPKB program and required participants to 
collaborate and focus their R&D efforts to find inno-
vative approaches to the problems. Intensive annual 
evaluations assessed the completeness and correct-
ness of the developed KBs, the time required to build 
the KBs, and the ease of modifying them to assimi-
late new or changed knowledge.

The HPKB program demonstrated both the utility 
and the expense of building a large KB for a given 
application by specially trained knowledge engineers. 
During the HPKB program, teams of knowledge engi-
neers created KBs roughly at the rate of 10K axioms 
per year for prespecified task and evaluation criteria. 
The HPKB effort showed that it is possible to create 
KBs by reusing the content of knowledge libraries, and 
it demonstrated reuse rates ranging from 25 percent 
to 100 percent, depending on the application and the 
knowledge engineer. Still, it was acknowledged that 
the ability of a subject matter expert (SME) to directly 
enter knowledge is essential to improving the KB 
construction rates and content: Knowledge engineers 
lack the domain expertise to efficiently replace them, 
yet SMEs lack the knowledge-engineering skills to 
directly build the KBs. This challenge raised the ques-
tion: Can knowledge-authoring technology be devel-
oped that enables the SMEs to directly create the KBs? 
In response, DARPA initiated the Rapid Knowledge 
Formation (RKF) program.

Rapid Knowledge Formation Program
In 2000, DARPA continued its support of KB build-
ing technology by initiating the RKF program with 
the objective of enabling distributed teams of SMEs 
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to quickly and easily build, maintain, and use KBs 
without the need for prior knowledge engineering 
experience. The emphasis was the rapid acquisition 
and integration of SME knowledge into a formal rep-
resentation. Therefore, the program’s primary require-
ment was the development of functionality enabling 
SMEs to understand the contents of a KB, enter new 
theories, augment and edit existing knowledge, test 
the adequacy of the KB under development, receive 
explanations of theories contained in the KB, and 
detect and repair content errors. Because of the com-
plexity of these tasks, the approaches developed in 
RKF exploited the synergies among complementary 
AI technologies such as natural language discourse 
processing, problem solving and learning by analogy, 
and common-sense reasoning.

RKF was organized similarly to HPKB, with challenge 
problems administered by an evaluation contractor 
for the formal evaluation of technologies provided 
by the performers. There were two integrated teams 
and several component technology developers, with 
many supporting both teams. The program had two 
primary evaluation cycles: the first involved captur-
ing biology textbook knowledge, and the second 
involved critiquing knowledge for military courses  
of action.

The SHAKEN knowledge-authoring tool developed 
by the SRI team is representative of the technology 
developed in the program (Barker and Blythe 2003). 
Their effort explored using SMEs, unassisted by AI 
technologists, to assemble models of mechanisms 
and processes from components using a graphical 
knowledge representation termed a concept map. The 
models were both declarative and executable, making 
the mechanisms and processes explainable by con-
ventional inference methods (for example, theorem 
proving and taxonomic inference) and by various 
task-specific methods (for example, simulation, ana-
logical reasoning, and problem-solving methods for 
particular tasks and domains such as time or space).

An independent group evaluated SHAKEN by hav-
ing a group of four biologists independently build a 
knowledge system covering the content of one section 
of a college-level textbook on cell biology following a 
short course on the technology. The system was evalu-
ated by posing a set of questions, and the answers were 
judged by another biologist to “be mostly correct.” 
Although not conclusive, these results were signifi-
cant in that they suggested that the basic machinery 
provided a method for knowledge acquisition with-
out users directly encoding axioms. They also brought 
forward the intriguing possibility that relatively few 
components, perhaps a few thousand, independent of 
domain, are sufficient for SMEs to assemble models of 
virtually any mechanism or process.

DARPA Agent Markup Language  
Program and the Semantic Web
The World Wide Web was a paradigm shift in tech-
nology, and in 2000 the DARPA Agent Markup Lan-
guage (DAML) program was initiated to support the 

transformation of the human-readable World Wide 
Web into a machine-readable Semantic Web (BBN 
Technologies 2000). Although DAML was a continua-
tion of technology to build KBs, it did not specifically 
target AI systems, but rather sought to provide princi-
pal components for a web of machine-readable data.

A primary outcome of the DAML program was 
the DAML specification: an ontology representation 
language integrated with the World Wide Web Con-
sortium’s Resource Description Framework so that 
the Semantic Web could be both a store of triples 
represented in Resource Description Framework and 
a set of ontologies represented in DAML to describe 
properties of the elements of those triples. DAML 
was a language based on description logic, and as 
such, had a formal semantics that precisely defined 
what reasoning could be done with the information 
in an ontology.

DAML contractors also worked with researchers 
outside the DARPA program from both the United 
States and Europe to produce an extension of the 
DAML language called DAML+OIL, submitted to the 
World Wide Web Consortium in 2002. That submis-
sion was the starting point for the World Wide Web 
Consortium formally standardizing a later version of 
the language as the Web Ontology Language (known 
as OWL; OWL Working Group 2012).

Although much of the Semantic Web vision has 
yet to be realized, OWL is important as a standard 
ontology representation language and is being used 
to build large-scale multiuse ontologies in multiple 
domains. For example, the biomedical domain has 
made effective use of ontologies to address the need 
for controlled vocabularies to support integration and 
joint (“cross-omics”) analysis of experimental data. 
The Open Biologic Ontologies Foundry (Bandrowski  
et al. 2016) develops orthogonal interoperable refer-
ence ontologies in the biomedical domain, all rep-
resented in OWL. One such ontology, the Ontology 
for Biomedical Investigations, is an open-access, 
integrated ontology for the description of biologic 
and clinical investigations. Ontology for Biomedical 
Investigations provides a model for the design of an 
investigation, the protocols, instrumentation, and 
materials used, the data generated, and the type of 
analysis performed on it.

Planning
In the first part of this article, we described a progression 
through increasingly capable methods for representing 
knowledge and reasoning with that knowledge. A par-
ticularly important ongoing challenge for KR&R is to 
develop the capabilities necessary to use knowledge 
to create procedures for accomplishing goals—that is, 
planning.

In the US Department of Defense, as in any large 
enterprise, the generation, validation, and main-
tenance of plans for managing activities and invest-
ments to achieve important objectives is a major cost 
in resources and time. Planning is ubiquitous and 
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human centered, and its importance led DARPA to 
address plan generation, evaluation, execution, and 
management as areas in which AI systems could 
provide substantial assistance. Planning is also an 
important part of problem solving in other areas 
of AI, including human language communication, 
understanding sensed data (e.g., visual information), 
and robotics.

In this section we trace several key developments 
in AI planning that occurred with DARPA support 
and leadership.

The Shakey Project
The Shakey project, started by DARPA in 1966 at 
the Stanford Research Institute’s Artificial Intelli-
gence Center under the leadership of Charles Rosen, 
resulted in the first intelligent, mobile robot capable 
of problem-solving, reasoning, and planning. The 
Stanford Research Institute Problem Solver (STRIPS) 
planning system was developed to allow Shakey to 
plan its own methods for accomplishing tasks (Fikes 
and Nilsson 1971). STRIPS used a theorem prover to 
reason over a collection of logical statements repre-
senting a world state along with a collection of opera-
tors (actions) that could change the state of the world. 
STRIPS was designed to produce a plan, a sequence of 
actions that would transform a given starting world 
state to a goal world state. The STRIPS planning envi-
ronment, the classic planning environment, was 
fully observable, deterministic, finite, static (except 
for Shakey’s actions), and discrete (in time, actions, 
objects, and effects). This offered a principled basis 
for automated planning for Shakey’s simple world 
but was too limited for applications in more complex 
worlds involving external agents, dynamics, nonde-
terminism, resource usage, costs, and uncertainty.3

The ARPA-Rome Labs  
Planning Initiative (ARPI) 
The SCI had programs that involved planning to sup-
port each of the services, including Pilot’s Associate, 
Air Land Battle Management, and Fleet Command 
Center Battle Management. Following SCI, DARPA 
created the ARPA4 Rome Labs5 Planning Initiative 
(ARPI) to advance the state of the art in AI genera-
tive planning and scheduling (Nau 2007). Planning 
applications ranged from the creation of plans for 
future major contingencies as well as near-term tac-
tics to real-time execution. The generation of plans 
required managing distributed components to collect 
and interpret information about situated plan objec-
tives, manage resources for tasks, estimate plan effec-
tiveness, control other procedures and equipment, 
and adapt to changes in the environment. ARPI 
opened this larger set of planning service require-
ments to the research community while also high-
lighting opportunities for AI approaches to problems 
that other DARPA programs were addressing.

A hallmark of many DARPA programs is a connec-
tion to an operational community that can identify 
challenges and benefit from and accept advanced 

technology solutions to significant problems. Accord-
ingly, ARPI emphasized strong connections with oper-
ational communities over the course of the program.

Dynamic Analysis Replanning Tool

ARPI’s main transition partners were the US Air Force 
and the US Transportation Command responsible for 
logistics during Operation Desert Shield. A time- 
consuming part of the logistics process was the vali-
dation of transportation plans. Shortening this step 
would accelerate the whole planning process and make 
it more responsive to environmental changes. This led 
to the Dynamic Analysis and Replanning Tool (DART; 
Cross and Walker 1994), which integrated intelligent, 
expert analysis routines and database management 
systems to rapidly evaluate the feasibility of human-au-
thored logistics plans. DART became the first major 
operational military deployment of AI. With DART, 
deployment plans that had previously taken four days 
to generate feasibility estimates were routinely com-
pleted within hours (DARPA 2015), resulting in sig-
nificant savings during Operation Desert Storm.

Hierarchical Task Networks

To move beyond classic planning, ARPI investigated 
hierarchical task networks (HTNs), an approach first 
described by Sacerdoti (1973). Instead of the lin-
ear sequence of logical steps that STRIPS provided, 
HTNs, using templates representing precompiled 
strategies, recursively decompose complex tasks into 
subtasks terminating in primitive subtasks that can 
be directly performed to accomplish the objective. 
HTNs increased the efficiency of planning by using 
explicitly encoded human expertise (rather than 
needing to discover it), enabling more challenging 
real-world problems to be tackled.

HTNs have become the planning technology of 
choice for groups addressing real-world planning 
tasks. The National Aeronautics and Space Adminis-
tration uses HTN planners for a variety of space mis-
sions; for example, Continuous Activity Scheduling 
Planning Execution and Replanning, or CASPER, is 
being used in a range of projects including autono-
mous spacecraft, autonomous rovers and uninhabited 
aerial vehicles (Chien et al. 2000). Domain-config-
urable systems such as O-Plan (Tate, Drabble, and 
Kirby 1994), SIPE-2 (Wilkins 1988), and SHOP2 (Nau 
2003) have been used in a variety of applications, and 
domain-specific HTN planning systems have been 
built for several application domains.

Case-Based Reasoning and Planning

Interactive tools for case-based reasoning and plan-
ning, developed under ARPI, derived solutions to a 
problem based on solutions to past problems. In a 
case-based planning system, a case is a record of a sit-
uation and a resulting action stored in a case base. Case-
based reasoning and planning systems offer access to 
past experiences for use in solving current problems, 
and they store the solutions to current problems as 
they are being made (Mulvehill 1996). Case-based 
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reasoning and planning was used to support force- 
deployment planners through the accumulation of  
user-built plans, query-driven browsing of past plans, 
and several plan-functionality-analysis primitives 
(Veloso, Mulvehill, and Cox 1997).

Plan-Authoring Tools

As planning techniques were being developed, it was 
clear that certain important problems would not be 
easily automated, but could be helped by the use 
of structured plan knowledge. The Air Campaign 
Planning Tool (ACPT–Maybury 1995) was developed 
under ARPI to capture the rules for planners that 
derived from new Air Force doctrine. ACPT guided 
human planners through the necessary steps to cre-
ate effective plans, ensuring each step was tied to 
specific objectives and highlighting missing compo-
nents. ACPT was deployed during major exercises in 
Korea and Europe and was used to plan missions for 
enforcing no-fly zones after Desert Storm.

The Active Templates program, inspired by ARPI 
and begun in 1996, embodied a human-driven con-
cept in which plans for small-unit special operations 
would be constructed using knowledge represented 
as experientially derived templates containing slots 
that other templates, resources, and actions could 
instantiate. Thus, a particular mission template might 
include slots for the location and time frame, person-
nel needed, resources required, movement actions, 
and constraints on the way slots could be filled 
out. SOFTools, a product of Active Templates, allowed 
users to lay out plans against a timeline, understand 
resource capabilities and constraints, merge plans 
from other teams, eliminate conflicts, coordinate 
changes as plans solidified, and track mission execu-
tion. Studies showed that these tools decreased plan-
ning time by a factor of 4, allowing more time for 
rehearsal and critical decision-making. SOFTools was 
in active use for several years, and later served as the 
basis for other tool sets for mission planning.

Mixed-Initiative Planning and Scheduling

The complexity of real-world planning and schedul-
ing problems has proven to be a formidable barrier 
for automation. However, even if full automation 
were possible, humans may not trust results unless 
they have a first-hand view of and input into the 
solution. Thus, automatic plan generation for com-
plex domains, even when possible, is not always the 
best solution for problems for which user accept-
ance, responsibility, and control are critical.

Work in the area of mixed-initiative planning and 
scheduling is generally defined in terms of a division 
of labor into those areas in which the computer excels 
(e.g., extensive search through alternative possibilities 
to find a desired solution) and those in which human 
input and guidance are valuable (e.g., decision-making 
at higher levels of abstraction; Myers 1997; Burstein 
and McDermott 1994). Mixed-initiative systems must 
be flexible in allocating tasks between domains in 
which the user or computer has the initiative.

The most directly deployable technologies to emerge 
from ARPI were for scheduling, notably Carnegie 
Mellon University’s Barrel Allocator (Becker and Smith 
2000) used by the US Air Force Air Mobility Command 
(AMC) to schedule aircraft and crews needed by the 
AMC to meet current and upcoming airlift require-
ments. Importantly, the Barrel Allocator allowed a 
variable level of automation. For example, task require-
ments typically oversubscribed the available resources, 
preventing an automated scheduler from fulfilling all 
necessary tasks. However, based on knowledge una-
vailable to the system, a human planner could relax a 
noncritical constraint to create a solution. The Barrel 
Allocator enabled What if? exploration of the solu-
tion space: A user could selectively alter constraints to 
examine solutions produced by the system and inter-
actively create a preferred solution while also gaining a 
better understanding of the capabilities of the allocator 
and trust in the its decisions.

Scaling Up Planning
ARPI was the first large-scale research program to 
develop planning technology for a wide range of prob-
lems. It was the foundation for major investments in 
planning technology by DARPA and other agencies 
over many years. Commercial interest in ARPI pro-
jects led to the formation of several startup compa-
nies which, in many cases, were driven by specific 
operational challenges faced by the US Department of 
Defense and were intended to produce technologies 
that could transition directly into the services. Here 
we discuss a sampling of DARPA planning programs 
that followed from ARPI.

Joint Forces Air Component Commander Program

The Joint Forces Air Component Commander (JFACC) 
is the senior air commander in a major military cam-
paign and is responsible for the daily Air Tasking 
Order that defines missions, roles, and schedules 
for all aircraft in the theater of operations. ACPT 
helped educate the research community on some of 
the challenges of working in this domain. Started in 
1996, DARPA’s JFACC program aimed to provide AI 
planning technology to decrease the time it took to 
respond to a new mission requirement from days to 
hours or minutes, to evaluate the degree to which 
proposed missions would meet objectives, and to 
ensure availability of necessary resources.

Technology demonstrations indicated the feasi-
bility of meeting these aims, but the costs and risks 
imposed by the need to modify and extend or replace 
existing system components prevented direct tran-
sition of most results other than improved versions 
of the Barrel Allocator and ACPT. However, concepts 
developed in JFACC spawned additional programs 
outside of DARPA.

Joint Air/Ground Operations:  
Unified Adaptive Replanning Program

The Joint Air/Ground Operations: Unified Adaptive 
Replanning (JAGUAR) program, started in 2003, aimed 
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to pick up where JFACC left off by integrating technol-
ogies for automating plan generation, plan assessment, 
and model adaptation in a consistent, model-based 
framework that could respond to the forthcoming 
transformations in air operations.

JAGUAR followed an approach similar to that of 
Active Templates but for a much larger and more 
complex set of problems. Part of the JAGUAR program 
focused on tools to monitor air operation planning 
activities and to capture knowledge about air plan-
ning processes, plans, and effects. This knowledge 
would allow plans to be decomposed into fragments 
that could then be reassembled by automated plan-
ning tools into new operational plans tailored and 
optimized for new situations. Like JFACC, JAGUAR 
never transitioned as a program to Air Force opera-
tions due to mismatches with current operational sys-
tems, but the JAGUAR core plan representation was 
adapted and used in later Air Force programs integrat-
ing cyber, space, and air operations.

Control of Agent-Based Systems Program

In 1998, DARPA created the Control of Agent-Based 
Systems program to provide enabling technology  
for heterogeneous software agents to solve prob-
lems. Accordingly, it covered a range of topics that 
included directability of agents, safety of agent actions, 
semantic match-making (i.e., finding agents for 
tasks), and agent intercommunication. An important 
result of the program was the Control of Agent-Based 
Systems Grid, which provided dynamic registration 
of service-providing agents, discovery of registered 
services, and ontological mapping of services to ena-
ble interoperability. The Control of Agent-Based Sys-
tems Grid was the integrating vehicle for a successful 
experimental demonstration involving 21 multiagent 
systems interoperating to plan a noncombatant evac-
uation utilizing 75 agents across nine distributed sites 
using multiple computing platforms (Allsopp et al. 
2002). The success of Control of Agent-Based Systems 
led to the DAML program (described above).

Software for Distributed Robots Program

The 18-month Software for Distributed Robots pro-
gram, started in 2004, aimed at eliciting desirable 
aggregate behaviors from a large group of small, sim-
ple robots capable of communication and limited 
sensing to accomplish a set of tasks within a large, 
previously unexplored area (Howard, Parker, and 
Sukhatme 2006; Konolige et al. 2006). A sequence of 
successful exercises using groups of 25, 50, and then 
100 robots, demonstrated that robots could enter 
a new building and then establish and maintain a 
communication network; organize efficient map-
ping activities; avoid obstacles; collect, share, aggre-
gate, and validate map information; use the created 
map to formulate paths; organize an efficient and 
complete search of the area for objects of interest; 
and other activities. The group could also recognize 
and fill gaps in its ad hoc communication network 
caused by movement or failure of a robot.

Real-Time Adversarial Intelligence  
and Decision-Making Program

Most US Department of Defense missions must take 
into account an intelligent and resourceful adver-
sary. Real-Time Adversarial Intelligence and Deci-
sion-Making, started in 2004, was the first program to 
explicitly model and reason about an adversary’s 
objectives, intent, and plans. Real-Time Adversar-
ial Intelligence and Decision-Making used linguistic 
geometry (Stilman and Aldossary 2015) to character-
ize the space of engagements for small units in urban 
terrain. It then applied approximate game-theoretical  
and deception-sensitive algorithms (Gilpin 2009; 
Roughgarden, Nisan, Tardos, and Vazirani 2007) to 
anticipate future actions of human teams, Blue and 
Red, in urban conflict to suggest the best actions for 
Blue against the actions of Red in real-time.

Extensive experiments compared the performance 
of teams staffed with retired and active US military 
personnel operating in a four-square-kilometer urban 
area where Blue controlled a simulated force of 30 to 
35 four-soldier groups and Red controlled about 30 
groups comprised of several insurgents each. In half 
of the experiments, the Blue staff was assisted by Real-
Time Adversarial Intelligence and Decision-Making 
and significantly outscored unassisted Blue teams in a 
preponderance of examples by about 10 percent.

The US Army and others are extending Real-Time 
Adversarial Intelligence and Decision-Making tech-
nology to make it more robust, applicable to diverse 
conditions and scenarios, and easy to use in real 
combat environments.

Conclusions and Future Challenges
In attempting to describe the influence DARPA has 
had on the development of AI representation and 
reasoning methodologies, we have focused primarily 
on declarative symbolic world modeling and on foun-
dational reasoning methods having applicability to a 
broad range of tasks. Much of the research in KR&R 
has moved into application subfields (for example, 
learning, human language understanding, robot-
ics, and perception). Other articles in this collection 
describe, in more detail, the KR&R approaches under-
lying their specific domains.

DARPA has invested a great deal in the develop-
ment of planning capabilities aimed at assisting a 
human planner to create effective plans with less 
effort. Multiple programs are currently underway 
at DARPA to support greater autonomy for software 
and physical agents (DARPA 2019).

Although much of the focus of attention in AI 
has moved away from traditional symbolic KR&R 
approaches, the results of R&D for KR&R have had 
many successes (e.g., the R1/XCON system used to  
configure VAX computers [McDermott 1980], the 
Jeopardy champion Watson system [Ferrucci et al. 
2010], and the DART logistics system used in the 
Gulf War) and current uses (e.g., the A* search algo-
rithm that is the basis for routes determined by the 
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Global Positioning System [Hart, Nilsson, and Raph-
ael 1968] and knowledge graphs). Knowledge rep-
resentation technology has in fact become critical to 
many products in diverse industry settings today by 
enabling the building of symbolic KBs that provide 
structured descriptions of objects of interest and con-
nections between them to multiple applications. For 
example, the search engines of Google and Microsoft 
are supported by knowledge graphs that enable their 
response to user queries about entities to include an 
array of facts about the entities. Commercial knowl-
edge graphs are massive in size (for example, Google’s 
knowledge graph currently has over 1 billion enti-
ties and 70 billion facts) and make use of ontologies, 
strongly typed entities, relations with domain and 
range inference, and so forth, developed by the KR&R 
research community (Noy et al. 2019).

Challenges continue to exist in most areas of 
KR&R as harder, more complex problems are under-
taken, and knowledge is used in more sophisticated 
ways. Continuing challenges for knowledge graphs 
include entity disambiguation, managing changing 
knowledge, knowledge extraction from multiple 
structured and unstructured sources, and managing 
operations at scale. Important areas of active KR&R 
research motivated by more complex problems 
include reasoning from evidence about complex 
environments; effective use of context by intelligent 
systems; maintaining multiple hypotheses; explain-
ing reasoning; developing plans to shape complex 
future events; linking observation, explanation, plan-
ning and execution to create truly autonomous 
agents; and creating agents that can act effectively in 
teams with humans.

In recent years, a great deal of attention has been 
focused on the artificial neural representations used 
in deep learning systems, and their capabilities have 
been extremely impressive and promising. Impor-
tant challenges remain for current learning systems 
to enable them to learn procedures and processes, 
adapt to changing conditions, provide necessary 
performance guarantees, and, in particular, pro-
vide users with explanations of their results. Many 
researchers, including the authors, foresee a future 
in which those capabilities are provided by unify-
ing symbolic KR&R technologies with data-centric 
machine learning methods to produce intelligent 
systems that are significantly more generalizable, 
transparent, and directable than possible today.

Recognizing that powerful learning methods are 
a necessary but not a sufficient basis for intelligent 
systems, it is vital going forward that a broad range 
of KR&R capabilities and approaches be actively pur-
sued and supported in the AI research community.
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Notes
1. Much of the historical material in this article has been 
obtained directly from existing publications, including the 
book by Nils Nilsson (Nilsson 2009) and Funding a Revolu-
tion: Government Support for Computing Research (Commit-
tee on Innovations in Computing and Communications  
1999).

2. The 2020 Conference on Principles of Knowledge Rep-
resentation and Reasoning will be held in Patras, Greece 
(kr2020.inf.unibz.it/).

3. Refinements of the STRIPS paradigm viewed it as a satis-
fiability problem, allowing for the use of more generic rea-
soning systems rather than requiring a specialized planning 
engine, e.g., SATPLAN (Kautz and Selman 1992).

4. An alternate reference for DARPA.

5. Rome Laboratories, housed on Griffiss Air Force Base, 
Rome, New York.
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