
Innovative AI Applications

Copyright © 2020, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 Fall 2020  63

In standard classification, the task is to learn a function 
that can map each input object to a class. The input 
objects are represented by sets of values called features. 

The classes, also called labels, are represented by a set of 
symbols or nominal values. It is an important assumption 
of standard classification that classified objects can be rep-
resented by n-dimensional vectors of real-valued features 
that are independent and identically distributed over the 
features, while classes, it is assumed, can be represented by a 
single nominal attribute from a finite, unordered set. Given 
a sufficiently large set of input space objects with corre-
sponding labels, such standard classification problems can  
be efficiently solved with off-the-shelf classification algo-
rithms. However, in many applications, these assumptions 
of standard classification do not hold. Here, we discuss a 
classification problem in which classes cannot be repre-
sented by nominal attributes only; classes have user-specific 
scope; classes are evolving in the very process where clas-
sification is used by a large community of users; and the 
domain of the most important features comprises nominal 
sets having tens or hundreds of thousand elements.

 A major part of financial accounting 
involves organizing business transac-
tions using a customizable filing sys-
tem that accountants call a “chart of 
accounts.” This task must be carried 
out for every financial transaction, and 
hence automation is of significant value 
to the users of accounting software. 
In this article we present a large-scale 
recommendation system used by mil-
lions of small businesses in the USA, 
UK, Australia, Canada, India, and 
France to organize billions of financial 
transactions each year. The system uses 
machine learning to combine fragments 
of information from millions of users 
in a manner that allows us to accu-
rately recommend chart-of-accounts 
categories even when users have cre-
ated their own or named them using 
abbreviations or in foreign languages. 
Transactions are handled even if a 
given user has never categorized a trans-
action like that before. The development 
of such a system and testing it at scale 
over billions of transactions is a first in 
the financial industry.

Large-Scale  
Personalized  

Categorization of  
Financial Transactions

Christopher Lesner, Alexander Ran, Wei Wang, Marko Rukonic



Innovative AI Applications

64 A I MAGAZINE

Although this situation is not uncommon, rela-
tively little has been published about such person-
alized classification problems. In this article, we share 
our experience with personalized classification of 
financial transactions for automating small business 
accounting. The insights and conclusions of our 
work should be readily applicable in domains char-
acterized by a large community of users evolving 
their personal categorization taxonomies in a way 
that is immediately relevant for their specific context 
while having varying degrees of similarity to how 
other users organize their information. Such domains 
include filing of financial transactions for personal 
and business accounting, organization of family pho-
tographs, organization of personal collections of mov-
ies, cooking recipes, website bookmarks, and others.

In this article, we will first explain the applica-
tion domain and the value the automation of small 
business accounting has for millions of small busi-
nesses around the world. We then explain why 
standard classification methods fall short for the 
purpose of financial transactions classification, and 
present a framework we developed to solve person-
alized classification problems — a confidence-based 
ensemble of association strength rankers (CEASR). Next, 
we discuss what was necessary to build the work-
ing system that has been serving millions of Intuit 
QuickBooks customers for the last several years. We 
share some performance metrics and our experience 
with large-scale–model training and deployment. 
Here we emphasize the importance of different data 
representations — one suitable for model training 
and another for model deployment. We also discuss 
what sorts of faults can occur during model builds, 
how we detect these faults, and how our system uses 
checkpoints for recovery from faults. We then cover 
some practical aspects of dealing with soft real-time 
latency deadlines, and selecting and optimizing servers 
for model builds versus model deployment. We con-
clude with a discussion of user impact, benefits, and 
what we learned.

Accounting  
Automation with  

Personalized Classification  
of Financial Transactions

Financial accounting organizes business transactions 
using a customizable filing system accountants call 
a chart of accounts (CoA). To keep business books 
organized, every transaction must be filed using the 
CoA — even small purchases and payments — so this 
is a tedious chore for millions of accounting software 
users. Assuming it takes about three seconds for 
a typical financial transaction, last year the users of 
Intuit’s accounting software would have spent well 
over a thousand man-years on this task, if not for the 
assistance provided by automation.

Assigning correct categories to financial transac-
tions is important because errors on this task can 

lead to incorrect financial statements, increased audit  
risk, tax, and other regulatory penalties, misinformed 
financial decisions, and displeased creditors and 
investors. For these reasons, accurate financial trans-
action filing is of significant economic value for 
everyone involved — business owners, their account-
ants, vendors of accounting software, and others.

In this article, we present a large-scale recommen-
dation system used by millions of small businesses 
in the USA, UK, Australia, Canada, India, and France 
to organize billions of financial transactions each 
year. The system uses machine learning to combine 
fragments of information from millions of users in 
a manner that allows us to accurately recommend 
CoA categories even when users have created their 
own or named them using abbreviations or in for-
eign languages, and transactions are handled even if 
a given user has never categorized a transaction like 
that before. The development of such a system and 
testing it at scale over billions of transactions is a first 
in the financial industry.

Domain Information Structure
A simplified model of accounting of payments is 
shown in figure 1. Each company uses one or more 
financial institutions that offer financial accounts 
that facilitate transactions such as receiving money 
from customers, paying wages to employees, and 
paying bills to suppliers and service providers. The 
records of financial accounts can be electronically 
downloaded and each financial transaction must 
then be given an accounting interpretation using a 
CoA, which is a customizable collection of account-
ing categories. Our focus in this article is on a sys-
tem that learns to recommend the most suitable CoA 
account for each down-loaded transaction.

Financial accounts track how much money changed 
hands on a given date with a certain counterparty, 
but unlike an invoice or a receipt, the transaction 
records from a financial account typically do not 
have information about the items purchased or the 
services involved. Financial transaction records 
generally only include: a transaction description (may 
refer to counterparty); a financial institution that 
recorded the transaction; a financial account descrip-
tion; a date of the transaction; and a money amount.

Knowing the counterparty merchant, vendor, or 
service provider can help assign a transaction to the 
correct CoA category. However, it is frequently not 
possible to know this just from transaction descrip-
tions provided by users’ financial institutions. At 
best, we are able to infer whether two transactions 
refer to the same counterparty in their descriptions, 
through a form of probabilistic coreference resolu-
tion (Clark and Manning 2015). The details of our 
approach for coreference resolution are outside the 
scope of this article. What is important, however, is 
that real-world attributes of the counterparty such as 
the name, description, business domain, and the like, 
all of which can be helpful for inferring the meaning 



Innovative AI Applications

Fall 2020  65

of the transaction in the accounting domain, are not 
necessary to build our system.

The main transaction attribute, the transaction 
description, is categorical, nominal with cardinality 
in the order of 108. We estimate that there are only 
about 107 distinct counterparties and the extra order 
of magnitude comes from the imperfect coreference 
resolution. This clearly violates the typical assump-
tions of algorithms designed for standard classifica-
tion. For example, a typical approach to represent 
nominal values is one-hot encoding. Each nomi-
nal value from a set of n values is represented as an 
orthonormal vector in n-dimensional space. Instead 
of a single categorical feature, we have n features only 
one of which has the value of one, and the rest are 
zeros. In our case, just representing the transactions 
counterparty would require hundreds of thousands 
features.

To facilitate business insights from accounting 
reports, small business accounting systems enable 
companies to customize their CoA categories and, in 
practice, semantic information about the CoA of any 
given company is either unreliable or unavailable. 

For example, CoA account attributes such as its type 
(indicating whether the account represents income, 
expenses, cost of goods sold, fixed assets) or tax type 
(for example, using IRS schedule C) are only reliable 
if the small business uses reports and analysis that 
depend on the correct setup of these attributes.

Many small businesses treat their CoA as a set 
of folders for organizing related transactions and 
the CoA account name is the only attribute that is 
important for them. Across different companies, the 
same account names may have different meanings, 
and different account names may have the same or 
similar meanings.

Furthermore, companies organize their transactions 
using different levels of granularity. Transactions 
pertaining to internet service, cellular phones, water, 
and gas services may all be filed in the same utility’s 
CoA account; or tracked using individual vendor 
accounts such as Comcast, Verizon, Sprint, and 
PG&E; or tracked as communication services versus  
water service versus heating service. As a result, much 
like counterparty identities, accounting categories 
are best thought of as nominal attributes unique for 

Name Industry Account
Type

Tax Type Name

Company Accounting Account

CategoryPayments

Financial Account Records Transaction

DescriptionDateAmountInstitution
Account

Type

Figure 1. Accounting of Payments.

Simplified model.



Innovative AI Applications

66 A I MAGAZINE

a particular company. Instead of a finite, moderately 
sized set of classes with no structure, we have a com-
plex, large set of objects.

Baseline for Automation
The automation of transaction categorization can be 
thought of as learning a ranking function γ (u, a, c) = 
r ∈ ℜ that maps possible combinations of User, Com-
pany, Account, and Transaction, represented by their 
respective attributes (see figure 1) to a real number r, 
such that

	

, : ( , , ), ( , , )
( | , ) ( | , )

i j i i j j

i j i j

r r r u a c r u a c

r r P a u c P a u c

γ γ∀ = =

> ⇔ > � (1)

There are special challenges for applying common 
solutions to a standard classification problem to this 
domain:

First, low-cardinality categorical attributes asso-
ciated with companies, accounts, and transactions 
such as Industry, Tax Type, and Account Type, have 
low predictive power with respect to transaction to 
account assignment.

Second, low-dimensional representation of textual 
attributes such as Account Name, Transaction Descrip-
tion, and Company Name, perform worse on the cate-
gorization task than simple memorization of nominal 
associations.

Third, nominal representations of textual attributes 
have extremely high cardinality (tens or hundreds 
of millions).

Historic data may be represented as a set of tuples 
Г = (u, a, c, t) ∈ U × A × C × (t0, now), where u, a, c, 
and t stand for the identities (references, nominal 
attributes) of the users/companies, accounting cat-
egories, transaction counterparties, and the time of 
the event, respectively. U, A, and C are the respective 
domains of identities for user, accounting categories, 
and transactions counterparties; and (t0, now) is the 
time interval. The task is to learn a function γ: U × A × 
C → R.

Notice that even this simple interpretation of the 
domain violates the assumptions of standard classi-
fication. For example, the number of classes is not 
fixed as users can and do define new accounting cate-
gories. The number of accounting categories actively 
used during one year by the entire community of 
QuickBooks1 users is in the order of 108.

Because accounting categories of different compa-
nies are represented by distinct nominal attributes 
and, therefore, historic data are a collection of asso-
ciations between distinct nominal values, it seems 
like the only possibility is memorizing such associa-
tions between accounting categories and counterpar-
ties created by the user in the past using a ranking 
function that satisfies the requirements of equation 1. 
One such function uses the most popular category 
that the user has assigned to a given counterparty 
in the past γp(u, a, c) = | Г ∩ (u, a, c,). Another such 
ranking function uses the timestamp of the last 

occurrence of the tuple (u, a, c) as the value of the 
ranking function γt(u, a, c) = max(t: (u, a, c, t) ∈ Г).

While either of these functions can predict account-
ing categories for counterparties present in the user’s 
transaction history, no predictions can be made for 
transactions with new counterparties that constitute 
about fifty percent of all transactions. So even if future 
transactions with the same counterparty are always 
categorized correctly and new counterparty transac-
tions are assigned to the most popular account, the 
mean accuracy of such a classifier would be at most 
around fifty percent, starting at close to zero percent 
for new users and slowly growing as the user accu-
mulates a personal history of classified transactions. 
Learning such explicit mappings from the counter-
party to the most likely accounting category inde-
pendently for every user has been, and continues to be, 
the state of the practice today among many vendors 
of accounting software.

Domain Graph for  
Coding Nominal Features

One may observe that counting the instances of trans-
actions with a given counterparty in user’s account-
ing categories and selecting the category with the 
maximum count (as specified by γp) is an approxi-
mation of maximum likelihood with the assumption 
that all categories are equally probable for a transac-
tion with an unknown counterparty. The counts can 
be thought of as estimates of quantities proportional 
to conditional probabilities of the counterparty, given 
the user’s account. What we need is a way to extend 
this procedure to counterparties with which the user 
has had no prior transactions.

Rather than interpreting the available data proposi-
tionally, when each tuple (u, a, c, t) is an independ-
ent fact, we interpret it as representing a graph of 
relationships among the users, accounting catego-
ries, and counterparties. Because identity of account-
ing categories can be unambiguously mapped to 
the identity of the user, we will only focus on the 
relational representation of accounting categories 
and counterparties. Let’s assume that relationships 
between accounting CoA categories and counter-
parties are represented in the data by the similarity 
of their attributes and associations. This induces the 
following set of relationships: similarly named CoA 
categories; CoA categories with matching tax or 
account types; CoA categories with the same coun-
terparties; counterparties assigned to the same CoA 
category; and counterparties assigned to related CoA 
categories.

For transactions with counterparties that a given 
user has categorized in the past, the strategies of 
using the most popular or the most recent category, 
for example, perform quite well. These strategies in 
essence represent the nominal counterparty attribute 
using a consistent scoring procedure over the set of 
accounts to be ranked, such that it preserves partial 
order of these accounts with respect to conditional 



Innovative AI Applications

Fall 2020  67

probability of the account given the counterparty. 
This coding of nominal attributes is often called 
target coding, as it substitutes a nominal attribute 
with an estimate proportional to the probability of 
observing the nominal attribute associated with the 
target class.

While direct observations only provide informa-
tion about associations of a specific counterparty 
with a specific accounting category of a given user, by 
using the relational graph we can extend this idea to 
encompass other kinds of associations. In relational 
interpretation, each user account is represented by a 
graph induced by the relationships to counterparties 
and other accounts induced by an account’s attrib-
utes and associations with transaction counterpar-
ties. Thus, each counterparty can be represented by 
a vector of scores. Each score is proportional to the 
conditional probability of the counterparty being 
associated with other accounts, related to the given 
account by the value of its attribute or its direct asso-
ciations with other counterparties.

When a user has a transaction with a new coun-
terparty, this counterparty can be represented by the 
strength of association with the set of accounts to 
be ranked for the classification task as well as by the 
strength of association with other entities related to 
the account, such as other accounts of the same type, 
similarly named accounts, and the counterparties 
present in the account. These can be derived from 
counterparty occurrence and co-occurrence statistics 
in the accounting categories of other users. This way 
we use strength of association between accounts and 
counterparties derived from the data of the entire 
population of users to estimate, for example, the 
strength of association between a new counterparty 
and user’s accounting categories.

For another example, an account’s type attribute  
relates a given accounting category to all other 
accounts of the same type. The fraction of transac-
tions with a given counterparty that is associated 
with the accounts of the same type can serve as an 
estimate for a score that satisfies the requirements of 
the ranking function from equation 1.

Account Name is another attribute that can be used 
to relate accounting categories. Unlike the low- 
cardinality attribute such as Account Type, the Account 
Names have cardinality in the order of 105 and 
only about half are shared between any two users. 
Rather than equality of Account Names, one can 
use a similarity measure to define the similarity- 
by-name relationship for accounting categories. 
Once such a relationship is defined, the process of 
scoring the counterparties by their strength of asso-
ciation with every accounting category can be the 
same as in other cases.

Finally, accounting categories become related by 
virtue of being associated with the same counter-
party. One can think of this type of association as 
a second-order association. If we can score all pairs 
of counterparties proportionally to the probability 
of their co-occurrence in the same account, we can 

use such scores to score accounting categories with 
respect to the probability of association with a new 
counterparty, based on the current association of 
the accounting category with other counterparties. 
The types of relationships that exist in our domain 
model are shown in figure 2.

Event Counts for  
Association-Strength Scoring

Using event counts over sets of observations, rep-
resenting categories, to estimate the probability of 
the event given the category can be effective when 
the number of observations is large and the events 
of interest are well distributed over the categories. 
When dealing with events defined by high-cardinality  
nominal attributes, as is the case in our domain, 

Account

Counterparty

Has Similar Name

Has Same Type

In Same Account

In Similar Account

Contains Appears In

Figure 2. Relational Model of Historic Data.



Innovative AI Applications

68 A I MAGAZINE

there is a need to account for rare events. When 
counting counterparty distribution over accounts or 
counterparty distribution over accounts defined by 
type or name similarity, we add a fixed number of 
events to every category. This is known as additive 
smoothing, sometimes also called Laplace smoothing 
(Vechtomova 2009).

When prior probability of all categories to be 
ranked (typically a subset of accounting categories of 
a given company) can be estimated from data with-
out knowledge of the counterparty of the new trans-
action, the posterior probability of the accounting  
category given the counterparty can be estimated as 
a mixture of two terms. The first term is estimation 
based on the counts associated with the counterparty. 
The second term is the prior for the category estimated  
from all training data P(a|c) = λ(na) na/n + (1 – λ[na])P(a), 
where na is the count of training-set transactions 
with counterparty c and accounting category a,  
and λ(na) ∈ (0, 1) is a monotonic function that 
increases from 0 for small na and approaches 1 as 
na increases. (See the work by Micci-Barreca (2001) 
for a discussion on choices.)

Similar problems have to be addressed when scoring 
accounting categories on second-order relationships 
such as, for example, counterparty-to-counterparty asso-
ciations. Intuitively, the counterparty-to-counterparty  
association should be related to the likelihood that 
counterparty ci appears in the same accounting cate-
gory a as the counterparty cj, given that the user has 
transactions with both counterparties. This can be 
estimated by counterparty co-occurrence statistics.

Care must be taken to address situations when the 
two counterparties have very different frequencies of 
occurrence (Count(ci) > > Count[cj]) as well as situa-
tions when one of the counterparties is rare. The first 
situation can be addressed by using a mean of frac-
tions of cases when counterparty ci is present in the 
accounting category, given that the counterparty cj is 
present in the accounting category plus the inverse, 
as in 0.5(P(ci ∈ a| cj ∈ a) + P(cj ∈ a| ci ∈ a)).

On the other hand, association strength will be 
grossly overestimated for rare counterparties that 
happen to co-occur once or twice. This problem has 
been observed by others using pointwise mutual 
information for estimating the strength of lexical 
association (see, for example, the work by Recchia 
and Nulty [2017]). We address this problem by add-
ing a factor that scales down the estimation when 
one of the counts is comparable to k, and approaches 1 
when both counts are large compared with k (a small 
integer).

Combining  
Weak Ranking Predictors

It is worth noting that coding counterparty rep-
resentation by scoring association strength with 
each accounting category along multiple dimen-
sions of association derived by a walk on the domain 
graph, produces multidimensional representation of 

the counterparty such that scores along each dimen-
sion satisfy the requirements of equation 1 (the rank-
ing function equation), and thus can be used directly 
and independently as three weak ranking predictors:

Scores derived from direct associations between 
counterparties and accounting categories can be 
used to rank user’s accounts when classifying a trans-
action with a counterparty known to the user.

Transactions with counterparties not known to 
the user can be classified by ranking a user’s account-
ing categories based on the strength of association 
between the counterparty and the counterparties 
directly associated with user’s accounts.

Transactions of users who have not classified any 
transactions before can be classified using scores 
derived from association strength between transac-
tion counterparty and accounting categories of other 
users related by attribute equality or similarity to the 
user’s accounting categories.

We have used this strategy and achieved good 
results as reported by Lesner et al. (2019), but this 
approach has several limitations. First, the perfor-
mance of the ensemble is bounded by the perfor-
mance of the individual base predictor applied; the 
combined power of all the available predictors is 
not used. Second, it is unclear how to integrate pre-
dictors that have the same applicability conditions 
such as, for example, multiple predictors derived by 
scoring a counterparty along different dimensions of 
account-to-account association.

To address these limitations, we developed a flex-
ible approach to combine multiple ranking pre-
dictors where each predictor trains independently 
in parallel, which is necessary for scaling the solu-
tion to millions of users, hundreds of millions of 
accounting categories, and tens of millions of 
unique counterparties.

Confidence Based  
Ensemble of Association  

Strength Rankers (CEASR)
Combining the output of multiple base predictors/
classifiers to achieve a better performance than any 
of the base classifiers has been a goal of ensemble- 
learning research for more than 20 years (Freund and 
Schapire 1995; Efron and Tibshirani 1998; Grove 
and Schuurmans 1998), and remains an active area 
of interest (Montalbo and Festijo 2019).

A common recommendation of many research-
ers revolves around weighted voting for combining 
classification ranks from base classifiers. Weights can 
be determined through, for example, supervised 
learning on a separate dataset to maximize the per-
formance of the ensemble (Li et al. 2014; Wang et al. 
2015). For problem domains similar to ours that have 
a large number of classes, a relatively small number 
of examples per class, and a complex, evolving class 
structure, more-complex methods have been pro-
posed as well (Melnik, Vardi, and Zhang 2004).



Innovative AI Applications

Fall 2020  69

All approaches that we know of propose strategies 
that use classifier features measured or derived from 
classifier performance over a population of items. 
We have observed, however, that performance of 
different base predictors varies widely over the pop-
ulation of classified items. Thus, we saw an oppor-
tunity to develop an approach that is guided by the 
expected accuracy of the base classifier for the spe-
cific item being classified.

The core idea is for each base classifier to also train 
a separate model, called a confidence model, to esti-
mate the probability that the top-ranked category 
recommended by the base classifier for the specific 
item being classified is correct. Such a confidence 
model can be trained with a representation of the 
item in some feature space using historical data for 
correct item class.

Because each of the base classifiers is a ranking 
classifier as defined in Equation 1, when classifying 
a counterparty c for user u, having n user-specific 
classes (accounting categories) ai: i ∈ (1..n), each of 
the base classifiers will produce a set of ranking pre-
dictions ri: i ∈ (1..n). While the highest-ranked class 
is the best answer the base classifier can give to the 
classification problem, the sequence of top k ranks 
ri: i ∈ (1..k) provide a k-feature vector representation 
that effectively integrates information about the base 
classifier and the classified item predictive of the 
likelihood that the class selected by the base classifier 
is the correct class for the item.

For each base classifier, we train a confidence model 
λ: Rk → R that minimizes the mean-squared error with 
respect to the base classifier top-ranked class a(1) being 
the correct class for the item. Our algorithm then 
uses the sum of ranking scores produced by each 
base classifier, scaled by the estimated confidence of 
the base classifier for the classified transaction.

Experimental Results
Two performance indicators directly impact how 
much work accounting software users must do to 
organize their financial transactions: Accuracy of  
recommendations — every inaccurate recommenda-
tion has to be manually corrected. Accuracy of rec-
ommendation confidence — sorting recommendations 
by how likely they are to need corrections makes the 
review process faster, because users can focus their 
attention on a small fraction of transactions that need 
it the most.

To track these performance indicators, we plot mean 
accuracy of recommendations against the fraction of 
all recommendations when sorted by descending con-
fidence of prediction, as shown in figures 3, 4, 5, and 6.

Comparing figure 3 to figure 4, it is evident that 
in regions with more users and more classified trans-
actions, the performance is better both in terms of 
absolute accuracy and in terms of our ability to sort 
transactions by expected accuracy.

Before CEASR, the mean accuracy of our recom-
mendations was around seventy percent in the smaller 

region, and slightly above seventy percent in the 
larger region. Our ability to sort recommendations 
by expected accuracy was limited. In the smaller 
region, we could at best separate about a third of all 
transactions with expected accuracy above eighty 
percent. In the larger region, we could only identify 
about forty percent of transactions for which rec-
ommendations were ninety-percent accurate; how-
ever, with CEASR, we can separate seventy percent 
of transactions with a mean accuracy of category  
recommendations above ninety percent across 
different regions. The impact is also more pro-
nounced in smaller user regions with less training 
data.

It is clear when comparing figures 3, 4, 5, and 6 
that CEASR significantly improves performance, has 
greatest overall benefit in smaller regions, and shows 
consistent performance across all regions.

How the Model Is Used
QuickBooks offers users the ability to connect their 
financial accounts (banks, credit unions, investments) 
to download transactions. What happens next is 
illustrated in figure 7. Upon download, each trans-
action undergoes analysis to understand what it rep-
resents (withdrawal or deposit, purchase or income, 
loan payment or disbursement, money transfer, fee) 
and who the transaction is with (counterparty). Next, 
our account likelihood-ranking model is applied and 
transactions are tentatively filed (autocategorized) 
with respect to each user’s CoA. In the final step, 
users get an opportunity to accept or correct how 
their transactions have been filed, and their corrections 
are used to update the account likelihood-ranking 
model the next time it is built.

How the Model Is Built
To keep production models fresh, we regularly rebuild 
them. This process has three main steps, as shown 
in figure 8.

Data Extraction
Model builds start with extraction of just the table 
columns that pertain to financial account transac-
tions and CoA accounts. From a data warehouse, 
these columns are transferred to Vertica2 (figure 8,  
step A), where additional projections are added so that 
our model build data access patterns are sequential.

Model Build
The model build (computing the counterparty co- 
occurrence sparse matrix, from here on, called the 
coupling table) is carried out in Vertica as controlled 
by a Python orchestration service. Once model 
tables are created, they are transferred from Vertica 
to PostgreSQL3 (figure 8, step B) — in this step, our 
knowledge representation is switched from column 
store to row store (see “Knowledge Representation,” 
below).



Innovative AI Applications

70 A I MAGAZINE

Model Acceptance Testing
After model data are in PostgreSQL, an instance of 
the build-time model service is started, and a model 
service client simulator is launched for model accept-
ance testing — it replays a month of transactions. 
Model coverage and accuracy metrics are tracked, 
and the model build is halted, unless these metrics 
have acceptable values. On successful test completion, 
the model is compressed into RPM Package Manager 
(RPM) package files for distribution (figure 7, step C). 
The final step is to install the RPMs on a node hav-
ing hardware matching that used in production, and 
to again launch the client simulator to replay the 
transaction history — this time, however, for model 
latency acceptance testing. Model acceptance test-
ing is split like this for two reasons:

First, latency tests are not reliable unless they are 
performed using an operating system and hard-
ware-matching production-runtime environment. 
This is further explained in the next section.

Second, model coverage and accuracy tests do 
not need production hardware, so these tests are 
launched right away. If there is a model accuracy 
or coverage drop (due to, for example, a change in 
some up-stream system that we do not control), 
automated tests catch this early.

Firm Real-Time Deadlines
Some transactions involve counterparties coupled 
to a small number of other counterparties. These 
are quick to classify, especially when the counter-
parties involved are popular. Other transactions 
involve counterparties weakly coupled to hun-
dreds of counterparties or to counterparties that 
are relatively rare. Such transactions take longer to 
classify, because each extra counterparty requires a 
new b-tree index search, and the more obscure the 
counterparty, the lower down in the cache hierarchy 
the coupling table entries for that counterparty are 
likely to be.

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.2 0.4 0.6 0.8 1.0
Fraction of transactions sorted by descending con�dence of recommendation

Before CEASR
After CEASR

Figure 3. Accuracy in a Smaller User Population Region.



Innovative AI Applications

Fall 2020  71

In our production service, popular counterparties 
are likely cached, whereas rare counterparties are 
unlikely to be cached. For this reason, some trans-
actions can take 102 times longer to categorize and 
models must be latency-tuned to operate predictably 
under firm real-time deadlines. Deadlines are firm, 
because failing to show users their transactions on 
time is worse than if these transactions are missing 
account recommendations.

Model Latency Tuning
Latency tuning involves pruning those entries from 
the model tables that are least likely to influence rec-
ommendations. Values that are tiny, for example, are 
unlikely to make a difference.

With smaller coupling tables, fewer b-tree search 
steps are needed and a larger portion of the coupling 
table b-tree index can be cached so index searches are 
shorter and faster. Yet small coupling tables contain less 
information, and as the coupling table size is reduced, 
model coverage and model accuracy both suffer.

During latency tuning, we adjust this trade-off 
between the model latency (due to coupling-table 
size) and the model coverage and accuracy. Our goal 
in latency tuning is to make sure models rarely if ever 
exceed firm real-time latency deadlines. If a deadline 
is missed, account predictions are late, so they cannot 
be used; late predictions — even if correct — are 
always counted as being incorrect.

Tuning coupling-table sizes for latency also requires 
that the tuning process sends transaction-request 
sequences that are representative of what happens 
in production: transaction counterparties must 
be as diverse; and counterparty order should be 
representative.

Latency tuning with just a few transaction coun-
terparties is misleading because, after a counterparty 
is first referenced, its coupling-table entries are 
now high up in the cache hierarchy, and subsequent 
references are quick. A similar cache effect occurs 
even if you use all possible counterparties but fail to 
mix up their order. To avoid both of these problems, 

0.2 0.4 0.6 0.8 1.0
Fraction of transactions sorted by descending con�dence of recommendation

0.80

0.85

0.90

0.95

1.00

0.75

Before CEASR
After CEASR

Figure 4. Accuracy in a Larger User Population Region.



Innovative AI Applications

72 A I MAGAZINE

we tune models using sequences of requests that 
play-back production-model usage from history.

Build versus Runtime Servers
Our model is regularly refreshed to reflect changes in 
the real world and comply with regulations such as 
the European Union’s General Data Protection Regu-
lation 2016/679. To enable regular and timely model 
updates, the build process has to be performance- 
optimized as well. However, the characteristic patterns 
of data access during model training are quite differ-
ent from the interactive context at runtime:

First, model build servers are selected and opti-
mized for sequential large input/output throughput. 
These have a redundant array of independent disks 
with small chunks and wide stripes. File systems are 
created with large records, and operating-system 
scheduler policies are set to favor throughput over 
latency. Four-plus central-processing-unit socket serv-
ers with nonuniform memory access work well.

Second, model runtime servers are selected and 
configured to maximize the number of small input/

output operations per second. Random-access mem-
ory is maximized and solid-state drives are used for 
model data storage. The file system holding the model 
is created with small records, and operating-system  
scheduler policies are set to favor latency over through-
put. We avoid nonuniform memory access due to 
the random access memory-latency overheads it can 
impose.

Model runtime servers are dedicated for just one 
task, so no other process competes for input/output 
or cache. Virtual memory and swap must either be 
disabled or model process memory must be locked, 
to prevent being swapped out. This is done so that 
once a classifier node is running, response latencies 
stay low and predictable.

Knowledge Representation
We represent knowledge differently when building  
models versus when using them. First, during model 
builds, knowledge is represented inside a column store 
database (Vertica) using projections in a denormal-
ized format with the same data stored in various sort  

Re
co

m
m

en
da

tio
n 

ac
cu

ra
cy

0.90

0.80

0.85

0.75

0.70

0.65

0.2 0.4 0.6 0.8 1.0
Fraction of transactions sorted by descending con�dence of recommendation

au
us
in
ca
gb

Figure 5. Accuracy Before CEASR in Various Regions.



Innovative AI Applications

Fall 2020  73

orders so that access is sequential, is cache-friendly, 
and it takes advantage of efficient column-wise com-
pression boosting effective input/output through-
put. Second, for model deployment, knowledge is 
represented using tables in a row-store database 
(PostgreSQL). Here tables are stored clustered on their 
primary key, and additional b-tree indexes are built 
such that the need to access data beyond what is 
indexed is rare (index-only scans).

The reason for this difference is twofold. First, dur-
ing model builds, the data-access patterns are known 
in advance, so that in-memory and on-disk layouts 
of data can be optimized for cache-hierarchy locality. 
However, when the model runs in production, we 
do not know in advance which users, accounts, and 
counterparties will be involved in any incoming 
request, hence our knowledge representation must  
be optimized to answer any request quickly. Second, 
when the model runs in production, there is a firm real-
time latency deadline — requests must be handled 
in milliseconds because users are waiting; latency 

concerns dominate over throughput concerns. On 
the other hand, when a new model is being built, 
users are not waiting, so latency is not a concern and 
instead, throughput concerns dominate, because they 
drive model-refresh cost.

Fault Causes, Detection, and Recovery
Data extraction from our data warehouse is vulner-
able to unexpected changes in how the accounting 
products we support represent their information. 
Database schema changes that cleanly break data- 
extraction scripts are straightforward to detect. 
Harder to detect are shifts in the meaning of the same 
database schema, such as happens when upstream 
product teams make an effort to minimize database 
schema changes. In these cases, data-extraction scripts 
may yield incomplete sets of training transactions, 
and other unexpected and undesirable results.

Another source of faults is Apache Hive,4 which 
is used inside our data warehouse. Hive is not self- 
tuning — thus, as the amount of data grows and the 

1.00

0.95

0.90

0.85

0.80

0.75

Fraction of transactions sorted by descending con�dence of recommendation
0.2 0.4 0.6 0.8 1.0

au
us
in
ca
gb

Figure 6. Accuracy After CEASR in Various Regions.



Innovative AI Applications

74 A I MAGAZINE

distribution of that data changes, Hive queries that 
once ran fine can take an exorbitant amount of time, 
or outright fail. For example, query plans that poorly 
spread out processing across the cluster can cause 
too much data to be sent to just a few nodes. With 
their memory exhausted, nodes crash, and manual 
intervention is required to restructure the query to 
prevent this happening in the future.

Tables with billions of rows are created, exported, 
imported, and indexed during each model build so 
that operations such as table creation or indexing are 
split across multiple workers; and when exporting or 
importing tables, we divide them into chunks that 
are handled in parallel — without chunking, large 
tables limit scalability.

As a consequence, a model build involves many 
pools of workers — easily adding up to hundreds 
of workers. While the chance of any one worker 
encountering problems is small because the work 
is carried out by so many, it is essential to consider 
what happens when faults occur. Specifically, when 
manual intervention is required, how do you bring 
hundreds of parallel workers to a state from which 
fault diagnosis and fault recovery is possible?

Our technique is to have each task worker carry 
out the following steps, listed in order:

Step 1: Check that no other worker has reported 
a fault. If a build-halting fault has been reported, no 
worker will start new work. The worker that encoun-
ters a build-halting fault does not forcibly kill other 

concurrent workers, because this would leave many 
partially complete tasks needing cleanup; thus, we 
let any already-running tasks finish gracefully.

Step 2: Check that the assigned task has not already 
been performed. If a checkpoint has already been 
committed for this task, indicating it has already 
been performed and its results have been verified, 
the worker will log this fact, but will otherwise do 
nothing, and its worker pool will assign to it a dif-
ferent task.

Step 3: Check that conditions necessary to start 
the assigned task are satisfied. A worker that copies 
table chunks from our column-store database to our 
row-store database, for example, checks that source 
and target databases are alive, that source and tar-
get schema exist, and that source and target tables 
exist. If any of these conditions are not satisfied, the 
worker reports the fault and exits.

Step 4: According to the previous three steps, if no 
other worker has reported a fault, and the assigned 
task has not been performed, then the conditions 
necessary to start the task are satisfied. If all of these 
are true, we also check whether partial results from a 
previous task attempt exist and, if needed, a cleanup 
is performed. Finally, the assigned task is started.

Step 5: After the task is done, assertion checks 
are used to verify that the task finished correctly. 
For example, if the task is to launch a database, we 
check that the database answers client connections, 
and allows expected operations. Another example: if 
the task is to build a certain table, when that task is 
done, we verify that the table exists and that it con-
tains a reasonable number of rows and sanity-check 
other such attributes about it. A task is considered 
complete and its checkpoint is committed if, and 
only if, all assertions about it pass — otherwise the 
worker reports a fault, and exits.

This step-wise technique prevents fault cascades. 
A badly created table does not, for example, cause 
other tables to be badly created, because we catch it 
right away. The technique also allows fault recovery.  
Once a fault is cleared, if ninety percent of a multi-
day model build is complete, when the build is 
restarted, just the remaining ten percent of tasks will 
be attempted due to checkpoints from a previous run.

Model Deployment
Our model operates as a service application– 
programming interface deployed using a cluster of 
identical classifier nodes behind a load balancer. 
Incoming requests first go to the load balancer, 
which then forwards the request to an available 
classifier node. If the continuous load on the least-
busy classifier node is too high, additional classifier 
nodes are added. If the continuous load on the bus-
iest classifier node falls, the oldest classifier node is 
removed from the load balancer pool and stopped. If 
a classifier node malfunctions (for example, timeouts 
on requests) the load balancer automatically replaces it 
with a new node, thus healing the service. This healing  

DESCRIPTION UNDERSTANDING

AUTO-CATEGORIZATION

USER APPROVAL/CORRECTON

TRANSACTION DOWNLOAD

Figure 7. Stages of Financial Transaction Processing.



Innovative AI Applications

Fall 2020  75

functionality is also used for zero downtime upgrades 
such as when fresh models are deployed — old classi-
fier nodes are purposefully terminated one at a time, 
and the load balancer replaces them with upgraded 
versions.

We use a shared-nothing architecture because 
it makes service testing, deployment, and scaling 
straightforward. For example, when the number of 

incoming requests doubles, the number of running 
classifier instances is approximately doubled. When 
the number of incoming requests drops in half, the 
number of running classifier nodes is approximately 
dropped in half. The ratio is approximate because 
classifier startup takes several minutes, so extra clas-
sifier nodes are always kept around to handle spikes 
in demand.

HDFS

HIVE

VERTICA

POSTGRES

MODEL BUILD

DOCKER

MODEL BUILD ENVIRONMENT

DATA WAREHOUSE

BUILDTIME SERVICE

DOCKER

CLIENT SIMULATOR

DOCKER

MODEL RUNTIME ENVIRONMENT

RUNTIME SERVICEPOSTGRESRUNTIME RPMs

B

A

C

Figure 8. Model Build Environment.



Innovative AI Applications

76 A I MAGAZINE

User Impact and Benefits
Improvements in the ability to accurately categorize 
financial transactions are of significant economic 
value. For a sense of scale, if — without automation —  
it takes three seconds to select the proper CoA 
account for a financial transaction, last year the users 
of our accounting software would have spent well 
over 1,000 man years on this task.

The first version of our ML-based financial transac-
tion categorization service was deployed to produc-
tion for English-language QuickBooks (USA, Canada, 
UK — more than two million users) in November 
2016. Non-English user regions (such as France and 
India) were added in August 2017. Compared with 
the legacy systems that it replaced, the service was 
able to classify more transactions and to do so at 
a higher accuracy — it had fifty-six percent fewer 
uncategorized transactions and twenty-eight percent  
fewer errors, representing a remarkable reduction in the 
amount of manual work that millions of QuickBooks 
users have to do to file their financial transactions.

In 2019, we developed a framework for personal 
categorization called CEASR. Comparing 2019 per-
formance against our 2018 performance, we see sig-
nificant improvement in the overall accuracy across 
multiple user regions. We also see an improvement 
in our ability to sort recommendations by expected 
accuracy, which lets our users focus their attention 
on an even smaller fraction of low-confidence trans-
actions while automation handles everything else.

Conclusions
Building on the work by Lesner et al. (2019), we have 
presented our improved approach for personalized 
classification of financial transactions to automate 
accounting. The improved approach merges the two 
common supervised machine-learning paradigms of 
classification and recommendation systems into a 
single framework that can flexibly incorporate propo-
sitional and relational representation of the domain, 
and is efficient for dealing with high-cardinality nom-
inal attributes, variable and changing numbers of 
classes, and evolving class definitions.

We shared lessons learned with respect to differ-
ences in data-access patterns during model training 
and runtime-production deployment. We explained 
how these differences can be effectively supported by 
adopting a column-oriented data format for model 
training and a row-oriented format for runtime deploy-
ment. We also discussed the requirements related to 
real-time constraints on model runtime performance, 
and suggested ways to satisfy such constraints.

Our system has been deployed at scale, and han-
dles billions of financial transactions for millions of 
small businesses each year. Fragments of information 
from millions of users are combined in a manner 
that allows us to accurately recommend user-specific 
CoA accounts. CoA accounts are handled even if 
named using abbreviations or in a foreign language. 

Transactions are handled even if a given user has never 
categorized a transaction like that before. The develop-
ment of such a system and testing it at scale over bil-
lions of transactions is a first in the financial industry.

Notes
1. https://quickbooks.intuit.com/

2. https://www.vertica.com/

3. https://www.postgresql.org/

4. See hive.apache.org

References
Clark, K., and Manning, C. D. 2015. Entity-Centric Coref-
erence Resolution with Model Stacking. In Proceedings of the 
53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural 
Language Processing of the Asian Federation of Natural Language 
Processing (ACL 2015), Volume 1: Long Papers, 1405–15. 
Stroudsberg, PA: Association for Computational Linguistics.

Efron, B., and Tibshirani, R. J. 1998. An Introduction to the 
Bootstrap, Volume 57: Applied Probability. London, UK: 
Chapman & Hall/CRC.

Freund, Y., and Schapire, R. E. 1995. A Decision-Theoretic 
Generalization of On-Line Learning and an Application to Boost-
ing, 23–37. Berlin, Germany: Springer.

Grove, A. J., and Schuurmans, D. 1998. Boosting in the Limit: 
Maximizing the Margin of Learned Ensembles. In Proceedings 
of the Fifteenth Association for the Advancement of Artificial 
Intelligence (AAAI) Conference, 692–9. Menlo Park, CA: Asso-
ciation for the Advancement of Artificial Intelligence (AAAI) 
Press/The Massachusetts Institute of Technology (MIT) Press.

Lesner, C.; Ran, A.; Rukonic, M.; and Wang, W. 2019. Large 
scale Personalized Categorization of Financial Transactions. 
In Proceedings of the Thirty-Third Advancement of Artificial Intel-
ligence (AAAI) Conference, 9365–72. Palo Alto, CA: Association 
for the Advancement of Artificial Intelligence (AAAI) Press. 
doi.org/10.1609/aaai.v33i01.33019365.

Li, L.; Hu, Q.; Wu, X.; and Yu, D. 2014. Exploration of Clas-
sification Confidence in Ensemble Learning. Pattern Recogni-
tion 47(9): 3120–31. doi.org/10.1016/j.patcog.2014.03.021.

Melnik, O.; Vardi, Y.; and Zhang, C.-H. 2004. Mixed Group 
Ranks: Preference and Confidence in Classifier Combination. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 
26(8): 973–81. doi.org/10.1109/TPAMI.2004.48.

Micci-Barreca, D. 2001. A Preprocessing Scheme for High- 
Cardinality Categorical Attributes in Classification and 
Prediction Problems. SIGKDD Explorations 3(1): 27–32. 
doi.org/10.1145/507533.507538.

Montalbo, F. J. P., and Festijo, E. D. 2019. Comparative Anal-
ysis of Ensemble Learning Methods in Classifying Network 
Intrusions. In 2019 Institute of Electrical and Electronics Engi-
neers (IEEE) Conference on System Engineering and Technology, 
431–6. Piscataway, NJ: Institute of Electrical and Electronics 
Engineers (IEEE). doi.org/10.1109/ICSEngT.2019.8906310.

Recchia, G., and Nulty, P. 2017. Improving a Fundamental 
Measure of Lexical Association. In Proceedings of the 41st 
Annual Meeting of the Cognitive Science Society. Seattle, WA: 
The Cognitive Science Society.

Vechtomova, O. 2009. Review of Introduction to Information 
Retrieval by Christopher D. Manning, Prabhakar Raghavan, 
and Hinrich Schütze. Computational Linguistics 35(2): 307–9. 
doi.org/10.1162/coli.2009.35.2.307.

https://quickbooks.intuit.com/
https://www.vertica.com/
https://www.postgresql.org/
http://hive.apache.org


Innovative AI Applications

Fall 2020  77

Wang, Y.; Li, D.; Liu, H.; and Choi, I.-C. 2015. Generalized 
Ensemble Model for Document Ranking. abs/1507.08586. Ithaca, 
NY: Cornell University Library.

Christopher Lesner is a principal software engineer at Intuit, 
where he builds Intuit’s machine-learning systems that 
analyze billions of financial transactions each year for small 
business accounting and small business loans. Before Intuit, 
Lesner developed fault-tolerant, real-time distributed soft-
ware for telecom billing, interactive voice response, short 
message service voting, and network configuration man-
agement. Christopher has two decades of software design, 
development, and deployment experience and holds an 
MS in computer science from McMaster University. He is 
an inventor on 50 patents and coauthor of several peer- 
reviewed technical publications.

Alexander Ran is a distinguished software engineer at Intuit, 
where he leads a team of data scientists and engineers that 
developed Intuit’s industry-leading financial transactions 
classification system used for small business accounting 
and small business loans. Before Intuit, Ran was a Research 
Fellow at the Nokia Research Center, where he led research 
in natural language processing and software architecture. 
He is an inventor on more than 60 patents and coauthor 
on more than 30 peer-reviewed technical publications. 
Ran has an MS in Physics from the Hebrew University of 

Jerusalem and a PhD in Computer Science from the Helsinki 
University of Technology.

Wei Wang is a data scientist at Intuit, where he applies 
statistical and machine-learning algorithms to understand 
business events revealed by financial transactions for small 
business accounting and credit scoring. Wang is a mem-
ber of the team that developed and tested the algorithms 
used by QuickBooks Capital last year for tens of millions of 
dollars in lending decisions. Before Intuit, Wang was a stat-
istician at Vanderbilt University and the Palo Alto Medical 
Foundation Research Institute, where he designed experi-
ments and analyzed data from medical imaging and clin-
ical trials to build predictive models for disease prognosis. 
He has an MS in Applied Statistics and a PhD from Michigan 
State University.

Marko Rukonic is a principal software engineer at Intuit, 
where he builds Intuit’s machine-learning systems that 
analyze billions of financial transactions each year. Rukonic 
has two decades of expertise in the design, development, 
and deployment of high-reliability distributed software for 
online processing of financial data and payments. Marko 
holds a Master of Science degree in Electrical Engineering 
and Computer Science from the University of Zagreb, and 
is an inventor on more than 20 patents and a coauthor of 
several peer-reviewed technical publications.


