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Life insurance is a critical financial tool for millions of 
households, providing security to families by reducing  
the financial impact of an untimely death. In the United 

States alone, life-insurance companies collectively manage 
trillions of dollars of protection while annually disbursing 
billions of dollars to beneficiaries; according to the American 
Council of Life Insurers, at the end of 2018, there was nearly 
$12.1 trillion of active coverage for individuals and $57 
billion in payments to their beneficiaries.1 To support this 
large-scale financial ecosystem while simultaneously offering 
affordable prices, insurers must estimate the mortality risk of 
individual life-insurance applicants through an underwriting 
process. The accuracy of this underwriting ultimately drives 
the long-term stability of the life-insurance industry because 
the collective sum of incoming premiums, which are fixed 
post-underwriting, must be sufficient to offset future payouts 
from guaranteed death benefits.

Unlike most types of insurance that are renewed and 
reassessed annually (such as property and health), nearly 
all life-insurance policies are one-time, long-duration con-
tractual agreements. Thus, the veracity and completeness 
of health and behavioral data used for mortality-risk assess-
ment is paramount. For the past few decades, life under-
writing has been guided by manual review and point-based 
systems that predominately consider factors independently. 
Consequently, traditional underwriting limits the degree to 
which insurers can accurately estimate risk from data and 
achieve optimal price efficiency of products.

 Life insurance provides trillions of dollars 
of financial security for hundreds of millions 
of individuals and families worldwide. To 
simultaneously offer affordable products while 
managing this financial ecosystem, life-insur-
ance companies use an underwriting process 
to assess the mortality risk posed by individual 
applicants. Traditional underwriting is largely 
based on examining an applicant’s health 
and behavioral profile. This manual process is 
incompatible with expectations of a rapid cus-
tomer experience through digital capabilities. 
Fortunately, the availability of large histor-
ical data sets and the emergence of new data 
sources provide an unprecedented opportunity 
for artificial intelligence to transform under
writing in the life-insurance industry with 
standard measures of mortality risk. We com-
bined one of the largest application data sets 
in the industry with a responsible artificial 
intelligence framework to develop a mortality 
model and life score. We describe how the life 
score serves as the primary risk-driving engine 
of deployed algorithmic underwriting systems  
and demonstrate its high level of accuracy, yield-
ing a nine-percent reduction in claims within 
the healthiest pool of applicants. Additionally, 
we argue that, by embracing transparency, the 
industry can build consumer trust and respond 
to a dynamic regulatory environment focused 
on algorithmic decision-making. We present a 
consumer-facing tool that uses a state-of-the-art 
method for interpretable machine learning to 
offer transparency into the life score.
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The industry also faces systemic challenges beyond 
the technical complexity of estimating mortality risk. 
Existing processes for providing coverage have been 
slow to adapt to changing demographics and to meet 
expectations of a digitally enabled and rapid service 
customer experience found in nearly all commercial 
applications. According to market research, there 
is a vast population of uninsured and underinsured 
households, estimated at $25 trillion, that the indus-
try has yet to reach (Abrokwah et al., 2018). And the 
availability of new data sources and the opaque usage 
of algorithms pervading our daily lives have led to 
increased privacy and transparency concerns by con-
sumers, resulting in new regulatory frameworks, such 
as the California Consumer Privacy Act and the Gen-
eral Data Protection Regulation in Europe. We believe 
that an ethical and responsible use of artificial intel-
ligence (AI) can solve some of these great challenges, 
broadly improving the financial wellness of society.

The availability of large historical data sets pro-
vides an unprecedented opportunity for AI to trans-
form underwriting in the life-insurance industry. At 
MassMutual — a large insurance and financial ser-
vices company — we have curated a data set of more 
than one million applicants spanning 20 years, rep-
resenting one of the largest and most comprehensive 
application data sets in the industry. Leveraging this 
data, we develop an accurate, high-resolution mor-
tality model2 that generates a life score and serves as 
the primary risk-driving engine of algorithmic under-
writing systems (Maier et al., 2019). Collaborating 
with actuaries, we design a novel evaluation frame-
work to compare historical underwriting decisions 
against simulated model decisions and demonstrate 
that the life score outperforms traditional underwriting,  
yielding a nine-percent reduction in mortality within 
the healthiest pool of applicants.

While improving accuracy in underwriting through 
AI is a highly valuable endeavor, it is imperative to 
maintain privacy and embrace transparency in data 
and methodology. Building consumer trust through 
transparency and education will likely be a critical 
component for the industry to strengthen ties with 
existing markets and to reach historically under-
served ones, especially with the rise of digital capa-
bilities. We advocate for embedding state-of-the-art 
methods in interpretable machine learning, such as 
the Shapley Additive Explanation (SHAP) framework 
(Lundberg and Lee, 2017), that enable transparency 
in algorithmic scoring and decisions. To that end, 
we produce model explanations alongside each pre-
dicted life score to support human oversight during 
underwriting and offer explanations to applicants. 
We also introduce a simple, consumer-facing trans-
parency tool, called MyLifeScore,3 to demonstrate 
how various factors, such as blood pressure or family 
history, may drive individual risk, thereby helping to 
demystify the underwriting process.

Finally, we posit that a standardized life score under-
pinned by accuracy and transparency has poten-
tial for broader industry impact. A well-established  

life score that is understood by consumers has the 
ability to increase access to life-insurance protection.  
Additional benefits include enabling life-insurance- 
backed securities for a wholly new dimension in 
diversifying financial portfolios; expanding options 
for purchasing life insurance; and facilitating connec-
tions to personalized health and wellness programs.

Background
Life insurance is a financial tool that helps individ-
uals secure the financial future of loved ones in the 
event of their passing. A life-insurance policy is an 
agreement whereby an insurer pays beneficiaries a 
sum at the time of a policyholder’s death. In return, 
the policyholder pays premiums over a predefined 
period of time. Beneficiaries generally use the pro-
ceeds to pay for expenses that would have otherwise 
been paid for by the earnings of the insured.

Life-Insurance Underwriting
Most types of life insurance require an estimate of 
the expected lifetime of an individual at the time of 
application. This is referred to as mortality risk, and the 
process of collecting and analyzing data that describes 
such risk is known as underwriting. Actuaries compute 
the cost of covering mortality risk over the lifetime of 
the policy and translate it into a set of premium pay-
ments. The financial risk and general approval of the 
underwriting process is agreed upon with reinsurance 
companies — institutions that assume and further 
diversify a portion of the risk.

For the past few decades, life underwriting followed 
expert judgment aided by medical impairment manu-
als that specify guidelines for grouping individuals into 
broad classes of mortality risk. These manuals imple-
ment point-based systems, wherein debits and credits 
are drawn from medical studies that offer mortality 
ratios or survival probabilities for a given disease or 
impairment (Brackenridge, Croxson, and Mackenzie, 
2006). Hundreds of medical and behavioral attributes, 
such as the presence of heart disease, use of statins 
to lower cholesterol, or family history of certain can-
cers, are mapped to point values and combined. A life 
underwriter reviews an application to complete the 
overall assessment, which then determines one of sev-
eral discrete risk classes that drive premiums and are 
priced according to expected aggregate mortality.

Most large carriers are automating the logic of their 
underwriting manuals with rule systems. Automated rule 
systems provide fast and consistent decisions, but they 
perpetuate the simplified guidelines that they describe, 
leading to suboptimal risk-class assignments. For exam-
ple, a laboratory test result that exceeds a prespecified 
threshold may disqualify an individual from certain risk 
class without considering related factors. Reflexive rules 
(that is, conditioning the threshold on age and sex) may 
classify risk more accurately; however, expanding the 
size and complexity of a rule system increases the tech-
nical burden that carriers must manage.
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More recently, rich data sets and advancements  
in machine learning have enabled predictive models 
to improve mortality-risk classification in life under-
writing. Predictive models that leverage survival 
analysis are grounded in the same theory behind tradi-
tional underwriting, but they can outperform human 
and rule-based methods by detecting complex, mul-
tivariate dependencies between health factors and 
mortality. This class of models is limited to estimating 
risk based on data attributes that have been collected 
for a large set of individuals with sufficient history to 
observe enough mortality outcomes. For data sources 
that have only recently been collected digitally, rule-
based approaches and expert judgment may still be 
necessary to use in conjunction with models.

Predictive Models in Life Underwriting
The life-insurance industry is actively improving its 
digital capabilities and customer experience to narrow 
the uninsured and under-insured protection gap. This 
goal has led to the emergence of new data sources 
and underwriting paradigms that simplify and expe-
dite the application process. In doing so, the industry 
needs mortality-risk scores to capture the predictive 
power of both traditional and nontraditional data 
sources to accelerate and improve underwriting deci-
sions. While mortality modeling is a maturing topic 
of academic research and multiple vendors are devel-
oping novel solutions, adoption of predictive models 
in the industry is still in its infancy.

Acknowledging the value that AI can bring to 
life-insurance underwriting, researchers have built 
models to replicate historical underwriting decisions 
(for example, Boodhun and Jayabalan [2018]), improve 
aspects of the underwriting process (for example, policy 
routing; Dubey et al. [2018]), or in some cases, directly 
predict mortality risk. One carrier successfully applied 
fuzzy logic to codify underwriting guidelines and 
enable automation (Aggour et al., 2006). Generally, 
the approaches rely on regression or classification 
and use underwriting decisions as the target variable, 
as it is difficult to procure data with sufficient his-
torical coverage to support survival models based on 
observed mortality. Such data sets are often proprietary 
or secured by institutions focused on data aggregation.

Data providers recognize the value of their large repos-
itories and have developed predictive models based on 
different aspects of risk. Vendors that have long part-
nered with insurers to perform laboratory tests or 
supply prescription drug histories offer risk scores based 
on their clinical data. Other businesses that collect data 
sources not traditionally used in life underwriting, such 
as credit histories and public records, have built similar 
solutions that support accelerated underwriting. As elec-
tronic health records become more prevalent, vendors 
are attempting to embed this data into predictive 
models, and insurers are eager to incorporate reliable 
and accessible medical information.

Despite substantial research and an increasing 
number of vendor solutions, the industry has yet to 
capitalize on predictive models at scale. The use of 

machine learning to improve mortality-risk assessment 
is widely accepted as a necessary direction by industry 
leaders, but implementation has been difficult for an 
industry generally constrained by legacy technology. 
For the few cases achieving a successful implementa-
tion, the results have brought significant value to both 
carriers and customers. This highlights the opportunity 
and benefits that a standardized life score paired with 
an accompanying rules engine could provide to the 
broader industry.

Defining a Standard Life Score
If broadly adopted by life-insurance carriers, a 
standard, trusted life score that quantifies individual 
mortality risk would likely produce several benefits 
for the industry and beyond. Importantly, it could 
increase access to life-insurance protection by driving 
a marketplace for consumers to explore purchasing 
options given their fixed risk profile. The life score 
could also motivate carriers to connect their cus-
tomers with wellness programs that aim to incentivize 
healthy behavior and quantify the benefit with pro-
spective scores. Additionally, life-insurance–backed 
securities scored consistently and transparently could 
be traded in a capital market, creating a new mecha-
nism to diversify financial portfolios. Acceptance of 
such a life score would hinge on industry and con-
sumer trust. To this end, the algorithm generating 
the score must use well-understood and justified data 
inputs; the score should be transparent with respect to 
its contributing factors; and it should achieve state-of-
the-art accuracy in predicting long-term mortality risk.

To justify use of data in a standard life score, there 
should be substantial causal and medical evidence 
tying attributes to mortality risk. Laboratory tests and 
health questionnaires have a longstanding precedent 
and medical basis for providing relevant information 
for assessing mortality risk in life-insurance under-
writing. The score should also be simple to interpret 
by consumers, underwriters, and regulators. We 
accomplish this with a standard 0 to 100 scale, ranging  
from highest to lowest risk, corresponding to the 
health percentile of individuals relative to their peers. 
The score is exemplified as: If Carlos is a 55-year-old 
nonsmoking male with a life score of 87, he can be 
compared directly against and has lower mortality 
risk than Barry, another 55-year-old nonsmoking 
male with a score of 53. If Amy is a 35-year-old non-
smoking female with a score of 87, she does not neces-
sarily present the same mortality risk as Carlos, but can 
be compared to other 35-year-old nonsmoking females.

Despite using well-understood inputs, a singular 
score does not offer transparency into its derivation. 
We compute the contribution of each health factor 
using a state-of-the-art method in model interpreta-
bility, such that the sum of the contributions equal 
the life score. Finally, to achieve reliability, the score 
must be based on comprehensive data, developed 
with a sound modeling methodology, and it must 
demonstrate highly accurate risk stratification. The 
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following sections expand on these properties and the 
use of the life score at MassMutual.

Data
MassMutual has consolidated a digital record of appli-
cations for which a laboratory test was ordered during  
1999 to 2019. Removing applications with a high 
degree of missing values, typically from incomplete 
applications, results in 1.5 million records with 13 
million exposure years and 23,000 observed deaths. 
Of these applicants, thirty-nine percent are women and 
median ages are 41 and 39 years for men and women, 
respectively. The data set covers attributes drawn from 
laboratory tests and a lengthy health history question-
naire that accompanies the application process.

Laboratory Tests
Life underwriting typically includes a set of laboratory 
tests on blood and urine specimens. A vast medical 
and actuarial literature ties various tests directly with 
all-cause or specific causes of mortality, such as albu-
min levels (Goldwasser and Feldman, 1997). The labo-
ratory test data provide exposure to a range of values 
across biophysical measurements such as build and 
blood pressure, lipids, liver function tests (for example, 
gamma-glutamyltransferase), kidney function tests (for 
example, creatinine), blood and urine proteins (includ-
ing albumin, globulin, and microalbumin), blood 
sugars, and several indicators, such as cocaine and HIV.

Health History Questionnaires
Lab tests are an instantaneous view into individual 
health that yield substantial protective value for risk 
selection. Life underwriting also solicits information 
related to personal and family health history, as well 
as behavioral risk through an extensive questionnaire. 
Questions could include, for instance, whether an 
applicant has received a recent medical diagnosis of 
heart disease or endocrine disorder.

Partnering with a vendor specializing in hand-
writing recognition, we digitized the vast majority of 
MassMutual’s paper and imaged archive. This endeavor 
was challenging due to a manual element of standard-
izing questions phrased differently across time, states, 
and product offerings. It also necessitated development 
of a complex data-ingestion pipeline to process the 
digitized responses. Despite the acquisition costs, these 
data enable a consistent mapping with current applica-
tion questions, which are combined into a single data 
warehouse for modeling and analysis.

Health Trends across Time
Given the 20-year period of our data, we can observe 
trends in the distribution of certain laboratory values. 
For example, recent applicants exhibit lower cho-
lesterol levels compared with those in earlier years, 
as shown in figure 1. This is consistent with medical 
research reporting similar trends over the same period 
(Rosinger et al., 2017). Variables that trend over time, 
referred to as covariate shift or nonstationarity, present 

a modeling challenge due to the temporal association 
with predictive variable. We apply a statistical adjust-
ment that translates and controls for these temporal 
differences in distributions. With recent research dis-
covering worsening mortality trends on specific sub-
populations (Case and Deaton, 2015; albeit stemming 
from uncertain factors), it will be imperative to capture 
the changing dependence of laboratory tests and mor-
tality risk.

Developing the Mortality Model
With medically justified inputs and state-of-the-art 
science, we leverage one of the largest and most com-
prehensive application data sets in the industry  
to develop a mortality model, validated with holistic 
criteria, to produce strong model performance in  
production.

Feature Selection
Feature selection was heavily influenced by medical 
and actuarial experts and validated with standard 
machine-learning techniques. The deployed mortality 
model relies on nearly sixty inputs captured in bio-
physical measurements, blood and urine specimens, 
and applicant health history questionnaires.

One challenge of application data is that questions 
and requirements are revised over time, often varying 
across states and product types. This requires fastid-
ious mapping to produce consistent data for mod-
eling. Given the recommendations of the medical 
team, we reviewed historical coverage of each vari-
able to ensure alignment with documented under-
writing and medical guidelines. We also assessed 
the statistical dependence with mortality inherent 
to each variable. For example, figure 2 shows how 
relative mortality varies by five-point bands of body 
mass index (BMI), exhibiting slightly elevated mor-
tality for low BMI and steadily increasing mortality 
for higher ranges.

Improvements to feature generation and selec-
tion in subsequent model iterations involve regular, 
extensive reviews with MassMutual’s medical team 
based on observations in model outcomes. This close 
partnership with experts is important for constructing 
an intuitive and medically relevant mortality model. 
Likewise, model results and updated medical knowl-
edge assist in guiding changes to laboratory testing. 
For example, MassMutual recently shifted from using 
HbA1c — a measure of average blood sugar over a 
two- to three-month period and an important bio-
marker for diagnosing and monitoring diabetes — as 
a reflexive test to employing it as a screening test 
despite the increased cost. MassMutual historically 
tested HbA1c reflexively if certain conditions were 
met, such as a history of endocrine disorder or high 
glucose or fructosamine levels, which are cheaper, but 
less reliable markers of diabetes. Because HbA1c was 
partially missing in historic records due to it being a 
reflexive test, serum glucose and fructosamine were 
originally included in the model as the dominant 
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features that measure blood sugar. However, glucose 
is sensitive to fasting, and HbA1c is a strong measure 
of mortality risk (Stout et al., 2007). Therefore, we 
imputed HbA1c for historic cases by predicting its 
value from other variables and currently use HbA1c 
as the sole input for blood sugar, resulting in a more 
accurate model.

Aside from imputing historically reflexive tests,  
we have also imputed historical values of entirely 
missing variables that are consistently collected dur-
ing the application process, such as pregnancy status. 
Successfully imputing historically missing values ena-
bles the model to support new and emergent inputs.

Model Development
The majority of predictive modeling tasks are  
classification-based (that is, estimating the probability 
of a discrete outcome) or regression-based (that is, esti-
mating the expected value of a continuous outcome). 
In survival analysis, however, the outcome of interest 
is the duration until a binary event may occur. The 
primary goal of predictive modeling in the survival 
context — termed survival modeling — is to develop 
estimates of the survival, hazard, or cumulative hazard 
functions with respect to a set of observed covariates. 
The survival function, ( ) ( )S t Pr T t= > , describes the 

probability that an event, occurring at random vari-
able time T, occurs later than some given time t. The 
hazard rate,
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is the rate of the event at time t conditioned on 
having survived until time t. The cumulative hazard 
function, defined as

( )
0

( )
t

t u duλΛ = ∫ ,

is related to the survival function as ( ) ( )logt S tΛ =− .
The Cox proportional hazards model is the most 

widely used statistical technique for estimating indi-
vidual risk in studies of survival (Cox, 1972). It is a 
semiparametric regression model that assumes a lin-
ear functional form and proportional hazards for any 
two strata over time. In machine learning, the ran-
dom forest method (Breiman, 2001) has been adapted 
by Ishwaran et al. (2008) to handle right-censored 
survival outcomes (called “random survival forests”), 
and efficient implementations exist (Wright and 
Ziegler, 2017). As a nonparametric, adaptive model, 
a random survival forest captures interactions and 
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Figure 1. Grouping by Four-Year Bands, the Distribution of Cholesterol Trends Lower Over Time.
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nonlinear dependencies that are more subtle and 
complex than can be reflected by a linear model.

Emerging research aims to apply advanced sta-
tistical models to discrete-time survival analysis 
(Bender, Groll, and Scheipl, 2018) as well as survival 
extensions of deep learning (Katzman et al., 2016; 
Ranganath et al., 2016). However, scalable imple-
mentations are limited, with the most comprehen-
sively developed survival suite existing in the R 
software environment. Thus, we focused our mode-
ling on the random survival forest, as internal test-
ing showed that it outperformed Cox proportional 
hazards models and a survival implementation of a 
deep neural network. Experiments iterated on find-
ings drawn from our collaborative feature selection 
process, along with improvements through variable 
transformation, hyperparameter tuning, and sam-
pling techniques. All experiments performed 10-fold 
cross validation, and held-out predictions were used 
to produce a suite of statistical, actuarial, and busi-
ness-relevant evaluation metrics (detailed next).

The random survival forest mortality model directly 
estimates the cumulative hazard function, Λ(t), over 
the duration of exposure years in the training data. 
From this vector of cumulative hazards, we derive a 
standardized life score that can be used to rank indi-
viduals for underwriting. Specifically, we select Λ(10), 
the cumulative hazard at t = 10, corresponding to 

the median exposure of our data. The life score has a 
range of 0 to 100, ranging from highest to lowest risk. 
The score reflects the relative risk among five-year 
age-band, sex, and smoking-status cohorts — primary 
factors in actuarial mortality studies. Conditioned on 
cohort, the life score is the integer-valued percentile 
of the empirical distribution of all 10-year cumulative 
hazard values. Figure 3(a) shows that the proportion 
of each cohort is represented consistently across the 
range of life scores.

We can also demonstrate how medical impair-
ments are stratified across the life score. Figures 3(b) 
and 3(c) display the proportion of heart condition 
incidence and BMI bands within each score decile. 
This highlights the effect that BMI and heart con-
dition have on mortality risk. Each variable exhibits 
different stratification structures depending on its 
mortality dependence (for example, U- or J-shaped 
mortality curves; Chokshi, El-Sayed, and Stine [2015] 
and Cox et al. [2008]).

Model Validation
Traditional metrics that characterize predictive ability  
of statistical models, such as the concordance index 
for survival models (Harrell et al., 1982) or the 
area under the receiver-operating-characteristic curve 
commonly used in classification, are useful for research 
in model development, but they are insufficient 
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Figure 2. Trends in Aggregate Mortality Risk, Measured by Relative Mortality as a Function of Five-Point Bands of BMI.
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to support business transformation and wide-scale 
adoption of a new paradigm for risk selection. In col-
laboration with business partners, we assess model 
performance and behavior across three levels — aggre-
gate mortality impact; internal model smoothness and 
explainability; and predictions on individual cases.

Aggregate Mortality Impact

Actuaries focus on financial impact when devel-
oping and pricing life-insurance products through 
cash flow simulations that necessitate assumptions 
about expected mortality rates. Requiring a direct mor-
tality comparison between model decisions and his-
torical underwriting decisions, we designed a novel 
algorithm that generates a synthetic, model-assigned 
book of business. In the context of life underwriting, 
decisions refer to assigning applicants to one of several 
risk classes. MassMutual uses ultra-preferred nonto-
bacco (UPNT), select-preferred nontobacco (SPNT), 
and standard (NT) nontobacco, and select-preferred 
(SPT) and standard (T) tobacco, in order of increasing 
risk. Substandard nontobacco and tobacco classes exist 
for additional medical impairments, and a small frac-
tion may be declined for various financial and medical 
reasons.

The algorithm ensures that the number of simulated 
offers for each issue-year, risk-class, five-year age-
band, sex, and smoking-status cohort are identical to 
those offered historically. This effectively controls for 
all actuarial factors and is consistent with how the life 
score is normalized. Without controlling for these fac-
tors, the algorithm would disproportionately assign, 
for instance, young females to the best risk classes, as 
they present low mortality risk.

The steps to generate equitable offers for an appli-
cant pool can be illustrated through an example (refer 
to Maier et al. [2019] for more algorithmic details). 
First, assume that we know the number of policies by 
risk class within each cohort that were offered histori-
cally by underwriters, and that we have a life score for 
each historical applicant. Then, consider a cohort of 
35-year-old, nonsmoking females who applied during 
2005. Within this cohort, assume 100 applications 
were submitted, and underwriters offered fifty UPNT, 
fifteen SPNT, thirty NT, and declined coverage for five 
cases. Order the 100 cases by life score, assigning the 
fifty applicants with the highest life score to UPNT, 
the next fifteen, thirty, and five to SPNT, NT, and 
decline, respectively. Each 35-year-old, nonsmoking 
female who applied in 2005 now has a model- and 
underwriter-assigned risk class.

This simulation enables the calculation of business- 
relevant metrics, including the difference in deaths 
and the actual-to-expected (A/E) ratio for model 
assignment compared with underwriter assignment. 
The Society of Actuaries publishes a series of tables 
that contain the aggregate-mortality experience of 
the insured population across many carriers, and 
these tables are typically used as an expected base-
line because they reflect a much larger population 
than that of a single carrier. The most recent tables, 

published in 2015, compile data from over fifty life 
insurers and facet mortality rates by age, gender, dura-
tion, and smoking status. Actuaries compare their 
observed, company-specific mortality experience 
against expected mortality rates with the A/E ratio, 
computed by summing observed deaths divided 
by the accumulated hazard corresponding to each 
individual policy-year on record:

event indicator
/

accumulated hazard
A E = ∑

∑

In our setting, the observed deaths stem from either 
actual company experience (the underwriter assign-
ments) or from the simulated model assignments. 
An A/E under 100 percent indicates that the actual 
mortality experience is better than expected.

We applied this procedure to all historical life- 
insurance applications submitted 2000 to 2016, 
amounting to roughly 850,000 applications and over 
13,000 deaths. Recall that risk classes determine pre-
miums based on expected mortality rates. At Mass-
Mutual, the UPNT class corresponds to the lowest 
mortality rate and premium; thus, an effective model 
must assign the lowest-risk individuals to UPNT to 
maintain profitability. The model should also stratify 
high-risk individuals into appropriate classes.

Figure 4 shows the cumulative percent difference 
in UPNT claims in this simulated book of business 
generated by the mortality model and random assign-
ment. Underwriters are experts at risk selection — as 
demonstrated by the nearly fifty-percent increase in 
claims through random assignment — yet the mor-
tality model would have formed a UPNT offer pool 
with nine percent fewer deaths after fifteen years. The 
results aggregated across all risk classes are qualita-
tively similar, but the best risk selection by the model 
occurs in UPNT.

To measure performance of the model with an actu-
arial lens, we perform an A/E analysis. Tables 1 and 2 
display confusion matrices of A/E ratios for the risk 
classes formed by the model and underwriters. All A/Es  
are normalized by the marginal of the underwriter- 
assigned best risk class (UPNT and SPT, respectively) 
so that values can be interpreted relative to under-
writer performance. The model consistently pro-
duces lower mortality rates in each risk class and 
is substantially higher in the <NT and <T pools. 
The joint A/E ratios indicate that the model effec-
tively disperses mortality risk in desired directions 
throughout the risk classes. Combined with under-
writer decisions, there is potential for improved 
risk selection. For example, where they agree on 
UPNT, the mortality risk is eighty-six percent of the 
marginal.

The mortality model leverages fewer data sources 
than underwriters, who review additional requirements 
such as prescription drug histories, motor vehicle 
records, and financial data. As such, these results are 
conservative. An algorithmic underwriting system 
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(A) The proportion of individuals in each score decile is consistent across five-year age and sex bands. (B) Incidence of heart condition as 
a function of life score. The proportion ranges from twenty-nine percent in the first decile gradually decreasing to 0.9 percent in the tenth 
decile. (C) Distribution of BMI as a function of life score. The highest scores have a greater proportion of healthy-range BMI. As the score 
decreases, the proportion of the upper BMI extremes gradually increases.
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combining the mortality model, a comprehensive 
rules environment, and controlled manual oversight 
can generate even stronger mortality results.

Internal Model Smoothness and Explainability

Understanding the inner workings of the model is cru-
cial for ensuring it is robust and medically sound. Spe-
cifically, small fluctuations in input values should not 
lead to large changes in the resulting predictions, and 
the relative impact of each feature should align with 

medical expectations. Including these two conditions 
in the model validation process eliminates models that 
detect spurious correlations in the training set.

We assess internal model smoothness and explaina-
bility in two ways. First, box plots of the life score by 
grouped feature values, such as cholesterol in figure 
5(a), ensure that, in aggregate, the life score is a smooth 
function of the given feature. The medical and data sci-
ence teams review these plots to inspect the smooth-
ness property of the mortality model. We expect 
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Figure 4. Cumulative Percent Difference in Deaths in UPNT Across Policy Duration, Where 0 Indicates Equivalent Counts.

Risk Class UPNT SPNT NT <NT Marginal

UPNT 86 89 95 180 92

SPNT 97 113 137 177 117

NT 133 144 169 279 168

<NT 174 213 277 543 367

Marginal 100 119 160 363

Rows: model; columns: underwriters.

Table 1. A/E Confusion Matrix  
for Nontobacco Classes Relative to UPNT.

Risk Class SPT T <T Marginal

SPT 71 78 102 76

T 122 122 178 131

<T 227 249 346 287

Marginal 100 126 235

Rows: model; columns: underwriters.

Table 2. A/E Confusion  
Matrix for Tobacco Classes Relative to SPT.
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median-centered life-score box plots at the healthiest 
range of inputs, such as normal total cholesterol.

The second approach uses SHAP values to assess 
the average marginal contribution of each input to 
the model. For example, figure 5(b) shows distribu-
tions of SHAP values for build-related features and 
blood proteins on a large set of scored cases. For 
many individuals, build and blood proteins have a 
small negative effect on overall model score, and for 
some individuals the effect is much higher. By com-
paring aggregate SHAP contributions, we can gauge 
relative feature importance and test how they align 
with medical knowledge.

Predictions on Individual Cases

Although some domains may only require strong over-
all model performance, life-insurance underwriting 
demands high-quality results at the individual level. If 
the model results do not match customer expectations 
of their own health, the company could lose business 
or be subject to antiselection.

As a final step of model validation, held-out cases 
are scored with the model for the medical team to 
review. The cases, typically numbering more than 
150,000, are summarized and reviewed by the med-
ical team to verify consistency with desired rates of 
offers within risk classes and to analyze trends in cases 
whose risk class would improve, worsen, or remain the 
same. A subset of several thousand recent applications 
are reviewed with more scrutiny, including model 
explanations that describe how each set of features 
contributed to the overall score. This pilot-review pro-
cess ensures that the model performs well at an indi-
vidual level.

Deployed Algorithmic  
Underwriting System

The validation of the mortality model provides suf-
ficient evidence of its value, but it is a nontrivial 
undertaking to promote a model from a research envi-
ronment to building a complete, real-time decision- 
making system.

The Algorithmic Underwriting System
A well-designed algorithmic underwriting system 
should capture digitally structured data and enable  
a simple interface and decision process for under-
writers. Figure 6 depicts the high-level interactions 
among the major components of the algorithmic 
underwriting system at MassMutual. This includes the 
inputs and outputs for the mortality model, the rules 
engine that provides additional logic and coverage 
of underwriting guidelines, and the underwriter who 
serves as a human-in-the-loop to produce final under-
writing decisions.

To begin the process, a prospective life-insurance 
customer completes a web-based application and, 
after a paramedic visit, has laboratory test results 
submitted on their behalf. To predict a life score, the 
mortality model requires inputs from these test results 

and responses within the health questionnaire por-
tion of the application. Additional data, such as motor 
vehicle and prescription drug records, are obtained via 
vendor-supplied application-programming–interface  
calls after the applicant authorizes their disclosure. 
These underwriting requirements are necessary for 
complete underwriting, but are not included in the 
model due to limited historical coverage.

The same data are collected on applicants under-
going algorithmic and traditional underwriting, yet 
the processes are fundamentally different. Some of 
the technical and business challenges include gener-
ating discrete risk-class recommendations from con-
tinuous life scores; serving real-time scores in a robust 
environment; integrating model recommendations 
with medical and financial underwriting guidelines; 
and empowering underwriters with explanations 
behind individual life scores to enable communica-
tion with advisors and customers.

Calibrating Score Thresholds

The mortality model supports a flexible framework 
that can recommend risk classes based on different 
objectives. Because the life score measures mortality 
risk, actuaries could adjust offers to achieve desired 
levels of mortality. A simple approach sets thresholds 
that yield offer rates consistent with historical expec-
tations and pricing assumptions.

Predicting in Real-Time

Once all requirements are received, the system sends 
a request to an internally developed application pro-
gramming interface that hosts the mortality model. 
The technology behind this application programming 
interface is horizontally scalable, executes predictions 
in separate containers, and leverages established secu-
rity and authorization protocols. The output of the 
model includes the predicted life score, recommended 
risk class, and explanations behind the prediction (see 
below). This response is transmitted within seconds, 
where the latency is driven by the complexity of the 
model prediction and derivation of explanations.

Integration With Underwriting Guidelines

Thousands of automated rules encompassing health, 
behavioral, and financial attributes serve as guard-
rails for the model. The rules reflect a comprehensive 
set of medical and underwriting guidelines devel-
oped and revised by experts in underwriting and 
insurance medicine. Each rule determines the best 
available risk class in the presence of certain values 
in the application. For example, certain medications 
may preclude an applicant from receiving a preferred 
offer. When a rule is triggered, underwriters can 
focus on pertinent details and use domain expertise 
to override the rule, allowing the case to continue 
through automated processing; decide if further 
investigation is warranted; or confirm the rule and 
proceed with the suggested risk class. The mortality 
model provides the basis for offers, but rules and pro-
fessional review can lead to different ratings. This 
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Figure 6. High-Level Schematic of the Algorithmic Underwriting System.

A life-insurance applicant submits several sources of underwriting data requirements. Laboratory test results and answers to the appli-
cation are sent to the mortality model, which returns the life score, recommended risk class, and model explanations. The rules engine 
combines all underwriting data with the model output and presents the information to a human-in-the-loop underwriter who provides 
the final underwriting decision.

overall approach has led to new analyst positions and 
revised workflows for underwriters.

Interpreting Model Predictions

Model interpretability is an active area of research 
as machine-learning models become increasingly 
opaque. With a complex model driving risk-class 
decisions, it is imperative that underwriters can 
effectively explain why an applicant received a given 
offer. Recent research into SHAP values has led to a 
model-agnostic, theoretically justified, and compu-
tationally efficient framework (Lundberg and Lee, 
2017). We adapt this methodology for the mortality 
model and compute feature contributions that com-
pose individual predicted life scores. This provides 
sufficient explanatory information that can be dis-
played to underwriters handling each application.

Rolling Out the System
As a collaborative effort across various MassMutual 
teams, we systematically and gradually transitioned 
the exclusively human process of underwriting to 
an algorithmic framework. We conducted an initial  
pilot of the system in 2016 on 1,000 cases alongside 
traditional underwriting to compare risk-class assign-
ments on new applications. After a successful pilot, 

algorithmic underwriting began issuing UPNT offers 
on term and whole life products up to $1 million 
benefits for applicants aged 17 to 40 years, followed 
by an expansion to $3 million and applicant ages up 
to 59 years, and finally for all standard-and-above 
risk classes. These product parameters cover approxi-
mately ninety percent of applications, and at present, 
the model has scored over 250,000 applications. In 
parallel, we integrated with the algorithmic under-
writing platform developed by Haven Life4 — a digital- 
first, direct-to-consumer life-insurance agency backed 
by MassMutual — and to date has scored nearly 
20,000 applicants.

The implementation of predictive modeling in life 
underwriting has favorable implications for profita-
bility and customer experience. At MassMutual, this 
has resulted in greatly improved operational effi-
ciency — time to policy issuance has decreased by 
twenty percent for applicants in the healthiest risk 
class. This improvement has had material impact on 
customer experience as indicated by a twenty-five 
percent decrease of applicants declining to pur-
chase their policies when the decision was made 
by the model compared with traditional underwrit-
ing within the best class. The automation of under-
writing decisions at the company has amounted to 



Innovative AI Applications

90  AI MAGAZINE

labor savings of millions of dollars on a growing 
portfolio of policies with over one hundred billion 
dollars of protective benefits. Further, more profit-
ability can be derived from the increased accuracy 
of the decisions when driven by the model; that is, 
the retrospective study of the mortality model sug-
gests a long-term benefit of reduced claims experience. 
For these reasons, along with the additional drivers 
behind creating a standard life score, we also provide 
the life score as a service, through the establishment 
of LifeScore Labs, for use with other carriers that can 
benefit from improved underwriting.5

System Maintenance
Several teams support the monitoring, refreshing, 
and updating of the mortality model. Distributional 
drift, such as deteriorating offer rates, or sudden out-
liers, such as laboratory test changes, could affect the 
quality of decisions. We implement a monitoring 
protocol that reports on daily requests to the model 
and use web-based dashboards to visualize and track 
trends across time. An automated scoring process 
detects distributional differences in model inputs and 
outputs, and statistical anomalies trigger email alerts to 
model stewards.

The model is retrained annually to incorporate 
refreshed data and performance enhancements. 
Updates include refreshed death information and addi-
tionally underwritten applications. Collaborating with 
medical experts, enhancements to the model address 
concerns identified from case reviews. New versions 
have improved individual risk-class recommendations 
and transparency.

Prior to deploying new versions, we conduct ret-
roactive pilots to avoid unexpected outcomes. Data 
scientists rescore recent cases and report aggregate sta-
tistics for the medical team to review prior to approval. 
Any change to the expected distribution of offers 
necessitates analysis and approval from actuaries. 
Final deployment requires collaboration among data 
scientists, data engineers who maintain the model 
application programming interface, and developers 
responsible for the production underwriting system.

Building Trust  
through Transparency

Customers are increasingly demanding improved 
experience and options for purchasing products. The 
life-insurance industry is responding with programs 
that leverage predictive models and algorithmic under-
writing. We believe that proactive consideration of 
transparency is necessary for the success of the indus-
try’s digital transformation.

The Need for Increased Transparency
Increased accuracy and operational efficiency intro-
duced by the mortality model and the algorithmic 
underwriting system are valuable improvements for 
pricing and scaling business. Conversely, the use of 
predictive modeling in life-insurance underwriting 

raises serious questions by consumer advocates and 
regulatory bodies, especially in light of scenarios for 
which algorithmic decisions have been questionable 
(for example, criminal sentencing [Angwin et al., 
2016] and facial recognition [Raji et al., 2020]) and 
emerging regulation, such as the General Data Pro-
tection Regulation 2016/679 in Europe (Goodman 
and Flaxman, 2017), which require explanations 
behind algorithmic decisions. For life insurance, a 
simple legal mechanism — the Adverse Underwriting 
Decision letter — informs customers of the reasons 
behind certain pricing or coverage decisions, but this 
process has limited benefits for the industry.

The industry has an opportunity to proactively 
build consumer trust and meet current and expected 
future regulation by promoting transparency with 
prospective customers, applicants, underwriters, and 
regulators. A transparency-enabled life score can 
support education of how underwriting works for 
future customers and wide-scale adoption of con-
sistent underwriting in the industry. Explaining 
how risk factors are considered in scoring individual 
applicants can empower underwriters to confidently 
interact with predictive models and provides helpful 
information for customers deciding whether to pur-
chase offered coverage. And exposing the inner work-
ings of models to regulators can provide assurance of 
compliance within specified legal frameworks.

A related issue to transparency, and of growing 
interest in consumer protection and regulation, is 
the concept of fairness and the impact that predic-
tive models have on protected classes, such as race 
an ethnicity. The availability of a wide range of data 
sources that characterize individuals make life under-
writing models and algorithmic decision-making  
vulnerable to persisting societal biases. However, the 
model described in this paper relies only on traditional 
underwriting requirements based on medical infor-
mation with well-established causal ties to mortality 
risk. In addition, the life score is conditioned on age 
and sex such that applicants are compared relative to 
their cohort. Membership in other protected classes 
is intentionally unobserved during the underwriting 
process across the industry. Purposeful omission of 
these and other variables, such as geography and 
education, only partially mitigates concerns around 
fairness that stem from the use of algorithms in life 
underwriting. Defining, measuring, and adjusting 
for fairness remains an open challenge — just as it is 
also an active area of research in the machine-learning 
community (Holstein et al., 2019).

Implementing a Tool for Transparency
Statistical and machine-learning models have steadily 
improved in performance over the past few de
cades but, at the same time, the availability of tools 
for diagnosing and explaining model behavior has 
progressed more slowly, owing to both an under- 
defined objective and historically less emphasis by 
machine-learning researchers (Lipton, 2018). Fortu-
nately, several recently proposed approaches provide 
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the transparency necessary for the successful adoption 
of predictive models in the life-insurance industry.

A family of model-agnostic, additive feature attri-
bution methods aims to approximate model predic-
tions as the sum of contributions made by model 
inputs, or features. These quantitative contributions 
can serve as an explanation, which can then be shared 
with individuals who interact with single-model 
decisions or aggregated across many predictions to 
provide details on population-level model behavior. 
These methods may not directly generate actionable 
explanations (Kumar et al., 2020), but when paired 
with appropriate domain knowledge, they can pro-
duce quantitative comparisons and insights behind 
individual predictions.

The SHAP framework developed by Lundberg and 
Lee, (2017) unifies other commonly used methods in 
this family, such as Local Interpretable Model-Agnostic 
“Explanations (Ribeiro, Singh, and Guestrin, 2016), 
Quantitative Input Influence (Datta, Sen, and Zick, 
2016), and Deep Learning Important FeaTures 
(Shrikumar, Greenside, and Kundaje, 2017). SHAP 

is also model-agnostic, not requiring a differentiable 
model unlike the integrated gradients approach pro-
posed by Sundararajan, Taly, and Yan (2017). Drawing 
from intuitive concepts in coalitional game theory, 
SHAP values have been shown to be the only addi-
tive feature attributions that are consistent and locally 
accurate. We implement a computationally efficient 
version of SHAP — the Kernel SHAP algorithm — to 
generate additive contributions of health attributes 
for each predicted life score. The contributions for 
an individual are compared relative to a baseline, 
healthy profile in the same five-year age, sex, and 
smoking cohort.

Feature contributions are returned by the mor-
tality model in real-time during underwriting, as 
shown in figure 6. We define feature groupings by 
medically related categories, such as lipids and family 
history. To additionally facilitate education around 
how life underwriting functions and how different 
factors can drive insurance pricing, we developed a 
consumer-facing tool, called MyLifeScore, leveraging 
the same explanation framework of the mortality 
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and build add nine points.
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model. Figure 7 demonstrates how feature contribu-
tions can be displayed to consumers. Through greater 
visibility into the life score, we can provide consumers 
with more context and better expectations to make 
informed decisions in purchasing life insurance while 
also improving trust between consumers and carriers.

Conclusion and Future Directions
The emergence of large historical data sets and 
advancements in machine learning present an oppor-
tunity to improve the accuracy and transparency 
of underwriting in the life-insurance industry with 
standard measures of mortality risk. Leveraging 20 
years of applications at MassMutual, we developed a 
mortality model and life score that can consistently 
compare applicants relative to their demographic 
cohorts. We demonstrated that embedding such an 
approach has profound implications for profitabil-
ity and customer experience.

Avenues for future directions span data, methods, 
and insurance innovation. The current mortality 
model does not consider all traditional underwriting  
data sources, such as prescription drugs or motor 
vehicle records, and there are many nontraditional 
and unexplored sources, such as financial data, public  
records, electronic health data, wearable sensors, and 
genetic information, which may improve accuracy, 
enable alternative underwriting mechanisms, or 
enhance wellness programs to incentivize healthy 
behavior. Mortality models that do not rely on 
laboratory tests are of particular interest to many 
carriers seeking to launch or expand accelerated 
underwriting programs. Finally, machine-learning  
research on survival models may improve risk selec-
tion, and advancements in algorithmic fairness 
and transparency are equally crucial to study and 
implement.

Broad adoption of a standard measure of mortality 
risk opens the potential for exciting directions in the 
industry. We offered a few possibilities — increased 
access to insurance via consumer-driven purchasing, 
life-insurance–backed securities for portfolio diversi-
fication, and actionable wellness programs through 
quantifiable mortality benefits — and more industry- 
wide innovation will undoubtedly arise.

Acknowledgments
 The authors are grateful for contributions made by 
Paul Shearer, Martha Grace, Ada Xu, Lizzie Kumar, 
John Karlen, and Debora Sujono. We also give thanks 
to our many colleagues at MassMutual, Haven Life, 
and LifeScore Labs, and our external collaborators 
for their continued partnership.

Notes
1. www.acli.com/Industry-Facts/Life-Insurers-Fact-Book

2. The MassMutual Mortality Score (M3S) and LifeScore 
Med360 refer to branded versions of the mortality model 
described in this work.

3. The consumer-facing MyLifeScore tool is openly available 
at lifescorelabs.com/products/mylifescore.

4. havenlife.com

5. lifescorelabs.com
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