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Abstract

This work explores the capabilities of current planning tech-
nologies to tackle the falsification of safety requirements for
cyber-physical systems. Cyber-physical systems are systems
where software and physical processes interact over time,
and their requirements are commonly specified in temporal
logic with time bounds. Roughly, falsification is the process
of finding a trajectory of the cyber-physical system that vio-
lates the safety requirements, and it is a task typically tackled
with black-box algorithms. We analyse the challenges posed
by industry-driven falsification benchmarks taken from the
ARCH-COMP competition, and propose a first attempt to
deal with these problems through PDDL+ planning instead.
Our experimental analysis on a selection of these problems
provides empirical evidence on the feasibility and effective-
ness of planning-based approaches, whilst also identifying
the main areas of improvement.

Introduction
This work explores the capabilities of current planning tech-
nologies for tackling safety validation of cyber-physical sys-
tems (CPS). A CPS is a system where software and physical
processes interact over time. We focus on the task of safety
validation through falsification of safety properties. A safety
property specifies that some undesired event will never hap-
pen, and can be shown to be violated with a counterexample,
also known as falsifying trajectory. Finding such counterex-
amples is the primary goal of the falsification task. While the
connection between planning and model checking is well-
established (Cimatti et al. 1997; Bogomolov et al. 2014),
little work has been done to understand how planning can
be employed for falsification and it is somewhat limited to
simple models and requirements (Plaku, Kavraki, and Vardi
2013), most likely due to a scarce presence of efficient plan-
ning systems that can deal with CPS. With this paper we aim
to provide a first step toward filling this gap.

Falsification benchmarks are heavily influenced by indus-
try standards. Consequently, CPS are modelled in the MAT-
LAB1 environment which is widely used for prototyping.
As an example, consider the automatic transmission sys-
tem (Hoxha, Abbas, and Fainekos 2014) shown in Figure 1.
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1https://www.mathworks.com/products/matlab.html

Figure 1: Matlab model of an automatic transmission.

The model for this system encompasses the dynamics of
the engine, transmission and wheels of a vehicle, as well as
the logic for the automatic transmission which selects gears
based on throttle and brake inputs and other state informa-
tion. A typical way to express safety requirements in CPS is
to use temporal logic with time bounds such as Signal Tem-
poral Logic (STL) (Donzé and Maler 2010). For instance,
the STL requirement φ1 : □[0,15]v < 50 specifies that the
system is safe if and only if the velocity is always less than
50mph over the closed interval that goes from 0s to 15s. Fig-
ure 2 shows an input signal (top) that steers the system into a
trajectory (bottom) that falsifies requirement φ1, which sim-
ply requires maintaining enough throttle.

Falsification algorithms leverage temporal logic robust-
ness (Fainekos and Pappas 2009), a metric of the degree to
which a system trajectory satisfies a safety requirement, to
pose the falsification task as an optimization problem guided
by this metric. This problem is then solved using standard
optimization techniques (Annpureddy et al. 2011; Donzé
2010), or reformulated into reinforcement learning (Zhang
et al. 2018; Akazaki et al. 2018) and path planning prob-
lems (Dreossi et al. 2015). As there is a widespread belief
that CPS are too complex to explicitly reason about (Corso
et al. 2021), falsification algorithms follow the black-box as-
sumption by considering the CPS as a mapping from inputs
to outputs (e.g. embedding the model in a simulator).

In this work, we set out to evaluate the performance of
declarative, white-box planning algorithms for falsification
problems. We start by analysing the industry-driven bench-
marks proposed in the falsification category of the ARCH-
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Figure 2: Input (top) and output (bottom) signals of an auto-
matic transmission system.

COMP competition and identifying the main challenges of
the reformulation into planning. Afterwards, we evaluate our
proposal against a state-of-the-art falsification tool, provid-
ing empirical evidence for the feasibility of planning-based
approaches and discussing the main areas of improvement.
Our work incentivizes cross-fertilization between the falsifi-
cation and planning communities by establishing a connec-
tion between these two problems, and seeks to spur research
on PDDL+ Planning by extending the pool of benchmarks
and identifying new challenges.

Finding Falsifying Input Signals for STL
Requirements Using PDDL+ Planning

A falsification problem consists of a system model M and
a safety requirement φ that the system should satisfy. Safety
properties are defined over state trajectories s = [s0, . . . , st]
where st is the state of the system at time t. Falsification is
about finding an input signal u that causes the outputs of the
system to violate the safety requirement φ: u s.t. M(u) ̸|= φ

Falsification of CPS in the ARCH-COMP
The general definition of falsification takes a more concrete
form in the ARCH-COMP competition (Ernst et al. 2021),
where the system model M is defined as a Simulink/State-
flow model, the safety requirement φ is specified using STL,
and the input signals have continuous domains and shape
constraints (e.g. piece-wise constant).

Simulink/Stateflow models: Following industry stan-
dards, falsification benchmarks are defined in the MATLAB
environment as Simulink/Stateflow models. Simulink uses a
block diagram representation where each block has differ-
ent semantics, from basic arithmetic operators to complex
subsystems. Stateflow extends Simulink with an automata-
like representation based on states connected by transitions;
this is commonly used to represent decision logic and hy-
brid systems that combine symbolic and numeric reasoning.
Overall, a Simulink/Stateflow model describes a CPS as a
set of differential equations modelling the physical aspect of
the system and a set of hybrid automata (Henzinger 2000)

modelling the software component. Further, ARCH-COMP
benchmarks are all deterministic, so under the same inputs
they always generate the same output trajectory.

STL safety requirements: STL is a temporal logic with
time bounds for real-valued signals over a continuous time-
line. STL predicates are arbitrary functions of the form
µ(si) ≥ 0 mapping a signal si from Rn to R. STL require-
ments are specified by combining predicates with Boolean
operators (conjunction ∧, disjunction ∨, and negation ¬) and
temporal operators (always □, eventually ♢, next ◦, and until
U ). STL temporal operators can be indexed with a time inter-
val over which the property is expected to hold. For example,
the STL requirement □[0,30]((¬g1 ∧ ◦g1) → ◦ □[0,2.5]g1)
specifies that within 30s, after changing to first gear, there
should be no shift to any other gear before 2.5s.

Input signal: In principle, a solution to the falsification
problem can be any arbitrary piece-wise continuous in-
put signal. However, the ARCH-COMP competition recom-
mends fixing the format of the solutions to make compar-
isons fairer. The proposed format is piece-wise constant sig-
nals with a fixed number of equally spaced control points. A
control point is a point in time where falsification algorithms
decide new values for the input variables, possibly causing
a discontinuity in the piece-wise constant signal. As an ex-
ample, the input signal shown in Figure 2 (top) follows this
format with control points allowed every 5s that cause the
discontinuities observed at the 5s and 10s marks.

Falsification of CPS as PDDL+ Planning
A standard methodology to verify that a system S modeled
by an automaton As satisfies a requirement φ is to derive an
automaton A¬φ accepting exactly trajectories that violate φ
and check that the language of the product automaton AS ×
A¬φ is empty. Our reformulation into planning follows this
methodology to build a planning problem P (M,¬φ) whose
solutions are plans inducing counterexample trajectories.

Due to the features of Simulink/Stateflow models, we
look at PDDL+ (Planning Domain Definition Language) as
the language of our reformulation. PDDL+ is a high-level
declarative language to formulate planning problems that re-
quire reasoning over a mixture of discrete and continuous
variables over a continuous timeline (Fox and Long 2006).
PDDL+ explicitly differentiates between Boolean and nu-
meric variables, and supports three types of state transitions,
namely, actions, events and processes. Actions and events
model instantaneous transitions causing discrete changes
and numeric discontinuities. The difference between the two
is that the execution of an action is decided by the planner
while events happen the instant their conditions are met. Pro-
cesses model continuous transitions through time-dependent
effects of the form ẋ = ξ (ξ represents the first derivative of
x w.r.t. time) and last for as long as their conditions are met;
as events, processes are not in control of the agent, but rep-
resent the natural evolution of the environment. A PDDL+
plan is a set of timed actions plus the ending time te ∈ R≥0

at which the goal is satisfied. Intuitively, we reformulate
the falsification problem as a planning problem P (M,¬φ),
where the CPS and the negated STL requirement, i.e., ¬φ,
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are modeled through events and processes, and actions are
the responsible for picking the values of the input signals
such that a solution plan to P (M,¬φ) induces a falsifying
trajectory that satisfies ¬φ, that is, it violates φ.

The general translation scheme we followed to transform
Simulink/Stateflow models into PDDL+ associates one pro-
cess to each differential equation and leverages known re-
sults on the relation between PDDL+ and hybrid automata
(Fox and Long 2006; Bryce et al. 2015; Bogomolov et al.
2015). Broadly, automata locations and variables map into
PDDL+ Boolean and numeric variables, respectively, dis-
crete transitions are represented using events and the differ-
ential equations associated to each location using processes.
Moreover, since ARCH-COMP benchmarks also feature
piece-wise linear functions through look-up tables, we cap-
tured these dynamics through the use of (bi-)linear interpola-
tion inside the time-dependent effects of the associated pro-
cesses. Overall, our experience suggests that it is possible to
build a general translation algorithm from Simulink/State-
flow models to PDDL+ accounting for a large fragment of
the supported dynamics. Such an algorithm would immedi-
ately amplify the reach of planning.

Regarding the STL requirements, translations for tempo-
ral logic with time bounds target variants of timed automata
that make use of clock variables to enforce duration con-
straints. Timed automata are a subclass of hybrid automata
and can be encoded in PDDL+ following the same map-
ping. In principle, the resulting timed automaton can be non-
deterministic requiring the use of actions for its encoding in
PDDL+. In a dense time setting, this can lead to a blow up
of the branching factor so we restrict our attention to safety
requirements that can be translated to deterministic timed
automata. As a future work to overcome this limitation, we
identify a recent result by Ferrere et al. (2019) that presents
a novel compositional translation.

The last important bit of this reformulation is handling in-
put variables with continuous domains. Inspired by the prac-
tical ideas used in falsification (Ernst et al. 2019), we pa-
rameterize the reformulated problem Pk(M,¬φ) with a dis-
cretization level k ∈ N, a constant used to transform a con-
tinuous domain [a, b] into a discrete domain {i(b−a)/k+a |
0 ≤ i ≤ k} that can be sampled using actions. This
means that, for a variable with domain [0, 100], P1 would
only consider values in {0, 100} while a P4 would consider
{0, 25, 50, 75, 100}. While this approach in isolation is in-
complete, it can be coupled with a meta-algorithm that iter-
atively increases k, resulting in a systematic sampling of the
inputs that is asymptotically complete.

Experimental Analysis
We evaluated the performance of the proposed planning-
based approach to solve falsification benchmarks (https:
//github.com/daineto/falsification benchmarks). In order to
establish a baseline for comparisons, we took Falstar (https:
//github.com/ERATOMMSD/falstar), one of the best per-
formers of the ARCH-COMP. Falstar works by incremen-
tally exploring alternative falsifying input signals using an
adaptive search that samples the input domain with increas-
ingly finer discretizations. This systematic exploration natu-

Req. STL formula
AT1 □[0,20]v < 120
AT2 □[0,10]w < 4750
AT51 □[0,30]((¬g1 ∧ ◦g1) → ◦ □[0,2.5]g1)
AT52 □[0,30]((¬g2 ∧ ◦g2) → ◦ □[0,2.5]g2)
AT53 □[0,30]((¬g3 ∧ ◦g3) → ◦ □[0,2.5]g3)
AT54 □[0,30]((¬g4 ∧ ◦g4) → ◦ □[0,2.5]g4)
AT6a (□[0,30]w < 3000) → (□[0,4]v < 35
AT6b (□[0,30]w < 3000) → (□[0,8]v < 50
AT6c (□[0,30]w < 3000) → (□[0,20]v < 65
AT6∧ AT6a ∧ AT6b ∧ AT6c
AT5∨

∨
i=1..4 □[0,50]((¬gi ∧ ◦gi) → ◦ □[0,2.5]gi)

AT6∨ AT6a ∨ AT6b ∨ AT6c
CC1 □[0,100]y5 − y4 ≤ 40
CC2 □[0,70]♢[0,30]y5 − y4 ≥ 15
CC3 □[0,80]((□[0,20]y2 − y1 ≤ 20) ∨ (♢[0,20]y5 − y4 ≥ 40))
CC4 □[0,65]♢[0,30]□[0,5]y5 − y4 ≥ 8
CC5 □[0,72]♢[0,8](□[0,5]y2 − y1 ≥ 9 → □[5,20]y5 − y4 ≥ 9)
CCx

∧
i=1..4 □0,50(yi+1 − yi > 7.5)

CCy
∨

i=1..4 □0,50(yi+1 − yi ≤ 100)
CCz □0,50(

∨
i=1..4 yi+1 − yi ≤ 100)

Table 1: STL safety requirements for the benchmarks.

rally scales with the hardness of the problem and makes for
a better baseline than random sampling.

Models and Requirements
We used two benchmark models from the ARCH-COMP
competition with very different features. The automatic
transmission benchmark presents complex dynamics with
large differential equations but relatively simple STL re-
quirements. The chasing cars benchmark has simple dynam-
ics but complex STL requirements with more levels of nest-
ing and longer time intervals.

Automatic Transmission (AT): This is the benchmark
model we used throughout the paper. The system has two
inputs: throttle and brake with ranges from 0 to 100 and 0
to 325, respectively. The output is two continuous-time vari-
ables representing the physical state of the system, the speed
of the engine w given as revolutions per minute (RPM) and
the speed of the vehicle v (mph), as well as the transmission
gear g. The vehicle is initially at rest (v = 0 and w = 0)
and on first gear (g = 1). The Simulink/Stateflow model
for the automatic transmission domain consists of 69 blocks
including 2 integrators (one for each continuous-time vari-
able), 6 look-up tables defining piece-wise linear functions
and a Stateflow chart with two concurrent automata mod-
elling the logic for changing gears.

Chasing Cars (CC): This model describes a platooning
scenario (Hu, Lygeros, and Sastry 2000) consisting of five
cars where the lead car is driven by throttle and brake in-
puts, and the other four are driven by a deterministic con-
troller that decides among different modes: maintain speed,
accelerate or brake, based on the distance to the car ahead.
The system’s outputs are the positions y1, y2, y3, y4 and y5
of the five cars. Safety requirements specify maximum and
minimum distance thresholds between cars. Initially, all ve-
hicles are at rest and separated by 10 distance units. The
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Figure 3: Coverage with respect to runtime.

Simulink/Stateflow model consists of 5 concurrent hybrid
automata, one for each car. The lead car automaton has only
one single location while the controller for the chasing cars
has three locations, one for each mode.

Safety requirements associated to each of these two mod-
els are listed in Table 1. We consider all requirements pro-
posed by the ARCH-COMP and add four new disjunctive
instances, namely, AT5∨. AT6∨, CCy and CCz.

Results
Falsification tools such as Falstar are stochastic so they
are evaluated over several trials. In contrast, our planning-
based approach is deterministic but we must solve a dif-
ferent planning instance for each input discretization level.
We run Falstar with the ARCH-COMP settings and a limit
of 10 trials, while we run our approach with 6 discretiza-
tion levels {1, 2, 4, 8, 16, 32}. Our PDDL+ planning ap-
proach is WA∗ search guided by the hMRP

max heuristic (Scala
et al. 2020), obtained from ENHSP-20 (https://gitlab.com/
enricos83/ENHSP-Public). In order to comply with the
ARCH-COMP specifications, we set the planning delta to
5s and the execution delta to 0.001s.

We evaluated coverage of Falstar and our PDDL+ solu-
tion. We run both approaches using two configurations, se-
quential and parallel, with a time budget of 100s to solve
each Falstar trial or planning instance. The sequential con-
figuration launches a new trial or instance (with increased
discretization level) when the time budget is consumed until
a solution is found. For the parallel configuration, we run all
trials and instances in parallel and report the minimum time
across solved ones. We account for the stochastic nature of
Falstar by using the expected time to the first successful trial
Es/fr where Es is the expected time of a single trial and
fr is the falsification rate (ratio of successful trials).

The results of this experiment are shown in Figure 3
where each curve relates the number of solved problems
with run-time. Falstar is able to falsify some requirements
almost instantly, but then struggles with the harder ones. In
contrast, our PDDL+ approach takes a few seconds to see the
first solutions (partly due to preprocessing) but it converges
faster. Overall, the PDDL+ approach proves to be very com-
petitive, achieving the coverage of Falstar. Table 2 presents a
detailed view of the performance of both approaches across
all STL requirements; to have some indication on how the
planner behaves, we show the results for three input dis-

P2 P8 P32 Falstar
Req. FR E T FR E T FR E T FR S T
AT1 1 343 91.3 0 - - 0 - - 7 177.0 53
AT2 1 19 17.9 1 344 80.5 0 - - 10 3.7 0.5
AT51 1 303 104 1 1k 255 0 - - 10 16.6 4.4
AT52 1 5 14.8 1 324 91.9 0 - - 10 5.8 1.2
AT53 1 4 15.5 1 19 19.8 1 9k 1550 10 1.7 0
AT54 1 16 19.5 1 113 45.2 1 8k 1398 10 55.7 16.1
AT6a 1 12 20.8 1 33 27.5 1 11 18.9 10 43.8 12.9
AT6b * 45 28.6 1 431 122 1 11 19.3 2 236.0 70.5
AT6c * 720 193 1 18 21.4 1 11 19.1 1 212.0 64
AT6∧ 1 12 16.5 1 18 16.9 1 11 15.5 9 112.7 35.1
AT5∨ 1 1k 165.3 0 - - 0 - - 0 - -
AT6∨ * 18 15.3 * 243 68.9 1 11 15.3 10 211.9 64.5
CC1 1 266 13.8 1 12k 108 0 - - 10 1.5 0
CC2 1 285 13.8 1 9k 101 0 - - 10 1.3 0
CC3 1 1k 28.9 1 56k 461 1 87k 686 10 79.7 12.3
CC4 1 43k 434 0 - - 0 - - 10 1.3 0
CC5 10 1.0 0
CCx 1 14 3.8 1 15 4.5 1 15 4.3 10 1.0 1
CCy 1 1k 24.8 1 151k 1330 1 11k 107 3 226.7 21
CCz 1 5k 53 0 - - 0 - - 0 - -

Table 2: FR: Falsification rate (out of 1 for planning and out
of 10 for Falstar); * denotes a problem proved unsolvable. E:
Expanded nodes. S: Average simulations. T: Time in secs.

cretizations (columns P2, P8, P32). Interestingly, most prob-
lems can be falsified with a small discretization level, indi-
cating that safety requirements are often falsified by extreme
values. Besides CC5, for which we did not manage to build a
deterministic automaton, we falsify all chasing cars require-
ments but are slower than Falstar. We attribute this to hMRP

max
being quite uninformed for this class of problems, in partic-
ular those having long horizon solutions. On the other hand,
Falstar was only able to falsify 2 of the new disjunctive re-
quirements (AT6∨ and CCy) with a relatively large number
of simulations. Via planning we solve AT5∨ that requires
a specific sequence of gear operations to falsify, something
that seems difficult for black-box algorithms such as Falstar.
Notably, the planner proves the system safe for some dis-
cretization levels (the unsolvable results), something beyond
the capabilities of standard falsification techniques.

Discussion
This paper showed how industrially-driven benchmarks for
CPS can be handled by a PDDL+ approach using an off-the-
shelf planner. Although the planner proves the approach fea-
sible, our study also reveals a number of avenues for future
research. First, from our study it emerged quite clearly that
current domain-independent heuristics are either too slow
(e.g., the AIBR heuristic by Scala et al. (2016)) or little in-
formed (e.g., the hMRP

max is blind to non simple dynamics). In
our experiments, the problems are mainly solved due to an
efficient search rather than strong guidance but this shows its
limits when many decisions must be taken over time. Sec-
ondly, we want to study principled ways to handle general
STL formulas, and continuous inputs inside the planner. Fi-
nally, we would also like to explore the possibility of apply-
ing falsification algorithms to PDDL+ benchmarks.
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