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Abstract

A? suffers from limited parallelism. The maximum level of
traditional parallelism in A? is the same as the degree of the
search graph nodes, which is too small in many applications.
As such, A? cannot fully leverage the multithreading capabil-
ities of modern processors.
In this paper, we go beyond traditional parallelism and in-
troduce speculative parallelism for A?. We observe that A?’s
node expansions exhibit predictable patterns in applications
like path planning. Based on this observation, we propose
Runahead A? (RA?). When a node is being expanded, RA?

predicts future likely-to-be-expanded nodes, performs their
corresponding computation on separate threads, and memo-
izes the computation results. Later when a predicted node is
selected for expansion, rather than performing its computa-
tion, the memoized results are used, saving significant time
in slow-expansion applications.
We study five applications of A?. We show that when
its prediction accuracy is high, RA? offers significant
speedup over vanilla A? for slow-expansion applications.
With 16 threads, RA?’s speedup for such applications
ranges from 3.1× to 14.1×. We also study and provide
insight into when, why, and to what extent node expansions
are predictable. We provide an implementation of RA? at:
https://github.com/cmu-roboarch/runahead-astar/

Introduction
A? (Hart, Nilsson, and Raphael 1968) is a widely-used best-
first graph search algorithm which takes advantage of a
heuristic cost function to guide the search. Given a consis-
tent heuristic, A? guarantees optimality and returns a least-
cost solution. A? is used in many artificial intelligence ap-
plications, like path planning, task planning, protein design,
and so on, to find a path from a start state to one (or more)
goal states.

A? maintains an OPEN list of candidate nodes for expan-
sion. At every iteration, A? expands the node of the search
graph whose f value is the lowest in OPEN. For node N ,
f(N) = g(N) + h(N); g(N) being the cost from the start
node to node N , and h(N) being the heuristic cost—a non-
overestimate of the cost from node N to the goal node.
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Whenever a node is expanded, its neighbors are “evaluated”
and (conditionally) pushed to OPEN.

The evaluation of neighbors entails (i) validity checking
and (ii) heuristic cost calculation. For example, in robot path
planning, a state’s validity is determined by collision detec-
tion: a state is valid if the robot at that state does not collide
with obstacles. The heuristic cost is calculated based on a
heuristic function; e.g., the Euclidean distance between the
state and the goal state.

In a number of applications, evaluating neighbors can
be extremely time-consuming. We use the terminology of
(Phillips, Likhachev, and Koenig 2014) and call those appli-
cations “slow-expansion.” In such applications, the majority
of execution time is spent evaluating neighbors. An exam-
ple of such an application is robot path planning with full-
body collision detection. Expansions in this application are
slow because while expanding a node, the planner must en-
sure that the robot does not collide with any of the possibly-
many obstacles in the environment (Phillips, Likhachev, and
Koenig 2014). As another example, heuristic cost calcula-
tions in protein design are very slow: the function estimates
the energy of all the rotamers (sidechains of an amino acid)
that are not assigned in the design (Leach and Lemon 1998).

Fortunately, neighbors of a node are mutually indepen-
dent and can be evaluated in parallel. However, other than
this, the vanilla A? is serial, as are most of its extensions
and variants (Phillips, Likhachev, and Koenig 2014). Unfor-
tunately, in many applications, nodes have only a few neigh-
bors, which means A? can utilize at best a few threads for
parallel execution. For example, in path planning for a robot
that can move in eight cardinal and inter-cardinal directions,
the degree of nodes is eight (i.e., 8-connected grid), which
means the maximum level of parallelism is eight. The av-
erage level of parallelism is even (far) smaller (e.g., ∼2.3
with our evaluated map; see §Evaluations), since not all
neighbors of an expanded node are always evaluated (e.g.,
already-visited neighbors are skipped, etc.). This limited
parallelism makes A? unable to fully leverage the multi-
threading capabilities of modern processors that support the
parallel execution of tens or even hundreds of threads.

Expanding multiple nodes in parallel might seem to be
a sensible approach to enhance A? parallelism. However,
it is not straightforward, because the search optimality de-
pends on the node expansion order: if nodes are expanded
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in any order other than lowest-f -first, optimality cannot be
guaranteed. Naively parallelizing multiple expansions could
potentially disturb the correct expansion order and sacrifice
the optimality. Prior work proposes workarounds to enable
parallelizing multiple expansions safely, i.e., without losing
optimality guarantees. This is done through a variety of ap-
proaches, like discovering independent expansions (Phillips,
Likhachev, and Koenig 2014), expanding nodes multiple
times (Kishimoto, Fukunaga, and Botea 2009), and so forth.
Nevertheless, as we will show, these methods impose non-
trivial overheads, which severely limits their effectiveness.

In this work, we take a different approach to par-
allelize A?, in a proposal named Runahead A? (RA?).
Instead of expanding multiple nodes in parallel, RA?
tries to run ahead of individual expansions and pave
the way for accelerating future expansions. When a
node is expanded and its neighbors are being evalu-
ated, RA? performs three additional tasks, in parallel:
(i) prediction, (ii) pre-evaluation, and (iii) memoization.

In detail, RA? first predicts future expansions: which
nodes are likely to be expanded in the future? Prediction is
the focal point of RA?. We will provide insight into when,
why, and to what extent the node expansions are predictable,
and how RA? predicts them. Then, RA? evaluates the pre-
dicted nodes’ neighbors. These “pre-evaluations” run on
separate threads, in parallel with the expanded node’s evalu-
ations. This parallelism is speculative, meaning that the pre-
dictions could be wrong (i.e., the predicted nodes are never
expanded). Finally, RA? memoizes the pre-evaluation re-
sults. Later when a predicted node is actually expanded, in-
stead of performing time-consuming evaluations, the mem-
oized results are used, saving a large amount of time. As we
will discuss, RA? neither jeopardizes the optimality guaran-
tees of vanilla A? nor does it affect the search outcome.

Finally, we evaluate RA? for five different applications of
A?, namely robot path planning in (x, y), (x, y, θ), (x, y, z)
domains, protein design, and symbolic task planning. We
present its speedup, prediction performance, and overheads.

Related Work
Parallelizing A?

Prior work on parallelizing A? can be divided into two
groups: methods that need to (conditionally) re-expand
nodes to guarantee optimality, and methods that do not. In
this paper, we will compare RA? against both. Also, in this
paper, we only consider methods that preserve the optimality
guarantees of A?, as RA? does.

The first group of methods (Kishimoto, Fukunaga, and
Botea 2009; Burns et al. 2010; Kishimoto, Fukunaga, and
Botea 2013; Jinnai and Fukunaga 2016) are effective when
expansions are fast; i.e., when evaluations are not costly,
which is the case in applications like symbolic task plan-
ning. In slow-expansion applications, where evaluations are
time-consuming, these methods suffer from significant chal-
lenges. Specifically, re-expansions in these methods can
happen exponentially-many times, which means the already-
slow evaluations can repeat exponentially-many times, hurt-
ing performance.

The second group of methods (Irani and Shih 1986; Zhou
and Hansen 2007; Phillips, Likhachev, and Koenig 2014)
do not require re-expansions to guarantee optimality. As
such, they can parallelize and reduce the execution time of
slow-expansion applications of A?. These methods, on the
flip side, impose non-trivial overheads that limit their per-
formance. For example, PA?SE (Phillips, Likhachev, and
Koenig 2014) spends significant time serially searching the
states to find the parallelizable ones.

While there are differences in how prior proposals paral-
lelize A?, most of them have one thing in common: they par-
allelize multiple expansions. In contrast, RA? runs ahead of
individual expansions and paves the way for accelerating fu-
ture expansions; it exploits a different source of parallelism.

Speculative Parallelism
Generally, speculation is a hardware- and system-level tech-
nique that uses additional or available-but-idle resources
to improve performance. For example, helper threads (Lee
et al. 2009; Darabi et al. 2022) use otherwise unused threads
to optimize memory resources for the running application.
Or, hardware prefetchers (Somogyi et al. 2009) use addi-
tional contexts to predict future memory references of the
running application and fetch them from slow memory to
fast memory (e.g., from DRAM to on-chip caches); this way,
when predicted data are requested, the application enjoys the
low latency of the fast memory.

In this paper, we draw insight from such system-level
techniques and propose an algorithm-level speculative ap-
proach for parallelizing A?. Throughout the execution, when
a node is being expanded, we predict future expansions, pre-
evaluate their neighbors on separate threads (i.e., in parallel),
and memoize the results. This way, when a predicted node is
expanded, we use the memoized results rather than perform-
ing time-consuming evaluations, saving significant time.

Definitions, Notations, and Scope
Following, we define some terms that we use throughout the
paper:
Evaluation: The process of (i) checking whether a state is
valid (e.g., collision detection in robot path planning), and
(ii) calculating its heuristic cost. In slow-expansion applica-
tions of A?, evaluations take the majority of execution time.
Pre-Evaluation: Evaluation done by RA?, ahead of time.
Expansion: The process of (i) picking the node with the
lowest f from OPEN, (ii) checking whether it is the goal,
(iii) marking it as ‘visited’ to avoid its re-expansion, and
(iv) obtaining its neighboring nodes, evaluating them, and
(conditionally) pushing them to OPEN.
Action/Direction: The operation that must be done to ob-
tain a node from its predecessor node. In this paper, we use
the terms ‘action’ and ‘direction’ interchangeably.

Figure 1 shows a general example of an A? graph search.
Every node represents a state with n possible actions. For
example, in 2D path planning with a robot that can move
in four cardinal directions, every node represents an (x, y)
state, and every action represents a direction the robot can
take (e.g., a1: up, a2: right, a3: down, a4: left). In this paper,
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we assume that the maximum number of actions in every
node is the same (e.g., n = 4 in the example). This assump-
tion holds in a variety of applications of A?, including but
not limited to the ones that we evaluate in this paper (see
§Evaluation).

⋮

⋮

⋮𝐴

𝐵

Expanded

Current Expansion

Not Expanded

𝐷

𝑎𝑘 𝑘th Action

𝐶

Figure 1: Graph search using A?.

Following, we define some notations that will help us ex-
plain RA?. The examples refer to Figure 1’s graph.
• pa(S, i): the ith recursive parent of S.
� Examples: pa(B, 1) = A, pa(C, 1) = B, pa(C, 2) =
A, pa(D, 1) = B, pa(D, 2) = A.
� The 0th recursive parent of a node is the node itself:
pa(S, 0) = S.
� pa(S, i) = pa(pa(S, j), i− j) holds for any valid i ≥ j.

• a(S): the preceding action of S. It is the action that led
to obtaining S and adding it to OPEN.
� Examples: a(B) = an−1, a(C) = a1, a(D) = a2.

• a(S, i): the preceding action of pa(S, i− 1).
� Examples: a(B, 1) = an−1, a(C, 1) = a1, a(C, 2) =
an−1, a(D, 1) = a2, a(D, 2) = an−1.

Runahead A?

In this section, we explain RA? with an abstract predictor.
We defer the explanation of the evaluated predictors to the
next section.

Prediction
The first operation RA? performs upon an expansion is pre-
dicting which successor of the expanded node is more likely
to be expanded in the future. We call it the Most Likely Suc-
cessor (MLS). Note that, MLS is not necessarily the very
next expansion in time order; MLS is the next expansion
whose parent is the current expansion (details in Figure 2).

RA?’s predictor exploits correlations among previous pre-
ceding actions of an expanded node to predict the preceding
action of its MLS (to reiterate, this is the action that leads to
obtaining MLS and adding it to OPEN). Once the preceding
action is predicted, the MLS can be trivially computed.

The prediction problem can be viewed as a classification
problem where every action is a class, and the learning task
is to learn the probability of an action Act being the pre-
ceding action of MLS in state S, given the history of past
actions (Eq. 1). And, the prediction goal is finding the ac-
tion that maximizes this probability (Eq. 2).

P (Act|a(S, 1), a(S, 2), a(S, 3), . . . ) (1)

argmax
i∈{1,...,n}

P (ai|a(S, 1), a(S, 2), a(S, 3), . . . ) (2)

For example, in Figure 1’s graph, if ak is the preceding
action of D’s MLS, we can write Eq. 1 as P (ak|a2, an−1).

Speculative Parallelism
While a node is being expanded, RA? predicts its MLS, pre-
evaluates the MLS’s neighbors, and memoizes the results.
These pre-evaluations are done by separate threads, in par-
allel with the expanded node’s evaluations. Later, when the
MLS is actually expanded, instead of waiting for its time-
consuming neighbor evaluations, the pre-computed results
(memoized) are used, saving a significant amount of time.

This parallelism among evaluations and pre-evaluations
is speculative, meaning the prediction could be wrong, in
which case the pre-evaluation results are not used. Note that
speculation does not expand any nodes; hence, RA? main-
tains the same expansion order as vanilla A? and safeguards
all optimality guarantees. Also, incorrect predictions lead to
useless computations (power overhead) but do not affect the
search outcome.

Running Further Ahead Speculation entails threading:
preparing the threads’ workload and issuing them. We found
that threading overheads are not negligible. To deal with
this issue, we predict multiple nodes at every iteration (i.e.,
MLS, MLS’s MLS, and so on) and pre-evaluate their neigh-
bors (details in Figure 2). This way, threading overheads are
amortized over many pre-evaluations. We refer to the maxi-
mum number of pre-evaluations that we do at every iteration
as the Runahead (R) of the method.

Memoization
The pre-evaluation results are stored in memory for later us-
age. We use a hashmap to memoize pre-evaluations. We find
that it imposes negligible memory overhead (1%− 10%),
particularly because A? already uses large data structures
like OPEN, that overshadow the hashmap memory. Overall,
in our experiments (see §Evaluation Methodology), we do
not find memory a limiting factor of RA?.

Putting It All Together
Figure 2 shows RA?’s pseudo-code. Lines 01–10 show the
speculation procedure. RA? predicts the preceding action of
MLS (line 04) and uses it to generate MLS itself (line 05).
Unless MLS is infeasible (e.g., an out-of-map location; line
06), RA? pre-evaluates its neighbors (lines 07–09). This
process repeats until the runahead expires (line 03).

Lines 11–21 show every iteration of RA?. First, the node
with minimum f is expanded (line 11). Then, preliminary
operations of A? are performed (mark node visited, etc.).
Lines 13–16 evaluate the expanded node’s neighbors.

Line 17 checks whether there are active threads (i.e., is-
sued but not yet finished). If there are none, it means that no
evaluation is going on. When so, RA? does not speculate.
Otherwise, if there are active threads, it means that some
evaluations are being done; in parallel, RA? triggers specu-
lation (line 18). Then, the algorithm (conditionally) pushes
valid neighbors to OPEN (lines 19–21) like vanilla A?.
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11 expNode = OPEN.top()
12 // preliminary operations

13 for n in expNode.neighbors():
14 if n.getStatus() == UNKNOWN:
15 n.setStatus(PENDING)
16 thread { evaluate(n) }

17 if activeThreads > 0:
18 speculate(expNode, R)

19 for n in expNode.neighbors():
20 if n.getStatus() == VALID:
21 // conditionally OPEN.push(n)

01 def speculate(expNode, R):
02 MLS = expNode

03  while R > 0:
04   Act = predict(MLS.precedAct)
05   MLS = MLS.neighbors()[Act]
06   if MLS == INFEASIBLE: return

07   for n in MLS.neighbors():
08    if n.getStatus() == UNKNOWN:
09     thread { evaluate(n) }
10 R--

// expNode: expanded node, R: runahead
// MLS: most likely successor
// precedAct: preceding action

Figure 2: The pseudo-code of RA?.

The Prediction Mechanism
As explained, upon expansions, RA? predicts MLS by
predicting its preceding action, based on the history of
past preceding actions (i.e., Eq. 2). Ideally, the corre-
lations among preceding actions can be learned using
a recurrent neural network (RNN), where past actions
(a(S, 1), a(S, 2), a(S, 3), . . . ) are input features, and the fu-
ture action (Act) is the model’s output label. While such a
scheme could offer a high level of prediction accuracy, we
find that, in practice, its high prediction latency (i.e., the time
it takes to generate a prediction) presents challenges to RA?,
downgrading its performance.

In this paper, we explore simple, practical prediction ap-
proaches to achieve low prediction latency while offering a
decent level of accuracy. We leave the exploration of a prac-
tical implementation of RA? with RNNs, through, say, prun-
ing (Gupta and Agrawal 2022), to future work.

Straight-Line Predictor
Our proposal for making practical predictions is what we
call Straight-Line Predictor (SLP). Upon expanding S, SLP
predicts that MLS’s preceding action will be a(S). In other
words, SLP simplifies Eq. 2 to Eq. 3,

argmax
i∈{1,...,n}

P (ai|a(S)) (3)

and considers that argmax i is such that ai = a(S). For the
different applications that we consider, we found that a(S) is
a good approximation to the solution of the argmax problem.

Figure 3.a is a motivating example for SLP. It depicts 2D
path planning for a mobile robot moving from state S to state
G. The planner’s purpose is to find the shortest path, and
it uses the consistent heuristic function h(S) = ‖G− S‖2
(Euclidean distance).

𝐺

𝑆

𝐺

𝑆

Current Expansion

Preceding Action

Obstacle

𝐵

𝐴

𝐷

𝐸

𝐶

New Neighbors

Expanded

𝐺
𝑆

(a) (b) (c)

Figure 3: 2D path planning example.

Intuitively, to traverse the shortest path, the robot should
head right towards the goal and keep moving in the same di-
rection until either hitting an obstacle or reaching the goal.
This intuition, in fact, emanates from the geometry princi-
ple that the shortest distance between any two points in an
obstacle-free plane is a straight line.

Mathematically, after the current expansion, state C is ex-
panded before {A,B,D,E}, given that C is not occupied.
In other words, the next action after the current expansion
will be the same as the preceding action—the premise of
SLP.

SLP mispredicts when it hits an obstacle (generally, an
invalid state). One might think SLP would work poorly in
real-world environments where there may be many obsta-
cles. However, corroborating (Bakhshalipour et al. 2022),
we will show that obstacles in real environments are not so
irregular that they destroy SLP’s premise: SLP still offers
decent prediction accuracy even in crowded environments.

For example, consider Figure 3.b and Figure 3.c, where
the environments have obstacles. While moving from free
space towards the goal, the direction changes upon hit-
ting the first occupied space, which costs SLP a mispredic-
tion. However, after that, preceding directions remain sta-
ble, which helps SLP make correct predictions. This hap-
pens because occupied cells are not randomly scattered in
the area; they are largely co-located, representing a (large)
object (e.g., a wall).

Figure 3.b also shows how SLP deals with “temporally-
interleaved” expansions, i.e., when consecutive expansions
(in time order) belong to largely separate subgraphs. In Fig-
ure 3.b, A? (alternately) expands nodes on the two sides of
the long obstacle; consecutive expansions in time order be-
long to largely separate subgraphs. When so, upon an expan-
sion, the very next expansion in time order is not a child of
the current expansion; however, the next but one expansion
is. The intuition of SLP is that the predicted child, if correct,
will eventually be expanded; no matter when a node gets ex-
panded, its pre-evaluation will speed up the execution at that
point.

Beyond the synthetic environments of Figure 3, we show
and argue that SLP’s postulations (stable directions, co-
located occupied cells) hold in real-world applications. Pic-
ture a self-driving car moving in a certain direction, on a
street bounded by buildings from the sides. Even in the pres-
ence of line changes and overtaking, the vehicle will mostly
move in a straight direction, as do nowadays manual cars.

Certainly, one can envision synthetic environments in
which SLP would offer poor accuracy. For example, in an
environment where there is only a narrow zig-zag, free path
between obstacles, SLP would mispredict all expansions. In
§Harnessing SLP, we propose and evaluate supplementary
techniques to handle such corner cases. However, as such
cases are rare in real-world environments, we conduct the
main experiments of the paper using (not-enhanced) SLP.

We will show that SLP effectively predicts expansions
in applications even beyond path planning. For example, in
protein design, where the goal is minimizing an energy func-
tion, expansions follow straight-line patterns: if an action
has resulted in (the largest) reduction in energy, repeating the
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same action is likely to reduce energy again. We will quan-
tify the prediction accuracy in different applications and dis-
cuss when and when not patterns are predictable.

Finally, in this paper, we focus on introducing the runa-
head concept, and implement RA? using a simple-yet-
effective predictor (i.e., SLP). In our future work, we will
investigate various sophisticated predictors based on the pat-
terns of expansions of each application and whether these
patterns can be learned using data-driven approaches.

Random Action Predictor
For reference, we also evaluated a Random Action Predictor
(RAP). RAP picks one of the possible n actions randomly.
The purpose of including RAP is to compare it with SLP and
shed light on the influence of prediction performance on the
end-to-end speedup.

Sequitur
For reference, we also include Sequitur (SEQ) in our predic-
tion evaluations. SEQ is originally proposed as a data com-
pression algorithm (Nevill-Manning and Witten 1997); nev-
ertheless, later work (Somogyi et al. 2009) uses it to measure
the prediction opportunity. The purpose of including SEQ is
to have an upper bound on prediction performance, and eval-
uate how close SLP is to an ideal predictor. Note that SEQ
works by offline processing of data (i.e., preceding actions
in this work) and is not practical.

Figure 4 shows SEQ’s operation with an example input
stream depicted using symbols (‘w’, ‘x’, ‘y’, and so on).
We take this example from (Wenisch 2007). In the context
of RA?, the input stream is the sequence of preceding ac-
tions. SEQ processes the entire stream and builds a gram-
mar whose production rules are formed such that it captures
repetitions in the stream, as shown in the figure.

w x y z p q x y z r s w x y z

T→ ApqBrsA

A→ wB
B→ xyz

Non-repetitive

New

Head

Opportunity

Sequitur’s GrammarA Sequence and Sequitur’s Results

Figure 4: Sequitur.

Using the formed grammar, SEQ classifies the symbols of
the input stream into four groups: (i) Non-repetitive refers to
symbols that never recur in the stream, and hence are un-
predictable using any repetition-based prediction method;
(ii) New refers to the first occurrence of symbols in the
stream (i.e., before the predictor can learn them); (iii) Head
refers to the first symbol of every rule, which cannot be pre-
dicted itself, but it can be used to identify and predict the rest
of the symbols in the rule; (iv) Opportunity refers to the rest
of the symbols.

Sequitur argues that Opportunity is what an ideal
predictor can predict by learning the repetitions in the
data stream. Hence, processing Sequitur’s grammar can
provide an upper bound on prediction performance. In
the provided example, for instance, the best-performing

prediction mechanism can predict up to 5
15 of the symbols.

An implementation of Sequitur processing is available at:
https://github.com/bakhshalipour/SequiturAnalysis/

Evaluation Methodology
Setup
We conduct our evaluations on up to 16 cores of
Intel Xeon Gold 5218R processor. RA?’s runahead
is set such that it utilizes all the available cores. Our oper-
ating system is Debian 10, and our compiler is GCC 11.
We use C++17 Thread Pool library (Shoshany 2021)
for threading operations. The default predictor of RA? is
SLP.

Applications
We evaluate five applications of A?, namely path planning
in (x, y), (x, y, θ), (x, y, z) domains, protein design, and
symbolic planning. Excluding symbolic planning, the ex-
pansions in these applications are slow.

Path Planning: For (x, y) and (x, y, θ) planning, we
use Boston map from Moving AI (Sturtevant 2012).
For (x, y, z) planning, we use Freiburg map from Oc-
toMap (Hornung et al. 2013). The heuristic function of all
the planners is Euclidean distance. The (x, y) and (x, y, z)
planners can move in 8 and 6 directions, respectively. In
(x, y, θ) planning, the discretization granularity of θ is π

4 .
The agents in (x, y) and (x, y, z) are rectangle-shaped, and
the agent in (x, y, θ) is a polygon. For all path planning
scenarios, we choose ten random start-goal points, and re-
port the results for the average of ten executions. We model
the other details of (x, y) and (x, y, z) planning respectively
based on pp2d and pp3d of RTRBench (Bakhshalipour,
Likhachev, and Gibbons 2022).

Protein Design: As the input set, we use 1I27 A H from
(Zhou 2015). We use the heuristic function and the imple-
mentation of (Zhou and Zeng 2015) for estimating the en-
ergy and modeling the details.

Symbolic Task Planning: We evaluate a symbolic plan-
ner solving the Blocksworld problem with eight blocks with
a random initial organization. The task planner uses sym-
bol differences as the heuristic function. We model the other
details based on sym-blkw of RTRBench (Bakhshalipour,
Likhachev, and Gibbons 2022).

Competitors
We compare RA? against PA?SE (Phillips, Likhachev, and
Koenig 2014) and HDA? (Kishimoto, Fukunaga, and Botea
2009). PA?SE is a state-of-the-art parallel A? algorithm
proposed for slow-expansion applications. PA?SE , unlike
RA?, expands multiple nodes in parallel. More specifically,
PA?SE discovers independent states and parallelizes their
expansions. s and s′ are two independent states if the expan-
sion of s cannot lead to a shorter path to s′, and vice-versa.

HDA? assigns nodes to processors (cores) using a hash
function. It maintains multiple OPEN lists, one per proces-
sor. When a processor expands a node, instead of pushing all
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neighbors to its own OPEN, HDA? hashes each neighbor to
determine which processor should process it. That neighbor
is then sent to the determined processor and gets processed
by it. By doing so, it parallelizes multiple expansions; how-
ever, it loses A?’s guarantee that every node is expanded at
most once. This implies that when the goal is expanded for
the first time, HDA? has not necessarily found the shortest
path to it. Hence, HDA? might expand nodes multiple times
to ensure the goal is achieved by the least-cost path.

Spurred by the observation that re-expansions can happen
too many times, we make one modification to the original
HDA?. Namely, after performing a validity checking for a
node (e.g., collision detection), we store the validity status
(e.g., collision or free) in a global hashmap. When a node
gets re-expanded, we query the hashmap to get the validity
status. This way, costly operations like collision detection
are performed only once when a node is generated for the
first time; after that, the memoized results are used. This
technique makes re-expansions cheaper, but not free (see
§Evaluation Results).

Metrics
We consider the following metrics in our evaluations.
Speedup is the execution time of the vanilla A? divided by
the execution time of every method.
Prediction Accuracy is the percentage of RA?’s predic-
tions whose pre-evaluation results are eventually used by
the algorithm. I.e., correct predictions divided by total
predictions. This metric is specific to RA?.
Prediction Coverage is the percentage of speculated
evaluations that must otherwise (i.e., without RA?) be done
non-speculatively. I.e., the total number of pre-evaluations
with RA? divided by the total number of evaluations with
vanilla A?. This metric is specific to RA?.

Evaluation Results
Execution Time
Figure 5 shows the speedup of the parallelization methods.
The baseline to which the speedups are normalized is a mul-
tithreaded implementation of the vanilla A?: only neighbors
of the expanded nodes are evaluated in parallel.
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Figure 5: Speedup comparison of methods.

When the number of threads is small (e.g.,< 4), the base-
line A? utilizes most of the threads, leaving few free threads
for RA?. Consequently, RA? does not have a considerable
opportunity in such settings to improve performance. How-
ever, when the number of threads is large, RA? offers signifi-
cant speedups in slow-expansion applications. Across them,
RA? with 16 threads offers 3.1×−14.1× speedup over the
baseline, outperforming PA?SE by 1.4×−4.1× and HDA?
by 1.3×−4.1×. RA?’s high prediction performance, which
we will present, is the main contributor to its large speedup.
The importance of accurate prediction can be seen by com-
paring RA? (with its SLP predictor) to RA?-RAP (where a
random predictor is used instead of SLP).

RA?, nonetheless, fails to accelerate the symbolic task
planner, a fast-expansion program. The reasons are (i) the
evaluations are not so costly that the parallelism benefits
could outweigh the threading overheads, (ii) RA?’s predic-
tions are not accurate in this domain, and (iii) the baseline
vanilla A? almost always uses all the available threads to
evaluate a large number of neighbors (the degree of graph
vertices is significantly larger than the available threads),
leaving few free threads for RA?.

We find that PA?SE suffers from two major issues. First,
there are not always many independent states. This limits the
amount of parallelism as the algorithm cannot find enough
independent states to utilize all the available threads. Espe-
cially, when the number of threads is large (e.g., 16), the
thread utilization can drop to even below 25%; this hap-
pens too frequently in applications in which the nodes in
OPEN have close g values, and hence, they cannot pass
PA?SE ’s “independence checks.” Meanwhile, as we show
in §Workload Distribution and Thread Utilization, RA?
is often able to keep all the threads highly utilized.

The second problem with PA?SE is the high overhead
of discovering independent states. PA?SE repeatedly checks
all the states in OPEN and in its BE (which tracks being ex-
panded nodes) to discover independent states. This imposes
significant overheads proportional to the number of nodes in
OPEN and BE at every check, which could be many. For ex-
ample, in protein design, 53% of the entire execution time
(averaged across all threads) is spent discovering indepen-
dent states.

On the other hand, HDA? suffers from other types of
overheads. As stated in §Parallelizing A?, HDA? allows
the re-expansion of nodes to account for the fact that states
may get expanded before they have the minimal cost from
the start state. The re-expansions can happen exponentially-
many times, imposing a massive extra workload. For exam-
ple, in (x, y) planning, HDA? increases the number of ex-
pansions by an average of 10.7×. Notice, memoizing the
validity status that we add to HDA? (see §Competitors)
makes re-expansions significantly cheaper, but not free. Re-
expansions still need to update HDA?’s data structures and
send messages to the other cores; when re-expansions are
too many, their cumulative overhead becomes significant.

The other performance-limiting components of HDA? are
(P1) long waits at synchronization barriers, and (P2) long
path reconstruction time (Weinstock and Holladay 2017).
P1 slows down execution, especially when the number of

36



threads is large. For example, with two cores, only one core
would ever wait for the other. However, with 16 cores, 15
of them could be waiting for 1 core to complete process-
ing, even if every one of those 15 cores has work added
to its OPEN. This wait time downgrades performance. P2
is a serial process with many send-and-receive messages.
Throughout this process, the goal vertex’s owner core should
send and receive messages for every vertex in the shortest
path whose owner is different. With more cores, it is more
likely that vertices on the shortest path belong to other own-
ers, and hence, more send and receive messages must be
communicated.

We also found synchronization overheads non-trivial in
both PA?SE and HDA?. PA?SE locks all insertions to and
deletions from its heavily-used data structures like OPEN
and BE. HDA?, when running on a shared-memory system,
needs to lock cost and parent lookup tables for every ver-
tex (Weinstock and Holladay 2017). In contrast, RA? only
needs to lock the hashmap of results1 when it inserts eval-
uation and pre-evaluation results. As such, synchronization
overheads are significantly lighter in RA?.

Prediction Performance
Figure 6 shows the prediction coverage and accuracy of dif-
ferent predictors. Recall that SEQ is impractical. Its accu-
racy is always 100%, and it makes a varying but pattern-
dependent number of predictions per expansion; in contrast,
SLP and RAP make R predictions, where RA?’s runahead
parameter R depends on the number of free threads in the
system. The purpose of including SEQ is to gauge how prac-
tical predictors compare to an ideal predictor.
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Figure 6: Performance comparison of different predictors.
The default RA? predictor is SLP. SEQ is offline (impracti-
cal).

With increasing runahead (achieved by increasing the
number of threads), RA? makes more predictions per expan-
sion. By increasing the number of predictions, generally, the

1The lock is implementation-dependent. For example, with a
bucketized hashmap, only the manipulated bucket must be locked,
not the entire hashmap; or, with a state-space-sized array as the
hashmap, the lock is not needed at all, because there is a 1:1 map-
ping from states to array elements.

prediction accuracy drops and the coverage rises. The ac-
curacy drops because it becomes less likely for a pattern to
remain stable (e.g., a preceding action keeps repeating) for a
larger number of iterations. On the other hand, the coverage
increases as RA? runs further ahead and pre-evaluates more
nodes.

In slow-expansion applications (i.e., all but symbolic
task planning), with two threads (i.e., up to one predic-
tion per expansion), SLP’s accuracy is 85%–97.9%, which
is 15%–25% higher than RAP and is within 2.1%–15% of
SEQ. Interestingly, RAP’s accuracy is far higher than 1

n .
We found that, in many cases, though RAP mispredicts the
MLS, the mispredicted MLS shares some neighbors with
the actual MLS; some of the pre-evaluations are eventually
used. However, this is true when the runahead is small; with
larger runaheads, RAP’s predictions progressively diverge
from the correct path. As a result, with large runaheads, RA?
with RAP significantly underperforms RA? with the pro-
posed SLP, as shown in Figure 5. With 16 threads, SLP’s
accuracy is 45%–93.5%, which is 35%–48.9% higher than
RAP and is within 6.5%–55% of SEQ.

Also, with 16 threads, SLP offers 61.2%–92.2% cover-
age, which is 38.2%–49% higher than RAP and within an
average 7.4% proximity of SEQ. In (x, y), SLP’s coverage
is even up to 8% better than SEQ; however, this higher cov-
erage comes at the cost of 6.5% less accuracy caused by
aggressively making many predictions at once when there is
a high number of free threads.

In symbolic planning, the predictors offer very poor per-
formance. SLP fails because its postulations do not hold in
the application; RAP fails because the number of actions
(i.e., node degree) is large. SEQ offers only slightly better
prediction coverage.

Note that mispredictions, when they are numerous, can
waste power; threads perform computations whose results
are not used. Importantly, the waste happens only at the
computation level (CPU) and not the entire system (mem-
ory, robot’s mechanics, etc.). Hence, the overhead can be ne-
glected in many settings like with mobile robots where the
entire computation contributes to < 5% of the total power
consumption (Boroujerdian et al. 2018), or in the cloud
where components like network and memory consume the
majority of power (Raoufi, Zhang, and Yang 2022).

Harnessing SLP
Our prediction performance results showed that SLP effec-
tively predicts expansions in real-world path planning appli-
cations (and even beyond, i.e., protein design). However, one
can indeed envision (synthetic) environments in which SLP
is misled, exhibiting poor accuracy. In settings where the
prediction accuracy is of significant importance, e.g., pro-
cessors with few cores in which the system cannot afford
to waste threads doing useless computation, this could lead
to performance degradation. We propose a supplementary
technique to “harness” SLP in such cases.

We speculate only if the path leading to expansion was
stable in the last s steps; i.e., a(S, 1) = a(S, 2) = . . . =
a(S, s). For example, with s = 3, speculation runs if the
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expanded node’s preceding action is the same as its parent’s
preceding action, and its parent’s parent’s preceding action.

To evaluate this mechanism, we generate synthetic 2D
maps (like the evaluated Boston) for (x, y) planning. The
maps are initially empty; with a probability of p, we add
random obstacles to them. Figure 7 shows SLP’s prediction
performance with 16 threads and different p and s. The bars
show prediction accuracy and the lines show prediction cov-
erage.
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Figure 7: Harnessing SLP on random maps.

As the results show, the harnessing mechanism effectively
regulates the predictor’s aggressiveness: with s = 4, it har-
nesses the aggressiveness such that even in a 70%-occupied
environment with random obstacles, the accuracy is still
above 72.1%. On the flip side, the coverage drops as a re-
sult of reduced prediction opportunities.

Another point revealed by this experiment is the large dif-
ference in the prediction performance of SLP in realistic
and random environments. For example, with s = 1, SLP
offers 39.3% more accuracy in Boston compared to the
70%-random map, and also, it covers 10.1% more evalu-
ations. Our results corroborate prior work (Bakhshalipour
et al. 2022) that path planning in real-world environments
exhibits predictable patterns. To illuminate this, Figure 8
compares SLP’s performance in multiple cities’ maps of
Moving AI (Sturtevant 2012) with the 70%-random map.
The bars show the accuracy and the dots show the coverage.
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Figure 8: SLP in real-world (Boston, London, Moscow,
Shanghai) and random (70%-Random) environments.

With s = 1, the worst-case accuracy/coverage of SLP in
the real-world maps is 39.3%/10.1% higher than in the ran-
dom environment. With s = 4, it is 25.3%/46% better.

Planning Resolution
To study the impact of evaluation time on RA?’s speedup,
we coarsen the resolution in (x, y) planning. With such
coarsening, the number of obstacles decreases, because mul-
tiple nearby obstacles are considered one big obstacle. As a
result, collision detection becomes faster; on the downside,
the free space is underestimated. The bars in Figure 9 show

RA?’s speedup with different numbers of threads and differ-
ent coarsening factors. A coarsen factor ofM means that the
planner considersM times fewer units (pixels) in every map
dimension. For example, a 16× coarsening means the con-
sidered map has 16× 16 times fewer units than the original
map. The blue line with solid dots in the figure shows the
average evaluation (collision detection) time with the corre-
sponding resolution.
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Figure 9: RA?’s speedup with coarsening the resolution.

The results show that RA? offers considerable speedups
with different resolutions. It is expected that with decreas-
ing evaluation time, the speedup provided by parallel meth-
ods becomes smaller (see §Speedup Projection), as a re-
sult of increasing the fraction of time the program spends
in the serial part (e.g., manipulating OPEN). This expec-
tation generally holds true for RA? with a few anomalies
that happen because of taking different execution paths;
i.e., with different coarsening factors, the planning is es-
sentially done on different maps, which results in taking
different execution paths. When the collision detection is
costly (38µs− 404µs), RA? offers 14.1×−19.5× speedup;
when the collision detection becomes faster (5µs− 14µs)
its speedup drops to 3.5×−6.9×.

Weighted A?

Weighted A? (WA?) (Pohl 1970) inflates the nodes’ heuristic
cost by a factor of ε > 1. Doing so, nodes are expanded in
the order of f = g + ε× h. This way, the search is biased
towards the nodes that are closer to the goal. With WA?,
the search terminates earlier (i.e., the goal itself is expanded
sooner), but the solution could become ε times costlier.

Figure 10 shows the speedup of the methods for WA?
with ε = {1, 2, 4} for the average of slow-expansion appli-
cations. As the results show, RA? consistently outperforms
PA?SE and HDA?. However, with increasing ε, the speedup
of RA? drops, because of the reduced opportunity; the larger
ε, the fewer expansions.
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Figure 10: Speedup comparison of methods for WA?, aver-
aged over the slow-expansion applications.
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RA? on Top of Prior Work?
Theoretically, RA? can be orthogonally used with PA?SE
and HDA?, as well as many other prior approaches. RA? is
orthogonal to parallel best-first search algorithms because
those algorithms try to expand multiple nodes in parallel; in
contrast, RA? runs ahead of individual expansions and paves
the way for accelerating future expansions; they exploit dif-
ferent sources of parallelism.

Nevertheless, we observed that combining RA? with prior
approaches does not improve performance significantly. Not
unexpectedly, combining these approaches results in stack-
ing their overheads; unfortunately, the increased parallelism
does not outweigh the increased overheads. Particularly,
since HDA? relies on many node-to-node communications,
its overheads are entirely stacked with the overheads of RA?
and results in slowdown rather than speedup. We leave to fu-
ture work the exploration of an efficient combination of RA?
with other parallel algorithms.

Workload Distribution and Thread Utilization
Bars in Figure 11 show the average number of use-
ful (pre-)evaluations (i.e., evaluations and pre-evaluations
whose results are ultimately used) per node expansion. The
bars are broken down into demand and speculative; demand
represents the evaluations done by the baseline algorithm
(line 16 in Figure 2), and speculation represents the pre-
evaluations of RA? (line 09 in Figure 2). With increasing
the number of threads, the fraction of speculative evalua-
tions increases. This way, more evaluations are lifted from
the critical path, reducing the execution time.
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Figure 11: Workload distribution and thread utilization with
different numbers of threads.

The solid dots in Figure 11 show the thread utilization.
We define thread utilization as the fraction of threads per-
forming evaluations over all threads in non-idle expansions
(i.e., expansions with at least one evaluation). When the to-
tal number of threads is fewer than 8, the utilization ratio
is almost 100%. This shows that with RA?, there is enough
workload to keep all threads busy. With increasing threads,
the utilization ratio starts decreasing because of the finite na-
ture of the parallelism even in the presence of speculation.
With 16 threads, the utilization ratio is 84%–99% in slow-
expansion applications.

Speedup Projection
We develop an analytical model for RA? to project its
speedup beyond the studied applications. We recall that RA?

does not expand any nodes during the speculation phase.
Hence, let us assume both the baseline A? and RA? expand
N nodes in total. Let us assume every node has n neigh-
bors, and the system supports the parallel execution of t > n
threads. Consider tserial as the execution time of the serial
portion of the algorithm at every expansion (i.e., everything
other than neighbor evaluation), tthreading as the threading
overhead (i.e., the time it takes to manage all threads), and
teval as the evaluation time. The total execution time of the
baseline can be formulated as:

TBaseline = N × (tserial + tthreading + teval) (4)

Note that we assume all neighbors are evaluated in paral-
lel, as there are more threads available than the number of
neighbors (i.e., t > n). Now, we formulate the execution
time of RA?. Let us assume Pcov is the fraction of correctly
predicted expansions out of all expansions, i.e., prediction
coverage; and, Pacc is the prediction accuracy.

Also, consider l as the prediction latency, and R as the
runahead. In non-idle expansions (i.e., expansions with at
least one evaluation), RA? pre-evaluatesR nodes; it predicts
R
n nodes (line 04 in Figure 2) and pre-evaluates their (up
to) n neighbors (lines 06–09 in Figure 2). We call R′ = R

n
predictor runahead.

At every expansion, with a probability of Pcov , no evalu-
ation is performed (the memoized results are loaded). Con-
sider tload as the time it takes to load the memoized results.
We can formulate the execution time of RA? as:

TRA? = N × (tserial + Pcov × tload +
(1− Pcov)× (tthreading + teval +R′ × l))

(5)

As mentioned, l is the latency of generating one prediction,
and hence,R′× l is the latency of generating all predictions.

Considering that in non-idle expansions, RA? evaluates n
demand nodes and R = R′ × n speculative nodes, we can
approximately2 formulate Pcov as:

Pcov ≈
R

R+ n
× Pacc =

R′ × n
(R′ + 1)n

× Pacc =
R′

R′ + 1
× Pacc

(6)

In slow-expansion applications, we can assume tserial,
tthreading , tload � teval. By eliminating these terms and
plugging Eq. 6 into Eq. 5, we can formulate speedup as:

Speedup =
TBaseline
TRA?

=
teval

(1− R′

R′+1 × Pacc)× (teval +R′ × l)
(7)

In this formula, Pacc depends on the effectiveness of the
employed predictor for the application. R′ is dependent on
how many threads can be executed in parallel on the system.
And, l depends on the predictor design. Figure 12 shows
how speedup varies with different parameters.

2The equation does not take the early-termination cases (i.e.,
when MLS is infeasible; see Line 06 in Figure 2) into account.
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a Speedup of different 𝑅′s 
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Figure 12: Projected speedup.

The formula suggests that improving RA?’s speedup for
an application can be achieved in the following ways:

• Improving prediction accuracy: the higher Pacc, the
higher speedup. Particularly, when the prediction accu-
racy is high, even the slightest incremental improvement
could be of significant importance. For example, in Fig-
ure 12.a, with R′ = 128, improving Pacc from 90%
to 99% results in a 46.6× speedup. In the same con-
figuration, improving the prediction accuracy from 99%
to 99.9% brings another 57× speedup. This shows how
highly-accurate predictors could greatly accelerate the
execution (up to 112.9× in Figure 12.a).

• Increasing runahead: by running further ahead, which
is viable by using more threads, RA? can further paral-
lelize the algorithm, and further enhance the speedup.
However, this projection comes with a caveat: increas-
ing runahead results in increasing the cumulative predic-
tion latency (i.e.,R′× l). As such, increasing runahead is
good so long as the cumulative prediction latency is out-
weighed. Therefore, when the prediction latency (i.e., l)
is small, increasing runahead yields higher speedups. For
example, with l = 0.0001 × teval, increasing R′ from 0
to 128 results in 9.2× speedup when Pacc = 90% (Fig-
ure 12.b) and 55.9× when Pacc = 99% (Figure 12.c).

• Reducing prediction latency: the faster RA? generates
the predictions, the better. This is particularly true when
R′ and Pacc are high. For example, in Figure 12.c, with
R′ = 128, reducing the prediction latency from 0.001×
teval to 0.0001 × teval results in a 5.7× speedup. Also,
when the prediction latency is too long (> 0.1 × teval),
RA? not only does not achieve speedup, it causes slow-
down, even when the prediction accuracy is high. This
is the behavior we observed with RNNs: although they
offer high accuracy, their long prediction latency down-
grades their effectiveness. Reducing prediction latency
can be achieved by simplifying the prediction method
(e.g., pruning in the context of deep learning). Likely, it
is in conflict with the first approach, i.e., improving pre-
diction accuracy. Typically, there is a trade-off between
the performance of a predictor and its overheads; the so-
phisticated predictors offer a high level of accuracy but
impose significant overheads (time) for generating a pre-
diction.

Conclusion
A? is the backbone of many artificial intelligence appli-
cations, and its acceleration can lead to substantial per-
formance improvements in wide-ranging applications. We
propose Runahead A?, a method that opportunistically
parallelizes the search for slow-expansion applications.
Runahead A? enhances parallelism by predicting future
expansions and pre-computing their expensive operations,
thereby reducing execution time. We showed that RA? is
able to reduce the execution time by up to 14.1× using 16
threads, while preserving A? optimality guarantees.
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