
Safety Shielding under Delayed Observation

Filip Cano Córdoba1, Alexander Palmisano1, Martin Fränzle2,
Roderick Bloem1, Bettina Könighofer1

1 Institute of Applied Information Processing and Communications, Graz University of Technology
2 Dpt. of Computing Science, Carl von Ossietzky University of Oldenburg

filip.cano@iaik.tugraz.at, alexander.palmisano@student.tugraz.at, martin.fraenzle@uni-oldenburg.de,
roderick.bloem@iaik.tugraz.at, bettina.koenighofer@iaik.tugraz.at

Abstract
Agents operating in physical environments need to be able
to handle delays in the input and output signals since nei-
ther data transmission nor sensing or actuating the environ-
ment are instantaneous. Shields are correct-by-construction
runtime enforcers that guarantee safe execution by correcting
any action that may cause a violation of a formal safety spec-
ification. Besides providing safety guarantees, shields should
interfere minimally with the agent. Therefore, shields should
pick the safe corrective actions in such a way that future in-
terferences are most likely minimized. Current shielding ap-
proaches do not consider possible delays in the input signals
in their safety analyses. In this paper, we address this issue.
We propose synthesis algorithms to compute delay-resilient
shields that guarantee safety under worst-case assumptions
on the delays of the input signals. We also introduce novel
heuristics for deciding between multiple corrective actions,
designed to minimize future shield interferences caused by
delays. As a further contribution, we present the first inte-
gration of shields in a realistic driving simulator. We imple-
mented our delayed shields in the driving simulator CARLA.
We shield potentially unsafe autonomous driving agents in
different safety-critical scenarios and show the effect of de-
lays on the safety analysis.

Introduction
Due to the complexity of nowadays autonomous, AI-based
systems, approaches that guarantee safety during runtime
are gaining more and more attention (Könighofer et al.
2022). A maximally-permissive enforcer, often called a
shield, overwrites any actions from the agent that may cause
a safety violation in the future (Alshiekh et al. 2018). In or-
der to enforce safety while being maximally permissive, the
shield has to compute the latest point in time where safety
can still be enforced. For that reason, shields are often com-
puted by constructing a safety game from an environmental
model that captures all safety-relevant dynamics and a for-
mal safety specification. The maximally-permissive winning
strategy ρ allows, within any state, all actions that will not
cause a safety violation over the infinite time horizon. Given
a state, we call an action safe if the action is contained in ρ,
and an action is called unsafe otherwise. Shields allow any
actions that are safe according to ρ.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Delay-resilient shielding scheme.

Incorporating delays in safety computations is neces-
sary for almost any real-world control problem. Delays are
caused by data collection, processing, or transmission and
are therefore omnipresent for any agent operating in a com-
plex environment. Not addressing these delays can be the
root of many safety-critical problems.

Example. Let us assume that a car detects a pedestrian
at position (x, y), and it is aware of a time delay δ between
sensing and acting. The vehicle has to plan its next actions in
such a way that they are safe for any position of the pedes-
trian in the interval (x ± ε, y ± ε), where ε is defined via
assumptions on the pedestrian’s velocity and the delay δ.

In this paper, we propose synthesis algorithms for delay-
resilient shields, i.e. shields that guarantee safety under as-
sumptions on the worst-case delay on the inputs. Figure 1
shows the shielding settings under delay.

To synthesize delay-resilient shields, we incorporate a
worst-case delay in the safety game, which induces imper-
fect state information (Chen et al. 2020). The delay-resilient
shields are then computed from the maximally-permissive
winning strategy in the delayed safety game. In order to ob-
tain a fixed replacement action for any unsafe action, we
have to determinize the maximally-permissive strategy. To
do so, we can define a property over the state space and set
the action maximizing such property as the one fixed by the
shield. We study two such properties: controllability and ro-
bustness. The controllability value assigns to any state s the
maximal delay on the input under which s stays safe. The ro-
bustness value of a state s is the length of the minimal path
from s to any unsafe state. We discuss how to maximize a
state property under the uncertainty introduced by the de-
layed input.

In our experiments, we integrate shielding under delay in
the driving simulator CARLA (Dosovitskiy et al. 2017). Our

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

80

results show the effects of delays on the safety analysis and
that our method is scalable enough to be applied in complex
application domains. As a second case study, we perform
experiments on a gridworld and compare the performance of
delay-resilient shields with different worst-case delay. The
source code to reproduce the experiments, are available on
the accompaning repository1.

Related work. Shields for discrete systems were intro-
duced in (Bloem et al. 2015) and several extensions and ap-
plications have already been published (Tappler et al. 2022;
Pranger et al. 2021; Jansen et al. 2020), e.g., shielding for
reinforcement learning agents (Carr et al. 2022; Könighofer
et al. 2021; Elsayed-Aly et al. 2021). Chen et al. (Chen
et al. 2018, 2020) investigated the synthesis problem for
time-delay discrete systems by the reduction to solving two-
player safety games. We base our shields on their proposed
algorithm for solving delayed safety games. Note that the
delayed games discussed in (Winter and Zimmermann 2020)
follow a different concept. In their setting, a delay is a looka-
head granted by the input player as an advantage to the de-
layed player: the delayed player P1 lags behind input player
P0 in that P1 has to produce the i-th action when i+j inputs
are available. In contrast, we do not grant a lookahead into
future inputs but consider reduced information due to input
data being delivered to the agent with delay, which renders
our agent equivalent to their input player. The notion of de-
lay employed in this paper also is different from that in timed
games (Behrmann et al. 2007). In timed games, delay refers
to the possibility of deliberately delaying the next single ac-
tion. However, both players have full and up-to-date infor-
mation in timed games. In the continuous and hybrid do-
mains, control barrier functions (Ames et al. 2019) are used
to enforce safety. Prajna et al. extended the notion of bar-
rier certificates to time-delay systems (Prajna and Jadbabaie
2005). Bai et al. (Bai et al. 2021) introduced a new model
of hybrid systems, called delay hybrid automata, to capture
the continuous dynamics of dynamical systems with delays.
However, this work does not address the fact that state obser-
vation in embedded systems is de facto in discrete time and
that a continuous-time shielding mechanism therefore would
require adequate interpolation between sampling points.

Preliminaries - Shielding without Delays
We briefly outline the classical approach for computing
shields via safety games. We refer to (Alshiekh et al. 2018)
for more details and formal definitions. The classical ap-
proach to computing shields consists of the following steps:

Step 1. Construct the safety game. The possible interac-
tions between the environment and the agent can naturally
be modelled as a 2-player game. The game is played in al-
ternating moves by the two players: the environment player
picks a next input i ∈ I (e.g., sensor data, movement of
other agents), and the agent player picks a next action a ∈ A.
The game is played on a game graph G = ⟨S, E⟩. The set S
represents the states of the environment, including the state

1https://github.com/filipcano/safety-shields-delayed

information of the agent that is operating within the envi-
ronment. The transitions E : S × I × A → S model how
the states are updated, depending on the chosen input i ∈ I
and the chosen action a ∈ A. The game graph is comple-
mented by a winning condition in form of a safety speci-
fication which defines unsafe states on G. The agent loses
whenever the play reaches some unsafe state.

Step 2. Compute the maximally-permissive winning
strategy. The objective of the agent player is to always se-
lect actions avoiding unsafe states, while the environment
player tries to drive the game to an unsafe state by picking
adequate inputs. Solving the safety game refers to comput-
ing a winning strategy ρ for the agent: any play that is played
according to ρ (i.e., the agent always picks actions that are
contained in ρ) is winning for the agent, meaning that no
unsafe states are visited. For safety games with full informa-
tion, memoryless winning strategies ρ : S × I → 2A ex-
ist (Thomas 1995). A maximally-permissive winning strat-
egy subsumes the behaviour of every winning strategy, i.e.,
at any move, the maximally-permissive winning strategy al-
lows any action that is contained in some winning strategy.

Step 3. Implement a shield by fixing actions. For any
move, we call an action safe if the action is contained in the
maximally-permissive winning strategy ρ, and call it unsafe
otherwise. To implement a shield, we have to define for ev-
ery unsafe action a concrete safe replacement action.

Given a state s ∈ S , an input i ∈ I, and an action a ∈ A,
a shield is implemented in the following way:

• If a ∈ ρ(s, i), the shields outputs a.
• If a /∈ ρ(s, i), the shield outputs a′ ∈ A with a′ ∈ ρ(s, i).

The shield is attached to the agent. At every time step, the
shield reads the current input and suggested action from the
agent, and either forwards the suggested action to the envi-
ronment if it is safe (a ∈ ρ(s, i)), or replaces the action with
a safe action a′. Different heuristics have been proposed to
decide the choice of a′, all with the goal to minimize future
shield interferences (Könighofer et al. 2017).

Complexity. Creating and solving the safety game (steps
1 and 2) has a cost of O(|S|). The cost of step 3 depends on
the heuristic chosen to decide the corrective safe action.

Shielding under Delayed Inputs
The setting for shielding under delayed inputs is depicted
in Figure 1. The delayed information is forwarded se-
quentially from the environment to the agent and to the
shield. This corresponds to having a FIFO-buffer in the in-
formation channels. Let us assume a worst-case delay of
δ ∈ N steps. The shield would therefore have to decide
about the safety of an action after some finite execution
s0, i1, a1, s1, i2, a2, . . . , sn, in already having just seen its
proper prefix s0, i1, a1, s1, . . . , sn−δ . Thus, the shield is not
aware of the current state sn. Instead, it only has access to a
proper prefix of the full state history. Nevertheless, the shield
has to decide on the safety of the current action an of the
agent without knowing the remainder of the state history.

81

Synthesis of delay-resilient shields. We propose a syn-
thesis algorithm to compute delay-resilient shields. Our
algorithm extends the classical game-based synthesis ap-
proach by computing winning strategies under delay. Our
synthesis algorithm performs the following steps:

Step 1-2. As for the delay-free case. Our algorithm to
compute delay-resilient shields starts by synthesizing a
maximally-permissive winning strategy ρ for the delay-free
safety game G, as discussed in the previous section.

Step 3. Compute winning strategy under delay. Play-
ing a game under delay δ amounts to pre-deciding actions δ
steps in advance. Even though this makes the control prob-
lem harder, the existence of a winning strategy under such
delays is still decidable. However, for games with delayed
inputs, memoryless strategies are not powerful enough. For
a game under delay δ, a winning strategy ρδ requires a
memory of size δ to queue the δ latent actions, i.e., ρδ :
S × I × Aδ → S . Since straightforward reductions to
delay-free games induce a blow-up of the game graph, which
is strictly exponential in the magnitude of the delay (Tri-
pakis 2004), we use an incremental approach. In the follow-
ing, we sketch the idea of the algorithm, further details are
in (Chen et al. 2020). The algorithm incrementally computes
the maximally-permissive winning strategies for increasing
delays and reduces game-graph size in between. As control-
lability (i.e., the agent wins from this state) under delay k is
a necessary condition for controllability under delay k′ > k,
each state uncontrollable under delay k can be removed be-
fore computing the winning strategy for larger delay. The
algorithm returns the maximally-permissive winning strat-
egy ρδ that is winning the original game G under dely δ. Al-
though the theoretical worst-case complexity is O(|S|δ), the
incremental algorithm has been proven to be very efficient
in practice (Chen et al. 2020).

Step 4. Implement a shield by fixing actions. A delay-
resilient shield has to correct actions that are unsafe under
delay. Given a state s ∈ S , an input i ∈ I, the δ latent
actions A = [a1, . . . , aδ] ∈ Aδ , and the next action a, a
delay-resilient shield is implemented as follows:
• If a ∈ ρδ(s, i, A), the shields outputs a.
• If a /∈ ρδ(s, i, A), the shield outputs a′ ∈ ρδ(s, i, A).

We propose two novel state properties used to decide on
the concrete corrective action a′ selected in the delayed case.
1. Controllability ϕc: The value ϕc(s) of a state s is the

maximum delay for which s is controllable, using some
threshold δmax to limit the largest considered delay.

2. Robustness ϕr: The value ϕr(s) of a state s is the length
of the minimal path from s to any unsafe state.

Using ϕc as decision heuristic results in shields that
minimize expected shield interferences caused by delays.
We compute the controllability values by computing the
maximally-permissive winning strategies ρ1, . . . , ρδmax

for
the delays δ ∈ {1, . . . , δmax} and using them to decide on
the controllability of states. The cost of pre-computing this
heuristic for all states is the cost of solving the game for de-
lay up to ∆, in the worst-case O(|S|δmax).

Using ϕr as decision heuristic results in shields that min-
imize future expected shield interferences caused by actions
that violate safety, not necessarily related to safety violations
due to delays. Intuitively, this is the case since a high ro-
bustness value suggests that the agent is in a state that “eas-
ily” satisfies safety, while values near zero suggest that the
system is close to violating it. The cost of computing this
heuristic for all states is O(|S|), which adds to the time for
solving the delayed safety game.

While the decision heuristic of ϕc is specially designed for
minimizing shield interferences caused by delays, comput-
ing ϕc for large thresholds δmax is computationally expen-
sive. In the experimental section, we will discuss that using
shields maximizing ϕr resulted in almost the same interfer-
ence rates while being less computationally expensive.

In the delayed setting, the shield is not aware of the cur-
rent state. Therefore, a delay-resilient shield has to pick a
corrective action such that the expected controllability or ro-
bustness value is maximized. Let δ be the worst-case de-
lay, let s be the last state the shield is aware of, and let
A = [a1, . . . , aδ] be the buffer of latent actions. Then the
forward set SF ⊆ S contains all states that can be reached
from s performing the actions A. In other words, sf is con-
tained in SF if there exists a set of inputs i1, . . . , iδ ∈ I
such that the execution defined by the transition relation of
G is s, i1, a1, . . . , iδ, aδ, sf . We suggest picking the correc-
tive action such that the average controllability or robustness
value of the corresponding forward set is maximized.

Experiments - Shielded Driving in CARLA
We implemented our delayed shields in the driving simula-
tor CARLA (Dosovitskiy et al. 2017). In all scenarios, the
default autonomous driver agent in CARLA is used with ad-
equate modifications to make it a more reckless driver. To
capture the continuous dynamics of CARLA using discrete
models, we designed the safety game with overly conser-
vative transitions, i.e., accelerations are overestimated and
braking power is underestimated. In both scenarios we use
delay-resilient shields maximizing robustness. All experi-
ments were executed on a computer with AMD Ryzen 9
5900 CPU, 32GB of RAM running Ubuntu 20.04.

Shielding against Collisions with Cars
We consider a scenario in which two cars (one of them con-
trolled by the driver agent) approach an uncontrolled inter-
section. The shield has to guarantee collision avoidance for
any braking and acceleration behaviour of the uncontrolled
car, while the observation of the uncontrolled car is delayed.
A screenshot of the CARLA simulation is given in Figure 2.

Shield computation. To compute delay-resilient shields,
the scenario is encoded as a safety game G = ⟨S, E⟩. We
model each car with two state variables:
• Pagent and Penv represent respectively the distances of

the agent’s car and the environment’s car to the crossing.
The range is Pagent = Penv = {0, 2, 4, . . . , 100} m.

• Vagent and Venv represent the velocity of the agent’s car
and the environment’s car, resp. The range is Vagent =
Venv = {0, 1, 2, . . . , 20} m/s.

82

Figure 2: Scenario: cars at an intersection.

0

1

2

3

4

5

6

7

V
el

oc
it

y
(m

/s
)

Delay 0s

Delay 0.5s

Delay 1s

Delay 1.5s

0

1
Delay 0s

0

1
Delay 0.5s

0

1
Delay 1s

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

0

1
Delay 1.5s

Figure 3: Velocity and shield activation over time.

Each time step in the game corresponds to ∆t = 0.5 s in
the simulation. Each car can perform three actions: a (ac-
celerate), b (brake) or c (coast, touch no pedal). Therefore,
the set of inputs is I = {aenv, benv, cenv} and the set of ac-
tions is A = {aagent, bagent, cagent}. In our model, braking
and throttling have the effect of applying a constant accel-
eration of a = ±2 m/s2. Therefore, the position pt at time
step t is updated 2 as pt+∆t = pt − vt∆t − 1

2a∆t2, and
the velocity as vt+∆t = vt + a∆t. Unsafe states represent
collisions, therefore Sunsafe = {(pagent, vagent, penv, venv) :
pagent = penv}. From the safety game, we compute delay-
resilient shields that maximize the expected robustness.

Results. In Figure 3, we plot the speed of the agent’s car
against time and shield interferences (coloured bars) for dif-
ferent delays, expressed in steps of ∆t = 0.5 s. As expected,
the shield interferes over a longer time for increasing de-
lays. For delay 0, the agent’s car brakes continuously un-
til it escapes danger. For larger delays, the shields force the
car to brake earlier, accounting for the worst-case behaviour
of the other car. The shield always prepares for worst-case
behaviour of the environment, which often does not mate-
rialize subsequently. This explains why the shields change
between activity and inactivity several times in the same ex-
ecution, especially for larger delays. We tested the shields
for several safety-critical scenarios, varying positions and
velocities, and were able to avoid collisions in all cases. In
Table 1, we give the synthesis times to compute the shields.
Each delay step in Table 1 corresponds to ∆t = 0.5 s.

2The velocity is applied as negative because the car gets closer
to the intersection at every step.

Figure 4: Scenario: pedestrians at crosswalk.

0 1 2 3 4 5 6 7 8

Velocity (m/s)

0

10

20

30

D
is

ta
n

ce
(m

)

Delay 0s

Delay 0.5s

Delay 1s

Figure 5: Shield activation for pedestrian scenario.

Shielding against Collisions with Pedestrians

In the second experiment, we compute shields for collision
avoidance with pedestrians. Similar to before, the shields
guarantee safety under delay even under the worst possible
behaviour of the pedestrians. A screenshot of the CARLA
simulation is given in Figure 4.

Shield computation. The car, which is controlled by the
driver agent, is modelled in the same manner as before.
Pedestrians are controlled by the environment and only have
as state variables their position. In our model, we assume
that a pedestrian can move 1 m in any direction within one
timestep of ∆t = 0.5 s. We consider a state to be un-
safe whenever the ego car moves fast while being close to
a pedestrian and the pedestrian is closer to the crosswalk
than the car. Formally Sunsafe = {(pagent, vagent, pped) :
(vagent > 2 m/s∧|pagent−pped| < 5 m∧pped < pagent)}.

Results. In Figure 5 we plot, for each interference of the
shield, the distance from the pedestrian and the speed of
the car at which the shield interferes. Since pedestrians are
modelled in such a way that they are able to move towards
the car, the shield has to consider actual pedestrian positions
closer to the car than observed due to the delays in sensing
the pedestrian. The larger the delay, the more uncertainty the
shield has about the current position of the pedestrian and
the earlier the shield initiates braking. The synthesis times
are given in Table 1. In our experiments, the game enters
occasionally states with empty strategy due to discretization
errors. However, the safety specification was never violated.

Delay (in steps) 0 1 2 3

Syn. times (in s) Car example 1.5 13 48 167
Pedestrian ex. 0.8 9 34 119

Table 1: Shield synthesis times (in seconds).

83

n

Figure 6: Gridworld with possible states after delay δ = 1.

Experiments - Shielding in a Gridworld
Setting. Our final case study is an extension of the one
from (Chen et al. 2020). Figure 6 illustrates a grid world of
size 3n + 4 × 9, where the width is parameterized by the
number of pairs of dead-ends n. There are two actors that
operate in the grid world: a robot (controlled by the agent)
and a kid (controlled by the environment). The safety spec-
ification requires the robot to avoid any collision with the
kid.

Game Graph. The game graph encoding the relevant
safety dynamics for the grid world is G = ⟨S, E⟩. The states
encode the position of both the robot and the kid. Thus a
state is of the form (x0, y0, x1, y1), where (x0, y0) is the po-
sition of the robot and (x1, y1) is the position of the kid.
Input letters modify the position of the kid (x0, y0), while
action letters modify the position of the robot (x1, y1). At
every time step, the kid can move 1 step in each direction.
The robot can move zero, one or two steps in each direc-
tion, and can also perform three-step L-shaped moves. Any
illegal transition (those that would go out of boundaries or
clash with the grey region depicted in Figure 6) is changed
to N (“no move”).

Results: Interference Rates. To evaluate the interference
of the shields during runtime, we implemented a robot with
the goal to collect treasures that are placed at random po-
sitions in a grid world with 4 dead ends. At any time step,
there is one treasure placed in the grid world. As soon as
this treasure is collected, the next treasure spawns at a ran-
dom position. Collecting a treasure rewards the agent with
+1.) The kid is implemented such that it chases the robot in
a stochastic way.

Table 2 shows for delays δ ∈ {0, 1, 2, 3} (1) the score
obtained by the robot and (2) the number of times the shield
had to intervene on plays of 2000 time steps. Since both the

Delay (steps) 0 1 2 3

Score Robust. 42.5 34.3 31.5 26.8
Control. 41.3 33.9 31.8 27.5

Interventions Robust. 90.9 107.5 114.1 122.0
Control. 85.0 95.9 106.9 122.7

Table 2: Performance of different shielding strategies.

0 1 2 3
Delay (time steps)

100

102

104

T
im

e
(s

)

Max.-Perm. Strat (Us)

Robustness

Controllability

Max.-Perm. Strat (Chen et al.)

Figure 7: Synthesis times for a fixed number of 4 dead ends.

robot and the kid are implemented with stochastic behaviour,
each data point in the table is the average of 100 plays.

The results show that the agent’s score decreases with the
delay, as expected. Since the shield has more uncertainty
about the current position of the kid, it enforces a larger
distance between the current position of the robot and the
last observed position of the kid. For the same reason, the
shields need to interfere more frequently with increasing de-
lays. Additionally, we compared the corrective actions cho-
sen by shields that maximize controllability with the actions
chosen by shields that maximize robustness. We noticed that
in most states, both shields pick the same corrective action,
leading to similar results.

Results: Synthesis Times. Figure 7 depicts synthesis
times against delays for shields maximizing robustness ϕr

(), and controllability ϕc (), respectively. To com-
pare with a baseline, we also include the cost of comput-
ing the maximally-permissive strategy in the delayed safety
game for our implementation () and the implementation
of (Chen et al. 2020) (). The improvement of our method
compared to the baseline results from a faster implementa-
tion in C++, with only minor algorithmic reasons. The cut-
off value for controllability is set to δmax = 3. Since the
cost for computing shields grows exponentially with δ, the
synthesis times for shields maximizing robustness grow ex-
ponentially. This effect does not show for shields maximiz-
ing controllability, as they always compute the maximally-
permissive strategy until delay δmax irrespective of the par-
ticular delay δ.

Conclusion
We propose a new synthesis approach to construct shields
that are able to guarantee safety under delays in the input
data. We introduce two shielding strategies that are specif-
ically targeted to minimize shield interference. We demon-
strate the applicability of our approach in complex applica-
tions such as autonomous driving. In future work, we want
to develop shields that are both resilient to delays and able
to achieve high performance in probabilistic environments.
Computing delay-resilient games for continuous time by
solving timed safety games is also a promising direction for
further research.

84

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme un-
der grant agreement N◦ 956123 - FOCETA. It also re-
ceived funding from Deutsche Forschungsgemeinschaft un-
der grant no. DFG FR 2715/5-1 “Konfliktresolution und
kausale Inferenz mittels integrierter sozio-technischer Mod-
ellbildung”, and by the State of Lower Saxony within the
Zukunftslabor Mobilität. This work was also supported in
part by the State Government of Styria, Austria – Depart-
ment Zukunftsfonds Steiermark.

References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) 2018, 2669–2678. AAAI
Press.

Ames, A. D.; Coogan, S.; Egerstedt, M.; Notomista, G.;
Sreenath, K.; and Tabuada, P. 2019. Control Barrier Func-
tions: Theory and Applications. In Proceedings of the Euro-
pean Control Conference (ECC) 2019, 3420–3431. IEEE.

Bai, Y.; Gan, T.; Jiao, L.; Xia, B.; Xue, B.; and Zhan, N.
2021. Switching controller synthesis for delay hybrid sys-
tems under perturbations. In Bogomolov, S.; and Jungers,
R. M., eds., Proceedings of the International Conference on
Hybrid Systems: Computation and Control (HSCC) 2021,
3:1–3:11. ACM.

Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen,
K. G.; and Lime, D. 2007. UPPAAL-Tiga: time for play-
ing games! In Proceedings of the International Confer-
ence on Computer Aided Verification (CAV) 2007, 121–125.
Springer.

Bloem, R.; Könighofer, B.; Könighofer, R.; and Wang, C.
2015. Shield Synthesis: - Runtime Enforcement for Reac-
tive Systems. In Baier, C.; and Tinelli, C., eds., Proceedings
of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) 2015,
533–548. Springer.

Carr, S.; Jansen, N.; Junges, S.; and Topcu, U. 2022. Safe
Reinforcement Learning via Shielding under Partial Observ-
ability. arXiv:2204.00755v2.

Chen, M.; Fränzle, M.; Li, Y.; Mosaad, P. N.; and Zhan, N.
2018. What’s to Come is Still Unsure - Synthesizing Con-
trollers Resilient to Delayed Interaction. In Proceedings of
the International Symposium on Automated Technology for
Verification and Analysis (ATVA) 2018, 56–74. Springer.

Chen, M.; Fränzle, M.; Li, Y.; Mosaad, P. N.; and Zhan,
N. 2020. Indecision and delays are the parents of fail-
ure—taming them algorithmically by synthesizing delay-
resilient control. Acta Informatica, 1 – 32.

Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An Open Urban Driving Sim-
ulator. In Proceedings of the Conference on Robot Learning
(CoRL) 2017, 1–16. PMLR.

Elsayed-Aly, I.; Bharadwaj, S.; Amato, C.; Ehlers, R.;
Topcu, U.; and Feng, L. 2021. Safe Multi-Agent Reinforce-
ment Learning via Shielding. In Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS) 2021, 483–491. ACM.
Jansen, N.; Könighofer, B.; Junges, S.; Serban, A.; and
Bloem, R. 2020. Safe Reinforcement Learning Using Prob-
abilistic Shields (Invited Paper). In Konnov, I.; and Kovács,
L., eds., Proceedings of the International Conference on
Concurrency Theory (CONCUR) 2020, 3:1–3:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Könighofer, B.; Alshiekh, M.; Bloem, R.; Humphrey, L. R.;
Könighofer, R.; Topcu, U.; and Wang, C. 2017. Shield syn-
thesis. Formal Methods in System Design, 51(2): 332–361.
Könighofer, B.; Bloem, R.; Ehlers, R.; and Pek, C. 2022.
Correct-by-Construction Runtime Enforcement in AI - A
Survey. In Principles of Systems Design - Essays Dedicated
to Thomas A. Henzinger on the Occasion of His 60th Birth-
day, 650–663. Springer.
Könighofer, B.; Rudolf, J.; Palmisano, A.; Tappler, M.; and
Bloem, R. 2021. Online Shielding for Stochastic Systems.
In Proceedings of the NASA Formal Methods Symposium
(NFM) 2021, 231–248. Springer.
Prajna, S.; and Jadbabaie, A. 2005. Methods for Safety Veri-
fication of Time-Delay Systems. In Proceedings of the IEEE
Conference on Decision and Control (CDC) 2005, 4348–
4353. IEEE.
Pranger, S.; Könighofer, B.; Tappler, M.; Deixelberger, M.;
Jansen, N.; and Bloem, R. 2021. Adaptive Shielding under
Uncertainty. In Proceedings of the American Control Con-
ference (ACC) 2021, 3467–3474. IEEE.
Tappler, M.; Pranger, S.; Könighofer, B.; Muskardin, E.;
Bloem, R.; and Larsen, K. G. 2022. Automata Learning
Meets Shielding. In Proceedings of the International Sym-
posium on Leveraging Applications of Formal Methods, Ver-
ification and Validation (ISoLA) 2022, 335–359. Springer.
Thomas, W. 1995. On the synthesis of strategies in infinite
games. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS) 1995, 1–13. Springer.
Tripakis, S. 2004. Decentralized control of discrete-event
Systems With bounded or Unbounded Delay communica-
tion. IEEE Transactions on Automatic Control, 49(9): 1489–
1501.
Winter, S.; and Zimmermann, M. 2020. Finite-state strate-
gies in delay games. Information and Computation, 272:
104500.

85

