Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

Sensitivity Analysis for Dynamic Control of PSTNs with Skewed Distributions

Rosy Chen'*, Yiran Ma**, Siqi Wu'*, James C. Boerkoel Jr.!

! Harvey Mudd College, Claremont, CA, USA
2 Pomona College, Claremont, CA, USA
rochen@hmc.edu,ymac2020@mymail.pomona.edu, iwu@hmc.edu, boerkoel @hmc.edu

Abstract

Probabilistic Simple Temporal Networks (PSTN) facilitate
solving many interesting scheduling problems by character-
izing uncertain task durations with unbounded probabilistic
distributions. However, most current approaches assess PSTN
performance using normal or uniform distributions of tem-
poral uncertainty. This paper explores how well such ap-
proaches extend to families of non-symmetric distributions
shown to better represent the temporal uncertainty introduced
by, e.g., human teammates by building new PSTN bench-
marks. We also build probability-aware variations of current
approaches that are more reactive to the shape of the under-
lying distributions. We empirically evaluate the original and
modified approaches over well-established PSTN datasets.
Our results demonstrate that alignment between the planning
model and reality significantly impacts performance. While
our ideas for augmenting existing algorithms to better ac-
count for human-style uncertainty yield only marginal gains,
our results surprisingly demonstrate that existing methods
handle positively-skewed temporal uncertainty better.

Introduction

Probabilistic Simple Temporal Networks (PSTNs) are a
framework for modeling scheduling problems that include
temporal uncertainty modeled as distributions. For example,
PSTN can be used in human-robot teamwork settings to cap-
ture the uncertain tendencies exhibited by human autonomy.
Existing experiments data on human temporal uncertainty
conducted using an online collaborative human-robot pack-
ing game showed that heavy-tailed distributions, such as log-
normal, best fit the task uncertainty introduced by humans
in collaborative tasks (Dominguez, La, and Boerkoel 2020).
This is corroborated by work that showed human reaction
time is also best modeled as log-normal (Yin et al. 2013).
One shortcoming of most existing algorithms for solving
PSTNs is that they have been evaluated exclusively on a nar-
row range of symmetric, well-behaved models of temporal
uncertainty, such as Normal or Uniform distributions, which
makes it unclear if they are well-suited for non-ordinary
sources, such as the ones human teammates might introduce.
This paper addresses this gap by showing how well exist-
ing approaches work for solving PSTNs with non-symmetric

“These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

95

uncertainty distributions. We provide methods to convert the
distribution for existing benchmarks from uniform to heavy-
tailed distributions and use the newly generated benchmarks
to conduct a sensitivity analysis on existing algorithms
for PSTNs under dynamic controllability. Then we present
modified algorithms that utilize non-symmetry probabilistic
information to account for the distributions we are interested
in. In the end, we conclude with three main takeaways: (1)
our ideas for augmenting existing algorithms to better ac-
count for human-style uncertainty only yield marginal dif-
ferences, (2) alignment between the planning model and re-
ality has a significant impact on performance, and (3) ex-
isting approaches generally control for temporal uncertainty
better when it is positively skewed.

Background

A Simple Temporal Network (STN) is a graphical represen-
tation of scheduling problems. It consists of a set of time-
points, T = tg,t1,%9,...,t,, each representing a temporal
event, along with the set of temporal constraints between the
timepoints C in the form of t; — ¢; <= c¢;; (Deichter, Meiri,
and Pearl 1991). An STN schedule is a specific assignment
of times to the events in a STN. The schedule is a solution if
it satisfies all temporal constraints in the STN.

An STN with Uncertainties (STNU) extends the STN by
partitioning timepoints into two types: a set of controllable
events 7°°, and a set of uncontrollable events 7. The ex-
ecution timepoints of controllable events 7' are subject to
an agent’s assignment, while the times for uncontrollable
events in 7" are exogenously determined. Accordingly, two
types of temporal constraints exist in an STNU. Contin-
gent constraints are of the form ¢; — ¢; € [l;;,u;;] and the
time elapses between is sampled from the range [I;;, u;;] by
an uncertain process. The rest are requirement constraints,
which take the same form as constraints in regular STNS.

A Probabilistic Simple Temporal Network (PSTN) ex-
tends STNUs by allowing contingent edges between ¢; and
t; to be determined by a random variable X;; governed by a
probability density function P;; (Tsamardinos 2002). A re-
alization is a selection of temporal values (e.g., sampled by
Nature) for contingent edges in PSTNs. In a human-robot
teamwork context, a realization is the timepoint a human
chooses to execute an event, which is only observable to the
dispatcher after it happens.



Controllability

In STNUs and PSTNSs, a schedule of controllable timepoints
that guarantees the successful dispatch for every potential
contingent outcome is called strong controllability (Vidal
and Fargier 1999). Dynamic controllability is established for
an STNU or PSTN if we can direct a scheduling strategy and
ensure a successful dispatch using only knowledge of the
timing of contingent timepoints that have already occurred.
Dynamic controllability is much less constrictive and can be
established in more cases than strongly controllable strate-
gies. Since a PSTN can include unbounded distributions rep-
resenting the contingent constraints, a controllable solution
may not always exist.

Dispatch

Dispatch is deciding when an agent executes each of its
timepoints. The basic dynamic dispatch algorithm we use
is the early execution dispatch designed by Nilsson, Kvarn-
strom, and Doherty (2014). This dispatcher works on con-
trollable STNUs, and as shown by Akmal et al. (2019), can,
but is not guaranteed to, work on uncontrollable ones. The
strategy works by generating additional (wait) constraints
and using them to help decide when a contingent timepoint
can be executed (e.g., after all preceding events have been
executed).

As a dynamic controllable dispatching strategy of PSTNS,
Min-Loss DC algorithm (Gao, Popowski, and Boerkoel
2020), in two steps: First, it bounds every unbounded con-
tingent edge in the original PSTNS by truncating an equal
amount of probability from both sides. Second, the algo-
rithm executes the DC-DISPATCH strategy if the STNU is
DC. The Optimal DC Relaxation algorithm of Akmal et al.
(2019) is applied when the bounded STNU is not DC. It re-
turns an STNU that minimally squeezes the intervals of the
contingent edges involved in the conflict.

Max-Gain is another algorithm that reduces a PSTN to
a STNU (Gao, Popowski, and Boerkoel 2020). It cuts %
probability from two ends of a contingent edge respectively,
where « represents the risk budget. It tries to maximize
the probability remaining on the cut contingent edges. It
achieves so by conducting a binary search for the minimal
« of all contingent edges that makes the cut STNU dynam-
ically controllable. After finding the minimal working o for
all contingent edges, it keeps reducing « to see if part of
the contingent edges can regain more uncertainty. The con-
tingent edges in the first appeared conflict is set back to the
previous minimal « and excluded from the rest of the anal-
ysis, in which it keeps searching for a smaller « recursively
on the rest of the network.

Sensitivity Analysis

To investigate the performance of current algorithms across
representative types of distributions in human behavior, we
conducted a sensitivity analysis specifically examined the
successful scheduling rate using DC-Dispatch, Min-Loss,
Max-Gain, and variations thereof on normal, gamma, ex-
ponential, lognormal, and beta benchmarks. We introduce
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modified benchmarks and algorithms to account for gamma,
lognormal, exponential, and beta distributions.

We simulate sample realizations by sampling the distribu-
tions associated with each contingent edge. It is noted that
the distributions we pass into Min-Loss and Max-Gain al-
gorithms can be different from the realization distributions
used in our simulation. Below we use realization distribu-
tion to represent, e.g., how a human behaves and planning
distribution to describe the human behaviors predicted by
the scheduling algorithm.

Benchmarks Variations

We adapt two existing PSTN benchmarks by replacing their
normally-distributed uncertainty models with distributions
that capture more natural sources of uncertainty. As a basis
for our augmented benchmark, we use the DREAM bench-
mark of 540 PSTNs (Abrahams et al. 2019) and the CAR-
SHARING dataset of 169 PSTNs which was created by San-
tana et al. (2016) and then edited by Akmal et al. (2019). !

Gamma benchmark has the shape parameter « set to pro-
portional to the edge length. By doing so, this benchmark
can represent the characteristics in human behavior that sug-
gests tasks with longer duration tends to perform more nor-
mal distribution alike (Hyman 1953). The scale parameter
B is set to one for consistency in comparison. The gamma
benchmark tries to capture positively skewed heavy-tailed
distributions.

Lognormal benchmark consists of lognormal distributions
for each edge capturing 99% of probability density based on
edge lengths. We chose the median value to be the midpoint
of the edge and were able to attain . We then used inverse
CDF to obtain the standard deviation o and generated re-
alizations based on the y and o. This benchmark represents
distributions that are positively skewed which are more com-
mon in human behavior studies

Exponential benchmark aims to capture the most posi-
tively skewed distributions. The CDF of each edge is set to
capture 99% of the probability density and gave the rate pa-
rameter A\ accordingly.

Beta benchmark is symmetrical to the gamma benchmark
to capture the negative-skewed distributions and extend our
analysis to more general cases.

Beta continuous extends Beta benchmark by putting its
parameters « and 3 on a continuous scale from 0.1 to 12
with a step size of 2. This way, we can use this distribution
to model all the above distributions by setting the parameters
to unique values. For example, & = 12 and 5 = 12 approx-
imate the normal distribution in the benchmark; o« < 3 re-
sults in positively skewed distributions; and o > /3 results in
negatively skewed distributions that can be explored. When
a < 1 < f3, beta distribution decays exponentially. When
B < 1 < a, the distribution grows exponentially.

Algorithms Variations

We modify Min-Loss and Max-Gain to Min-Loss+ and
Max-Gain+ so they adapt to handle probabilistic informa-

"Visit https://github.com/HEATlab/sensitivity/ for the aug-
mented benchmarks and algorithm details w/ code.



tion for newly-added distributions.’

Min-Loss uses two phases to generate a controllable net-
work. The first stage transforms boundless normal distribu-
tions to uncertain edges by evenly cutting ”qu of probability
on both ends. We vary the algorithm by extending the way of
bounding edges based on probabilistic distributions. To lose
as little uncertainty in terms of edge length, for example,
for a positively-skewed distribution, we cut more probabil-
ity from the left tail. We also explore alternatively leaving
Min-Loss more room to resolve conflicts in the relaxation
step by cutting more probability from the right tail instead.

The second stage of Min-Loss applies Optimal DC Re-
laxation on bounded contingent edges to attempt to gener-
ate dynamic controllable SNTUs. Conflicts are relaxed by
shrinking the longer contingent edges by the same amount
from the labeled directions, determined by the method in
Bhargava, Vaquero, and Williams (2017). To extend Optimal
DC Relaxation, we incorporate probabilistic density into the
process and aim to minimize the loss of the expected uncer-
tainty. The initial problem becomes a constraint optimiza-
tion problem and can be solved by Lagrangian Multipliers
(Bertsekas 1996). Across all long contingent edges involved
in conflicts, we use Lagrangian multipliers to search for a lo-
cal minimum sum of the product of the cut edge length and
the areas enclosed by the cut and distribution function. This
approach varies Min-Loss and allows it to account for non-
symmetric distributions. Among the three variations, empir-
ical results demonstrate only marginal differences in suc-
cess rates. We focus on the best-performing algorithm—the
one that biases toward removing less uncertainty in the first
stage, which we refer to as Min-Loss+

We update the Max-Gain algorithm, which previously
assumed PSTNs with normal distributions, to handle non-
symmetric distributions. Cutting the same amount of proba-
bility from both ends of a non-symmetric distribution natu-
rally results in different-sized cuts on the two ends. Further,
in the particular case when the binary search approaches a
risk budget of 1 (o > 0.999), we operate as if the STNU
edges were non-truncated rather than return an STNU where
we truncate the intervals of contingent edges to a single
point. We call this adapted algorithm Max-Gain+.

Empirical Evaluation

We evaluate the performance of DC-Dispatch, Min-Loss,
Max-Gain, Min-Loss+, and Max-Gain+ on both the original
DREAM and CAR-SHARING benchmarks, and also on our
augmented benchmarks in which we incorporate gamma,
exponential, lognormal, and beta distributions. We adopt the
Monte Carlo sampling approach (Brooks et al. 2015) to as-
sess algorithms’ performance. The success rate of each al-
gorithm is based on the number of generated valid sched-
ules in every problem. For each instance, we run 200 trials
and average the successful dispatching rate to approximate
the performance for each pair of algorithms and benchmark.
The experiment examines the performance of all modified
methods and presents the best-performing modified algo-
rithms, Min-Loss+ and Max-Gain+, for meaningful com-
parison. Specifically, both Min-Loss and Min-Loss+ used in
this analysis have a risk level of 0.05.
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methods normal | gamma | exp | lognorm | beta
DC-Dispatch | 0.38 0.46 0.51 | 0.33 0.06
Min-Loss 0.49 0.65 0.61 | 0.42 0.06
Max-Gain 0.49 0.77 0.65 | 0.36 0.08
Min-Loss+ 0.49 0.65 0.61 | 0.41 0.06
Max-Gain+ | 0.53 0.77 0.65 | 0.39 0.08

Table 1: Performance of existing and modified dispatch
strategies for CAR-SHARING benchmarks.

methods normal | gamma | exp | lognorm | beta
DC-Dispatch | 0.25 0.28 0.26 | 0.24 0.25
Min-Loss 0.28 0.36 0.30 | 0.31 0.12
Max-Gain 0.20 0.32 0.29 | 0.30 0.31
Min-Loss+ 0.28 0.36 0.30 | 0.32 0.13
Max-Gain+ | 0.20 0.33 0.30 | 0.30 0.31

Table 2: Performance of existing and modified dispatch
strategies for DREAM benchmarks.

Empirical Results

Tables 1 and 2 confirms the prior conclusions that suggest
Min-Loss has a better performance on symmetric distribu-
tions (Gao, Popowski, and Boerkoel 2020). At the same
time, the across distributions result show that Min-Loss out-
performs on all DREAM benchmarks except for beta distri-
bution. While Max-Gain equals or outperforms on all CAR-
SHARING benchmarks but lognormal distribution.

Tables 1 and 2 also demonstrate significant differences in
all approaches’ ability to optimize for various distributions.
For instance, success rates for Max-Gain ranged from 0.77
on CAR-SHARING gamma benchmark to 0.08 on CAR-
SHARING beta benchmark. Differences were much more
muted on the DREAM benchmark, pointing to structural dif-
ferences between the two benchmarks.

Finally, we notice only marginal differences exist between
Min-Loss and Min-Loss+ and between Max-Gain and Max-
Gain+ regardless of distribution types. In short, our modifi-
cations tended to shift how distributions were truncated but
did so in the tails of the distributions, where the potential for
gains is inherently smaller.

Uncertainty Model Alignment Next, we consider how
much the alignment between planning and realization dis-
tributions matters. We performed a case analysis using a
representative instance (test2) from CAR-SHARING dataset
on the comprehensive beta-continuous benchmark and gen-
erated heat maps for success rates across combinations of
o — ( pairs. Figure 1 (a) has fixed realization distribution but
varying planning distributions. Figure 1 (b) has varying re-
alization distributions but fixed planning prediction. Figure
1 (c) uses the same realization distribution and planning dis-
tribution with changing o — S pairs. Figure 2 uses the same
condition as Figure 1 (c) on the CAR-SHARING bench-
mark. To control variances introduced by different contin-
gent edges in this benchmark, all contingent edges are set
to have the same o — 3 pair, which differs from the other
benchmarks, where contingent edges have the same trend,
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but their o — 3 pairs may not be the same.

Figure 1 shows an asymmetry in the sensitivity of plan-
ning vs. reality misalignment. When an agent plans for
heavy-tailed temporal uncertainty, but the reality is sym-
metric, it performs roughly equally well (or poorly), regard-
less of how heavy-tailed its uncertainty model was. On the
other hand, when an agent plans for a symmetric, normal
distribution, but the reality is heavy-tailed, the shape of that
heavy-tailed distribution matters significantly. Interestingly,
when an agent plans assuming a heavy-tailed distribution
and matches reality, it performs pretty similarly as if it were
to plan for a normal distribution—neither Figure 1(b) nor
Figure 1(c) dominates the other.

More broadly, the shape of the realization distribution sig-
nificantly impacts the success rate. In Figure 2, even though
the realization and planning distributions matched, the ratio
between « and 3 seems to significantly impact the agent’s
ability to plan effectively around the temporal uncertainty.
Generally, as the ratio of 5:a grows, the distribution be-
comes more positively skewed, and so does the algorithm’s
ability to exploit its knowledge of the uncertainty. This cor-
roborates what we see in the earlier Tables, where all algo-
rithms seemed better at exploiting positively skewed distri-
butions such as the gamma or even exponential distributions.

98

Interestingly, algorithms that plan for positively skewed
distributions start acting increasingly like very simple dis-
patch methods such as Next-First, which executes the next
event it can as early as it can and has previously been shown
to perform surprisingly well across many PSTN benchmarks
(Saint-Guillain et al. 2021). Thus, this leads us to reject
our original hypothesis that non-symmetric temporal uncer-
tainty may require augmenting existing solution approaches.
It may instead point to considering simple approaches such
as Next-First when the nature of the temporal uncertainty
skews positively, such as when dealing with human team-
mates.

Conclusion

This paper explores how well existing approaches handle
non-symmetric distributions, for instance, in a human-robot
team, where, from the robot’s perspective, the human intro-
duces temporal uncertainty. Like many temporal processes,
the uncertain duration of human tasks tends to be posi-
tively skewed. We contribute new benchmarks that better
capture many sources of real-world temporal uncertainty.
This paper provides the first known look into how sensitive
various approaches for controlling for temporal uncertainty
within PSTN are and how sensitive these approaches are to
the planning model of uncertainty aligning with reality. We
show that our ideas for improving existing approaches to ac-
count for non-symmetric distributions had only a marginal
impact, increasing the frontier of circumstances in which
existing approaches have been shown to excel. Our results
suggest there may be better ways to deal with natural sources
of temporal uncertainty than further optimizing or engineer-
ing existing approaches. This corroborates previous results
(Saint-Guillain et al. 2021) that showed simple approaches
perform quite well on ordinary distributions derived from
histograms of real-world tasks. In the future, we would like
to explore whether there are domains where these more
highly-optimized algorithms provide better trade-offs. This
paper sheds light on future scheduling algorithm design, es-
pecially in domains where human temporal uncertainty sig-
nificantly impacts outcomes, such as close human-robot col-
laborative tasks.
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