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Abstract
Classical planning tasks are commonly described in a first-
order language. However, most classical planners translate
tasks by grounding them and then rewriting them into a
propositional language. In recent years, the grounding step
has become a larger bottleneck. In this work, we study how to
improve it. We build on top of the most common grounder for
planning tasks which uses Datalog to find all reachable atoms
and actions. Inspired by recent progress in lifted planning,
database theory, and algorithmics, we develop a new method
to ground these Datalog programs. Our algorithm can ground
more instances than the baseline, and most tasks it cannot
ground are out of reach from any ground planner.

Introduction
Classical planning tasks are usually defined using a first-
order representation. But most of the state-of-the-art clas-
sical planners (e.g., Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Helmert 2006; Torralba et al. 2014; Katz and
Hoffmann 2014; Francès et al. 2018) do not use it inter-
nally: as a first step, they translate the first-order represen-
tation into a propositional one (e.g., Köhler and Hoffmann
2000; Helmert 2009). The new representation facilitates dif-
ferent parts of the planning algorithms, such as generating
successor states, representing states, and computing heuris-
tics. Although the translation can increase the size of the task
exponentially, it is still worth doing for most domains.

One way to perform this translation – and perhaps the
most used one – is the method by Helmert (2009). It uses
four steps: normalization, invariant synthesis, grounding,
and task generation. While each of these steps is a potential
bottleneck, Helmert reports that in a typical domain about
70% of the translation time is required for grounding. In this
phase, a relaxed version of the task is encoded as a Data-
log program (Ullman 1988, 1989). Grounding the Datalog
program overapproximates the actions and atoms that are
reachable from the initial state of the task. This works fine
in most cases because the Datalog programs are very sim-
ple. However, grounding Datalog programs is intractable in
general as the number of reachable atoms and actions might
be exponential in the size of the program (Vardi 1982; Im-
merman 1986; Dantsin et al. 2001). As planners improve,
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the tasks that users want to solve also become larger and
harder (e.g., Haslum 2011; Matloob and Soutchanski 2016).
For such tasks, grounding is not trivial anymore and some-
times takes more time than solving the task.

In this paper, we compare Helmert’s algorithm for Dat-
alog grounding to off-the-shelf grounders (Gebser et al.
2011). To the best of our knowledge, this is the first em-
pirical comparison of this kind in planning. We show that
the Answer Set Programming (ASP) grounder gringo can
ground more Datalog programs than Helmert’s algorithm.
The crucial problem in the latter is the high memory usage
caused by its program rewriting technique. It rewrites the
Datalog program such that reachable atoms can be computed
more efficiently by optimized data-structures. Our empirical
results show that this is damaging in many domains.

We propose a new grounder based on treewidth (Arnborg,
Corneil, and Proskurowski 1987) and grounding via solving
(Besin, Hecher, and Woltran 2022). Instead of grounding the
entire Datalog program in one shot, we first only ground the
reachable atoms of the task. This can be efficiently done in
all tested instances by rewriting the program based on tree
decompositions (Morak and Woltran 2012; Bichler, Morak,
and Woltran 2016), instead of the method by Helmert. Sec-
ond, we obtain the set of ground actions from the result of
the first step. To do so, we set up an ASP where each sta-
ble model corresponds to one ground action. ASP solvers
(e.g., Gebser et al. 2019) can enumerate the stable models it-
eratively without keeping previous iterations in memory, so
they are well-suited for the job. Our technique can work with
Datalog programs that do not come from planning problems,
and could be useful more generally for Datalog grounders.

Our two-phase grounder can ground almost 20% more
tasks than the method by Helmert. However, it also adds a
considerable overhead. While it seems well suited for tasks
that need a lot of memory, it can slow down the grounding
phase. A potential concern is that the larger tasks we can
now ground are already out of reach for current planners.
We show that several of these tasks can still be solved with
classical planners. Moreover, we show that it is hopeless to
try to ground most of the remaining tasks that still could not
be grounded using Datalog-based grounders, as they have
more than 1030 actions. Thus further improvements in our
grounders would not necessarily result in a higher coverage.
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Background
Throughout the paper, we assume that planning languages
and logic programs are defined using a function-free logical
vocabulary over an infinite set of variables V , a finite set
of constants C, and a set of predicate symbols P . An atom
P (t) is composed of a predicate symbol P ∈ P and a k-
tuple of terms t (variables or constants), where k is the arity
of P . We often omit tuples of terms and refer to the predicate
symbol P as an atom. The set of variables in t is denoted as
vars(t).1 P (t) is a ground atom if vars(t) = ∅.
Logic Programming We consider a fragment of Answer
Set Programming (ASP) in our paper. For most of the paper,
it is enough to consider Datalog programs but some parts
require more sophisticated programs. A logic program, in
general, is a pair L = ⟨F ,R⟩ where F is a set of ground
atoms, called facts, andR is a set of disjunctive rules.

A disjunctive rule r is a rule of the form

H1 ∨ . . . ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm.

where Hi, Pi and Ni are atoms. The left-hand side of r is
called the head and is denoted as head(r); the right-hand
side of r is called the body and is denoted as body(r). We
also write body+(r) and body−(r) for the subset of positive
and negative atoms in body(r). All rules we considered are
safe, i.e., variables occurring in the head also occur in the
body. The set of variables appearing in r is denoted vars(r).

A logic program is ground if all atoms in all rules are
ground. A non-ground rule can be interpreted as a con-
cise representation of all possible instantiations of the vari-
ables in this rule with constants in C. We write Ground(L)
to denote the grounding of a logic program L. Note that
Ground(L) might be exponentially larger than L. A set of
ground atomsM is a stable model of L ifM satisfies each
fact and each rule in Ground(L). A fact f ∈ F is satis-
fied by M if f ∈ M. A ground rule r is satisfied by M
if head(r) ∩ M ̸= ∅ is implied by body+(r) ⊆ M and
body−(r) ∩M = ∅.

A Datalog programD = ⟨F ,R⟩ is a logic program where
all rules r ∈ R have the form

H ← P1, . . . , Pn.

i.e., have no negative atoms in the body and exactly one atom
in the head. In contrast to general ASPs, each Datalog pro-
gram has a unique stable model M, called the canonical
model, or just model. This canonical model is usually com-
puted using a seminaive evaluation (Abiteboul, Hull, and
Vianu 1995, Ch. 13). This is a bottom-up approach that it-
eratively derives new atoms from previously derived ones.
Specifically, it tracks in which iteration each atom was de-
rived, and must use at least one atom derived in iteration i to
unify rules and derive new atoms in iteration i+ 1. All facts
in F are derived in iteration 1. The algorithm iteratively de-
rives more atoms until a fix-point is reached (i.e., no new
atom is derived during an iteration). The canonical model
M contains all atoms derived this way.

1With some abuse of notation, we use set-theoretical symbols
with terms, although they are ordered sequences.

Each rule r of a Datalog program is associated with
its primal graph Gr = ⟨V (Gr), E(Gr)⟩, where V (Gr) =
vars(r) and there is an edge {v1, v2} ∈ E(Gr) iff vari-
ables v1 and v2 jointly occur in an atom of the rule, i.e.,
if v1, v2 ∈ vars(t) for some P (t) ∈ head(r) ∪ body(r).

A tree decomposition of a graph G = ⟨V (G), E(G)⟩ is a
tuple ⟨T, χ⟩ consisting of a tree T = ⟨V (T ), E(T )⟩ and a
function χ : V (T ) → 2V (G) mapping tree nodes to bags
of graph nodes. The function has to satisfy that (1) for each
edge {v1, v2} ∈ E(G), there exists n ∈ V (T ) such that
{v1, v2} ⊆ χ(n), and (2) for every vertex v ∈ V (G), the
set {n ∈ V (T ) | v ∈ χ(n)} induces a connected subtree of
T . The width of a tree decomposition is w − 1, where w is
the size of the largest bag. The treewidth tw(G) of G is the
minimum treewidth among all tree decompositions of G. If
tw(Gr) = 1 for a rule r, then G and r are called acyclic.

We are particularly interested in Datalog programs that
contain rules with low treewidth, as these programs can be
grounded efficiently (Morak and Woltran 2012).

Classical Planning We consider classical PDDL planning
tasks in STRIPS with inequalities. Such a task is a tuple Π =
⟨P , C,A, I, G⟩ with the components described below. Sets
P and C are the predicate symbols and constants of our first-
order language. We assume that the binary predicate symbol
̸= is in P and represents the inequality relation.

An action A ∈ A consists of three sets of atoms: a precon-
dition pre(A), an add list add(A), and a delete list del(A).
We use vars(A) for the set of variables occurring in any atom
in one of the three sets. If vars(A) = ∅, we call A a ground
action and if all actions in a task are ground, we call the
task a ground task. We sometimes use the word “lifted” to
emphasize that a task or action is not ground.

A state s is a set of ground atoms. A ground action A
is applicable in s if pre(A) ⊆ s. To accurately represent
inequalities we assume for this definition that all states im-
plicitly contain c1 ̸= c2 for every pair of distinct constants
c1, c2 ∈ C. Applying action A in state s leads to the succes-
sor state succ(s,A) = (s\del(A))∪add(A). A sequence of
actions π = ⟨A1, . . . , An⟩ is applicable in a state s0 and has
succ(s0, π) = sn if there are states s1, . . . , sn−1 where Ai

is applicable in si−1 and succ(si−1, Ai) = si for all i ≤ n.
The initial state I of a task is a state and the goal condition

G is a set of ground atoms. We call states s with G ⊆ s goal
states. We want to find a plan, i.e., a sequence of ground
actions π applicable in I such that succ(I, π) is a goal state.

Other planning formalisms also define types for constants
and restrict some variables, so they can only be instanti-
ated with constants of the correct type. It is common (e.g.,
Helmert 2009) to compile type information away by intro-
ducing type predicates type-T for each type T . The initial
state I is augmented with type-T (c) for all constants c ∈ C
of type T (using a default type for constants without a type).
Type information on action parameters can then be compiled
away by adding type predicates to the action’s precondition.
We assume our tasks contain such type predicates.

Many planners look for a plan by translating the input
into a ground task. The naive way of grounding every ac-
tion A with every possible combination of constants is in-
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tractable, so translation algorithms try to use only relevant
substitutions. A common approach is to create only ground
actions with relaxed reachable preconditions, i.e., with pre-
conditions that can be satisfied when the delete list of all
actions is replaced by ∅. Given a planning task Π, we denote
its delete-relaxation as Π+.

Baseline: Fast Downward’s Grounder
Perhaps the most commonly used algorithm to obtain a
propositional planning task from a lifted representation is
the one by Helmert (2009). Helmert translates a lifted task
into a propositional one in four steps: 1. normalization; 2. in-
variant synthesis; 3. grounding; 4. generation of the final
task. Each one of these steps can be a bottleneck, depending
on the domain, but Helmert reports that in common plan-
ning domains, around 70% of the translation time is spent
on grounding, so we focus on this step.

Given planning task Π = ⟨P , C,A, I, G⟩, the algorithm
first encodes the delete-relaxation Π+ as a Datalog program
DΠ+ = ⟨F ,R⟩ with facts F = I and the following rules:
1. For each A ∈ A with pre(A) = {q1(t1), . . . , qn(tn)}

and vars(A) = t,R contains the action applicability rule

A-applicable(t)← q1(t1), . . . , qn(tn).

where A-applicable is called an action predicate.
2. For each A ∈ A with vars(A) = t and for each P (t′) ∈

add(A),R contains the action effect rule

P (t′)← A-applicable(t).

3. For G = {g1(t1), . . . , gn(tn)},R contains the goal rule:

goal ← g1(t1), . . . , gn(tn).

The normalization step guarantees that all rules are safe.
Helmert (2009) showed that the canonical model M of
DΠ+ contains exactly the atoms that are reachable from I in
Π+. The original algorithm by Helmert uses a modification
of the seminaive evaluation described earlier but considers
only one atom at each iteration. The key is how to compute
the canonical modelM efficiently. Helmert’s grounder uses
rule decompositions to split large rules into smaller ones,
as smaller rules are generally easier to ground and produce
smaller intermediate results. It splits all rules until they have
unary or binary bodies. This allows for smarter data struc-
tures and an implementation tailored to such rules.

There are two types of rule decompositions in the algo-
rithm. The first selects two atoms q1(t1), q2(t2) in the body
of a rule r and introduces the new rule

temp(t)← q1(t1), q2(t2).

where t contains all terms in t1 or t2 that occur in other
atoms of r and the temporary predicate temp is a fresh pred-
icate symbol. It then replaces q1(t1) and q2(t2) in r with
temp(t). This is called a join decomposition because the
new rule enforces the grounder to join q1 and q2.

The second type of decomposition chooses an atom q(t)
from the body of a rule r such that there is a variable v ∈ t
that does not occur anywhere else in r. It then adds the rule

temp(t \ v)← q(t).

where temp is a fresh predicate symbol, and replaces q(t)
with temp(t \ v) in r. This is called a projection.

What is left is how to choose atoms for the decomposition.
This choice follows two basic principles: try to project away
unnecessary variables as early as possible, and try to join the
maximum number of variables (with join decompositions).
In the algorithm, this is done greedily based on the total
number of variables and the number of joining variables in
each relation. Helmert reports that, although it works well in
general, there are cases (such as the Rovers domain) where
this greedy decomposition is bad. Due to lack of space, we
do not go into further details and refer to the paper for more
information (Helmert 2009, Section 6).

Note that different choices on how to decompose rules
will lead to a different number of temporary predicates. This
is one of the main sources of overhead with rule rewriting.

Experiments Throughout the paper we present several
methods that complement each other. To motivate new meth-
ods better, we present the experimental results for each
method as soon as it is introduced. Our first experiment
compares the grounder by Helmert to an off-the-shelf ASP
grounder, called gringo (Gebser et al. 2011). To the best
of our knowledge, while others compared to improved ver-
sions of Helmert’s algorithm (e.g., Fišer 2020), this is the
first systematic comparison to an off-the-shelf grounder.

The current implementation of Helmert’s algorithm used
in Fast Downward2 is implemented in Python. We use PyPy
to speed up the evaluation (compared to the regular Python3
interpreter used in Fast Downward) but to compare it to
gringo on equal footing, we also reimplemented the al-
gorithm in C++. We compare both implementations against
gringo with the original Datalog program DΠ+ as input.

Our experiments use the hard-to-ground (HTG) data set
by Lauer et al. (2021) containing 862 tasks, divided into 8
different domains. All experiments were run on Intel Xeon
Silver 4114 processors running at 2.2 GHz. We use a time
limit of 30 minutes and a memory limit of 3.8 GiB per task.
Our source code is available online (Corrêa et al. 2023).

The first three columns of Table 1 show the number of
ground tasks for the three algorithms described above: FD,
the baseline implementation from Fast Downward run with
PyPy; FD++, our reimplementation in C++; and gringo,
the off-the-shelf state-of-the-art grounder.
FD++ and gringo can ground a similar number of tasks

in most of the domains, but in blocksworld, rovers, and vis-
itall, gringo grounds more tasks. The poor performance
of FD/FD++ in rovers was already pointed out by Helmert
(2009). Looking further into this domain, the challenge is
that the set of initial facts is too large and most facts have
the same predicate symbol. Given that the preconditions in
rovers are also non-trivial (Corrêa et al. 2020), this makes it
hard to rewrite the rules in a good way: while we want to
decompose the rules to perform clever joins, we also want
to minimize the number of joins over large relations. ASP

2The strategy to decompose joins in Fast Downward’s current
implementation no longer matches the paper: it prefers to decom-
pose atoms with fewer variables while the paper prefers atoms with
many variables. We use the first option as it produced better results.
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Figure 1: Number of tasks ground per time (in seconds).

grounders, such as gringo, apply on-the-fly join ordering
techniques based on estimated selectivity and relation size,
which seems to be important here.

We also analyzed the run time of all methods. Figure 1
shows the number of ground programs over time. FD++ is
usually faster than gringo in tasks that both can ground.
This makes sense as gringo is a general ASP solver that
can deal with more expressive logic programs and hence has
an overhead on data structures, while FD++ is tailored to
our type of problem. However, as tasks get larger and more
complicated to ground, FD++ quickly reaches the memory
limit while gringo manages to ground some of them.

Our hypothesis is that the rule decomposition used in
FD++ leads to too many temporary atoms and intermediate
joins, which consumes too much memory. To test this, we
evaluated giving gringo the program DΠ+ after the de-
compositions used by the FD++ algorithm. The results are
also shown in Table 1 as “G+FD++”. This indeed decreased
the number of programs gringo could ground to 703,
bringing it much closer to the performance of FD++. Most
of the loss came from the domain rovers, where the decom-
position works poorly. With the decomposition gringo
could only ground the 5 programs that FD++ can ground,
while it could solve all of them without the decomposition.
However, G+FD++ still grounds more programs than FD++.
This indicates that the superior performance of gringo is
not only due to the different input.

Grounding Using Structural Decompositions
Ideally, one would like to exploit the structure of the Data-
log program more systematically than FD++’s heuristic ap-
proach. Morak and Woltran (2012) show that programs with
bounded treewidth can be grounded efficiently. They achieve
this result by decomposing the rules of a Datalog program
based on a tree decomposition of their primal graph. This
decomposition introduces additional auxiliary predicates –
similar to the ones used by Helmert (2009). Thereby, it pro-
vides indirect guidance to the grounder based on the struc-
ture of the rules.

Roughly speaking, for a given rule r the technique first
finds a tree decomposition T = ⟨V (T ), E(T )⟩. For each
node n ∈ V (T ) with parent node pn, it then creates a fresh

predicate tempn and introduces a rule

tempn(Yn)←{a ∈ body(r) | vars(a) ⊆ χ(n)}
∪ {tempm | m is a child of n in T}.

where Yn = χ(n) ∪ χ(pn). It finally replaces the original
rule with this set of n new rules and the rule

head(r)← temproot(Yroot).

where temproot is the root node of T . These rules will pro-
duce the same instantiations of head(r) as the original one.

Experiments We use lpopt (Bichler, Morak, and
Woltran 2016), an implementation of the technique de-
scribed above, to evaluate more systematic decompositions.
The tree decomposition computed by lpopt has no opti-
mality guarantee because computing an optimal tree decom-
position is NP-hard (Arnborg, Corneil, and Proskurowski
1987). Table 2 presents statistical data on the treewidth w
in our domains. We aggregate the information of domains
that contain different domain files (e.g., visitall) into a sin-
gle row. The rows where column A has a checkmark ✓ cor-
respond to our original Datalog program. The other rows
will be discussed in the next section. Some domains (e.g.,
organic-synthesis and pipesworld) have rules with very high
treewidth w, which is caused by the action predicates: as
these usually have high arity and include all variables of the
rule, they force the tree decomposition to keep all variables
until the root, which increases w. In cases where w is large,
we do not expect lpopt’s rule rewriting to help much.

Table 1 shows the number of ground tasks in our bench-
mark set using gringo+lpopt (in the Action Predicates
block). This technique grounds exactly the same tasks as
gringo without lpopt. Looking at the number of ground
tasks over time in Figure 1 shows that the performance of
gringo with and without lpopt is almost identical. This
is expected, because action applicability rules have all vari-
ables in the head. Thus, lpopt cannot project out any vari-
ables during the decomposition, so intermediate predicates
end up being very large. Perhaps surprisingly, this happens
in all domains, and not only in domains that have large
treewidth. These large predicates consume a lot of memory.
In fact, all instances that gringo+lpopt (and also simply
gringo) cannot ground are due to running out of memory.

Avoiding to Ground Actions
What happens then if we remove these action predicates
from our Datalog programs? In lifted planning, Corrêa et al.
(2021) show how to remove action predicates from the Dat-
alog program while preserving all other atoms in the model.
Given the following action applicability rule and effect rule

A-applicable(t)← q1(t1), . . . , qn(tn).

P (t′)← A-applicable(t).

this method replaces both rules with the simplified rule

P (t′)← q1(t1), . . . , qn(tn).

(Note that if A has multiple action effect rules, the same
procedure would be done for each of them.)
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Action Predicates No Action Predicates Iterated Solving

Domain FD FD++ G G+FD G+L FD++ G G+L iterated iterated ̸=

blocksworld (40) 32 36 40 40 40 40 40 40 40 40
childsnack (144) 118 120 120 120 120 144 144 144 142 144
genome-edit-dist. (312) 312 312 312 312 312 312 312 312 312 312
logistics (40) 40 40 40 40 40 40 40 40 37 37
organic-synthesis (56) 21 21 21 21 21 56 41 56 23 31
pipesworld-tankage (50) 32 35 35 35 35 40 50 50 50 50
rovers (40) 4 5 40 5 40 40 40 40 20 20
visitall-multidim. (180) 120 120 144 132 144 120 180 180 174 174

Total (862) 679 689 752 703 752 802 847 862 798 808

Table 1: Number of ground tasks by domain for different algorithms. We abbreviate gringo with G, and lpopt with L. The
results are divided into three different blocks: results for programs with action predicates, without action predicates, and the
grounding via iterated solving approach. For each block, the best result for each domain is marked in bold.

Domain A w-range average w

blocksworld ✓ 1–2 1.54 ± 0.52
✗ 1–2 1.33 ± 0.50

childsnack ✓ 2–10 4.89 ± 2.52
✗ 2–6 2.80 ± 1.30

genome-edit-distance ✓ 0–5 2.21 ± 0.60
✗ 1–5 1.90 ± 0.48

logistics ✓ 3–4 3.17 ± 0.39
✗ 2–3 2.83 ± 0.41

organic-synthesis ✓ 3–22 10.55 ± 3.99
✗ 2–3 2.10 ± 0.29

pipesworld-tankage ✓ 9–12 10.62 ± 1.53
✗ 3–5 3.73 ± 0.63

rovers ✓ 2–6 4.23 ± 1.27
✗ 2–3 2.35 ± 0.49

visitall-multidimensional ✓ 4–6 5.17 ± 0.00
✗ 4–6 5.17 ± 0.00

Table 2: Width w of the tree decomposition computed by
lpopt. Column A indicates whether action predicates are
considered.

Throughout the paper we refer to the Datalog program
without action predicates as the simplified program. This
simplification significantly improves the performance of
lifted planners (Corrêa et al. 2021) which do not need the
action predicates. However, we cannot know all relaxed-
reachable ground actions of our task without these predi-
cates. We solve this problem in the next section, but we first
experimentally investigate the simplicity of these programs.

Experiments We compared the methods using the simpli-
fied program as input. Table 1 shows the results under the
block No Action Predicates. The increase in performance
is clear: FD++ goes from 689 to 802 ground programs;
gringo goes from 752 to 847; gringo+lpopt goes from
752 to all 862 programs. This is due to the simpler structure

of the problem. This can be seen in the statistics on treewidth
of simplified programs, shown in Table 2. Comparing the
statistics for the program with action predicates (column A
with ✓) and programs without action predicates (column A
with ✗), the decompositions found for the latter have much
lower treewidth. In organic-synthesis and pipesworld, the
decrease in average width is more than 70%. This means
that a treewidth-based approach like gringo+lpopt can
potentially work much better – and that is visible in the re-
sults of Table 1. The only domain where the treewidth is
not reduced is visitall-multidimensional. In this domain, the
predicate indicating the current position of the agent also has
large arity and thus is as harmful as action predicates.

Both FD++ and gringo fail only in one domain. The
former cannot ground all simplified programs of the visi-
tall domain, while the latter fails for some larger organic-
synthesis instances. The greedy decomposition used in
FD++ does not seem to work well with the larger predicates
in visitall. For gringo, the main issue is that some of the
organic-synthesis tasks have large intermediate relations if
the rule bodies are joined in a bad order. gringo+lpopt
can overcome both problems. The tree decomposition helps
to amortize the impact of larger predicates and to reduce the
size of intermediate joins. This allows gringo+lpopt to
ground all simplified programs in our benchmark set.

Furthermore, gringo+lpopt is faster than FD++ and
gringo even for tasks that all can ground. Figure 2
shows the run time for both gringo and gringo+lpopt.
Clearly, lpopt improves the performance of gringo. The
only exceptions above the diagonal are instances from the
domain logistics. The tree decomposition found by lpopt
seems to do more harm than good here. Logistics has very
simple rules so we believe that this is another case where the
size of the relations and selectivity might have more impact
than decompositions.

Grounding via Iterated Solving
On the one hand, the simplified program from the previous
section is much simpler to ground while it still contains all
relaxed-reachable atoms of the task. On the other hand, it
does not contain any information about the ground actions
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of the task. How do we obtain the set of ground actions from
the relaxed-reachable atoms?

One trivial solution is to unify the preconditions of each
action with the set of reachable atoms. In other words, we
would join the preconditions of the action, similarly as done
by Corrêa et al. (2020). Although simple in theory, this is
not straightforward: the intermediate results of this join can
be exponentially large (Ullman 1989; Corrêa et al. 2020).

To mitigate this problem, we introduce a two-phase
method, inspired by the techniques of grounding via solving
(Besin, Hecher, and Woltran 2022). First, we use the sim-
plified Datalog programs to compute a model M, contain-
ing all relaxed-reachable atoms. For each action schema, we
then construct a logic program with facts M where every
stable model represents one relaxed-reachable instantiation
of the action schema.

The program we construct uses choice rules of the form
1 {p(X) : r(X)} 1 expressing that exactly one p(X) has
to be chosen for which r(X) is in the model. Choice rules
can be seen as syntactic sugar in logic programs and can be
simulated with two additional predicates has-p and p′ and
the following rules. Rules has-p ← p(X) and ⊥ ← ¬has-p
ensure that at least one p(X) is in the model; rule ⊥ ←
p(X), p(Y ), X ̸= Y ensures that at most one p(X) is in the
model; and rule p(X)∨p′(X)← r(X) allows (but does not
force) the model to contain p(X) if it contains r(X).

The program also uses type information compiled into the
planning task as type predicates type-T as discussed earlier.

For a set of factsM and an action applicability rule r

A-applicable(t)← q1(t1), . . . , qn(tn).

we create the logic program L = ⟨F ,R⟩ with F =M, and
rulesR as follows. For every variable V ∈ vars(r) with type
T , we introduce a fresh predicate V -assign and the follow-
ing choice rule:

1 {V -assign(X) : type-T (X)} 1.
where X is a new variable. This rule forces the stable model
to pick exactly one constant of the correct type for each vari-
able and thus form a variable assignment.

Further, for every (non-ground) atom qi(ti) ∈ body(r)
with vars(qi(ti)) = {V1, . . . , Vk}, we introduce the rule

⊥ ←V1-assign(X1), . . . , Vk-assign(Xk),¬qi(X1, . . . , Xk).

This rule guarantees that the assignment encoded in the
V -assign predicates is consistent with the instantiations of
qi in all stable models of L.

The program L has multiple stable models. Each one cor-
responds to one ground action of A. For each variable V ,
the stable model of has exactly one atom V -assign(c), for
the constant c that instantiates V in the ground action.

The overall approach is then to iteratively solve and
enumerate all stable models of L, thereby constructing all
relaxed-reachable actions. This approach relies on the com-
mon guess-and-check technique of ASP solvers. The advan-
tage is that we generate one stable model per iteration with-
out keeping track of previous ones. This keeps memory us-
age in check, as we do not have to consider all ground ac-
tion at the same time. One could also use conjunctive query
solvers, but we do not know any off-the-shelf tool that im-
plements such iterative enumeration.

This new technique can be applied to ground other logic
programs that are not related to planning. In particular, it can
help in cases where the density of structures is such that they
cannot be sufficiently exploited any more. Our approach is
specifically designed for positive programs with large pred-
icate arities in the rule heads of programs, which is the case
for those rules corresponding to actions in planning.

Experiments We call the two-phase approach de-
scribed above iterated. Our implementation first uses
gringo+lpopt to get M from the simplified program,
and then uses clingo (Gebser et al. 2019) to iteratively
generate grounded actions from the logic programs above.
Table 1 shows the results in the second-to-last column.
Compared to the methods that ground action predicates,
iterated grounds more tasks in total. It is better in the
domains childsnack, organic-synthesis, and pipesworld, but
worse in the domains rovers and logistics. As discussed be-
fore, both of the latter domains do not seem to work well
with methods only exploiting structural properties.

While iterated can solve tasks where other methods
run out of memory, it is much slower than any other al-
gorithm. Figure 1 compares the run time of iterated to
all other methods. Even for simple tasks, iterated takes
more time than any other algorithm – including the Python
implementation FD. Noticeable overhead comes from the
communication of the different components, i.e., the effort
of setting up the model and parsing the result.

Still, some tasks were not ground by any method (ignor-
ing methods that ground only simplified programs). More
precisely, there are 25 organic-synthesis tasks, and 6 visitall-
multidimensional tasks that cannot be grounded by any al-
gorithm. To see how far we are from grounding these tasks,
we used a model counter to check (without even generating
the model) the number of ground actions in these tasks. We
use the model counter and the preprocessor by Lagniez and
Marquis (2014, 2017). To do it efficiently, we apply our two-
phase approach but, in the second phase, instead of enumer-
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ating all ground actions, we translate the program to a propo-
sitional formula with the tools by Janhunen (2006), and then
simply count the models. For more details on state-of-the-
art model counters, we refer to the survey by Fichte, Hecher,
and Hamiti (2021).

For visitall-multidimensional, all remaining tasks have
76 · 106 ground actions. This still seems possible to ground,
as iterated was able to ground larger tasks (e.g., some
pipesworld tasks have more than 108 ground actions). In
contrast, the smallest (in number of ground actions) task
from organic-synthesis that we cannot ground has 17.3·1012
ground actions. The largest one has 60 · 1035 ground ac-
tions. Even considering an oracle model that provides the
list of relaxed-reachable atoms and actions instantly, these
tasks seem out of reach of ground planners. The amount
of storage necessary to simply represent these tasks is pro-
hibitive. To deal with these tasks, we could use lifted plan-
ners (e.g., Horčı́k and Fišer 2021; Höller and Behnke 2022)
or grounders that compute models more restricted than
relaxed-reachability (e.g., Gnad et al. 2019; Fišer 2020).

More Informed Logic Programs
An orthogonal way to improve Datalog-based grounders for
planning is to use additional information to refine the model
and thus make it smaller. One example of this approach is
the work by Fišer (2020) that uses lifted mutexes to improve
grounding. Fišer interleaves the FD algorithm with a filtering
to remove ground atoms violating mutexes.

We propose an approach that does not need a modification
of gringo or iterated. Instead of changing the algo-
rithm, we simply modify the input Datalog program to con-
sider negated static predicates in preconditions. Static pred-
icates are those predicates that only occur in preconditions
and not in effects. When we create the Datalog program of
the task, static predicates never occur in the head of any rule
(they are what is called extensional). We can exploit this by
adding any negatively occurring static predicate to the body
of its action applicability rule (also negatively). This changes
the canonical model of the Datalog program but it does not
influence its uniqueness (Ullman 1988, 1989).

In our benchmark set, the only occurrences of negated
static preconditions are inequality constraints. (Other PDDL
domains, such as Termes and Tetris, have different negated
static predicates in action preconditions.) Below, we refer di-
rectly to inequality constraints but the technique would work
for any static predicate. Inequalities have an additional ad-
vantage, though, as they can be treated as a built-in predicate
by gringo. Note that this is already the case in PDDL.

The FD algorithm already removes actions that violate
inequalities in a postprocessing step. Let us call these ac-
tions as impossible actions. However, FD can still produce
actions that are only relaxed-reachable via impossible ac-
tions. Incorporating inequalities into the logic programs di-
rectly solves this problem. To illustrate, consider the exam-
ple in Figure 3. The canonical model of this program is
M = {p(1)}, and the task is relaxed unsolvable (because
G is not in M). If X ̸= Y is removed from the program,
then M = {p(1), A-applicable(1, 1), b(1), G}. The FD al-
gorithm postprocesses the ground actions and identifies that

p(1).

A-applicable(X,Y )← p(X), p(Y ), X ̸= Y.

b(X)← A-applicable(X,Y ).

G← b(1).

Figure 3: Datalog program where ignoring inequality would
produce a larger ground task, even after postprocessing.

A-applicable(1, 1) is an impossible action. Hence, it will be
discarded. But it cannot do that for b(1) and G unless it
keeps track of all derivations. So this task is still considered
solvable by FD although it is not.

Experiments We tested our algorithms using inequalities
in the logic programs. We report the number of ground tasks
for iterated with inequalities, called iterated̸=, in
Table 1. For this algorithm, we only use inequalities in the
second phase. We do not use them in the first phase be-
cause they harm lpopt: inequalities make the precondi-
tions very dense and hence the treewidth much higher. For
example, the average treewidth found by lpopt goes from
2.1(±0.29) up to 4.6(±1.45) in the simplified programs of
organic-synthesis.

Compared to iterated, iterated̸= grounds 2 addi-
tional tasks in childsnack and 8 additional tasks in organic-
synthesis. Inequalities also occur in genome-edit-distance,
but the instances are not challenging enough to observe any
difference. However, even in tasks that both methods can
ground, considering inequalities improves the speed of the
grounder. Figure 1 also shows the time of iterated̸=, and
is has a clear edge over iterated in terms of time. In an
extreme example, iterated took 840s to ground a task,
while iterated̸= needed only 7s.

Even with inequalities, there are still tasks in organic-
synthesis that could not be grounded. We repeated our count-
ing experiment but now also considering inequalities. In this
case, the smallest instance in organic-synthesis has “only”
11 · 109 actions, and the largest has 81 · 1033. Although this
is a reduction of 103 actions in each case, these numbers are
still to large for current grounders and planners. The num-
bers for visitall-multidimensional remain unchanged.

Solving Planning Tasks
So far, we have focused on the grounding step. However,
this is not the only complicated step of the translation from
PDDL to a propositional task. Moreover, tasks that our al-
gorithms can now ground might still be out of reach of plan-
ners, producing no additional gain from better grounding.

As a proof of concept, we compared the coverage
of LAMA (Richter and Westphal 2010) using different
grounders. LAMA originally uses the FD algorithm. We
tested replacing it with gringo, and with iterated̸=.
Table 3 shows the results. In 4 out of the 8 domains, all meth-
ods have the same coverage. With its original grounder (FD),
LAMA achieves a better coverage in 2 domains (pipesworld
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Domain FD G iterated̸=

blocksworld (40) 8 8 8
childsnack (144) 103 103 103
genome-edit-dist. (312) 312 312 312
logistics (40) 4 4 4
organic-synthesis (56) 18 27 23
pipesworld-tankage (50) 15 14 14
rovers (40) 4 40 20
visitall-multidim. (180) 84 79 78

Total (862) 548 587 562

Table 3: Coverage of LAMA using different grounders. FD
is the original algorithm used in LAMA; G is the gringo
algorithm; iterated̸= uses the two-phase grounding ap-
proach incorporating inequalities.
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Figure 4: Number of tasks solved over time (in seconds) us-
ing LAMA with different grounders.

and visitall-multidim.), while using gringo solves more
tasks in rovers and organic synthesis. The number of addi-
tional instances solved by LAMA with gringo in these two
domains is surprisingly high, particularly in rovers. All tasks
in rovers are easy to solve and were beyond LAMA’s capac-
ity only due to its grounder. The same can be said about
organic-synthesis, a domain known for having short plans.

We also analyze the run time of each method. Figure 4
compares the number of instances solved over time. There
is a very clear ordering there: FD is the slowest, followed
by iterated̸= and gringo. This agrees with our previ-
ous observation (see Figure 1) that iterated̸= is much
slower than gringo. However, in the context of solving the
planning tasks, the slow-down caused by the two-phases of
iterated̸= is harmful, as it does not leave enough time
for the search component of LAMA.

Overall, our experiments show that using new grounding
algorithms helps to increase the number of solved tasks.

Related Work
Our work focuses on Datalog-based grounders for classical
planning, but there are other grounding algorithms in the lit-
erature. IPP (Köhler and Hoffmann 2000) grounds action

schemas one by one, and prunes partially ground actions
as soon as they violate static preconditions. One issue with
this approach is that the final model is even larger than the
relaxed-reachable one. The grounder used in FF (Hoffmann
and Nebel 2001) also relies on this pruning technique. It first
executes the IPP grounder and then reduces the set of atoms
and actions by identifying which ones are relaxed-reachable.
Helmert (2009) reports that both of these grounders are usu-
ally fast, but FD has better scalability. To add this pruning
technique, we would need to change the grounding algo-
rithm, while our approach on how to exploit negated static
preconditions only modifies the logic program used as input.

There also are techniques in the planning literature to im-
prove the grounder by Helmert (2009). Fišer (2020) presents
an algorithm to exploit mutex groups during grounding. The
algorithm uses fact-alternating mutex groups (fam-groups)
to prune actions identified as unreachable during ground-
ing. It is not clear how one could incorporate these ideas
into our algorithms. Although fam-groups could be encoded
as choice rules and aggregates (Gebser et al. 2019) into our
logic programs, the extra rules would need to be grounded
before finding a stable model, which defeats the purpose of
Fišer’s algorithm. However, it should be possible to incor-
porate the pruning based on fam-groups into the seminaive
algorithm (as in the original paper).

Another alternative is the incremental grounding by Gnad
et al. (2019). Their idea is to ground only part of the relaxed-
reachable atoms and actions first, then try to find a plan
with this limited set. If no plan is found, the process restarts
with more atoms and actions. In their work, Gnad et al. use
machine learning to identify the subset of atoms and ac-
tions that should be grounded. Their method could be inte-
grated with our iterated algorithm: after computing the
first phase (using gringo+lpopt) we could compute only
some stable models of the second phase (e.g., a maximum
number of instantiations per action schema).

Conclusion
In this work, we studied alternatives to the grounding al-
gorithm by Helmert (2009), which uses logic programming
to find the relaxed-reachable actions of a planning task. Our
empirical results showed that replacing the original FD algo-
rithm with more modern grounders for logic programs yields
superior results in terms of the number of ground tasks. We
presented a more sophisticated method, called iterated,
that decouples the grounding procedure into two phases: one
to obtain all relaxed-reachable atoms, and one to obtain all
relaxed-reachable actions. While this method can ground
more logic programs, it is also slower than off-the-shelf
grounders, such as gringo. Our experiments also showed
that most tasks not grounded by any method are impracti-
cal to ground, as they have an enormous number of actions.
To deal with such tasks, one should look into grounders not
based on delete-relaxation or lifted planners.

Both gringo and iterated help classical planners
solve more tasks. This means that some tasks that we can
now ground were already in reach of classical planners. Out-
side the planning context, we believe that iterated could
be used to ground Datalog programs in general.
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