
Planning over Integers: Compilations and Undecidability

Daniel Gnad1, Malte Helmert2, Peter Jonsson1, Alexander Shleyfman3

1Department of Computer and Information Science, Linköping University, Linköping, Sweden
2 Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland

3Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
{daniel.gnad, peter.jonsson}@liu.se, malte.helmert@unibas.ch, alexander.shleyfman@biu.ac.il

Abstract

Restricted Tasks (RT) are a special case of numeric planning
characterized by numeric conditions that involve one numeric
variable per formula and numeric effects that allow only the
addition of constants. Despite this, RTs form an expressive
class whose planning problem is undecidable. The restricted
nature of RTs often makes problem modeling awkward and
unnecessarily complicated. We show that this can be allevi-
ated by compiling mathematical operations that are not na-
tively supported into RTs using macro-like action sequences.
With that, we can encode many features found in general nu-
meric planning such as constant multiplication, addition of
linear formulas, and integer division and residue. We demon-
strate how our compilations can be used to capture challeng-
ing mathematical problems such as the (in)famous Collatz
conjecture. Our approach additionally gives a simple unde-
cidability proof for RTs, and the proof shows that the number
of variables needed to construct an undecidable class of RTs is
surprisingly low: two numeric and one propositional variable.

Introduction
Planning with numeric fluents is undecidable even under se-
vere restrictions (Helmert 2002). Nevertheless, significant
progress has been made in developing planners suitable for
numeric tasks (Scala, Haslum, and Thiébaux 2016; Kuroiwa
et al. 2021). The scope of applicability of such planners is
not well-understood but it is safe to assume that they are
more efficient when used for highly restricted planning for-
malisms. Hence, it is interesting to study formalisms such
as Restricted Tasks (RT) by Hoffmann (2003), where nu-
meric conditions only involve one numeric variable per for-
mula and numeric effects only allow the addition of con-
stants. Even though RT is an extremely restricted formalism,
its planning problem is still undecidable.

Modelling problems in RT is complicated, though, which
leads to several drawbacks. The most obvious one is the
difficulty of handling natural problems within the formal-
ism. Even though one’s ambition may not be to fully capture
complex problems such as industrial systems, it is still ben-
eficial to understand the expressivity of RT. This may, for
instance, be used when exploiting RT as a limited formalism

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for heuristic computation, e. g. to combine improved compu-
tational properties with maximal possible expressivity. An-
other example is the construction of benchmark problems
where one wants to combine simplicity (and consequently
understandability) with adverse computational properties.

We investigate the expressivity of RT via task compila-
tions that use macro-like action sequences to encode unsup-
ported mathematical operations. Compilations are a means
to express features of a richer formalism, such as axioms,
conditional effects, or state-dependent action cost, into a
simpler one (Nebel 2000; Thiébaux, Hoffmann, and Nebel
2005; Speck et al. 2021). Macros are a common tool for rep-
resenting subsequences of operators, and have proven to be
useful in various respects (Korf 1987; Giménez and Jons-
son 2008; Chrpa 2010; Chrpa and Vallati 2022). They are
usually considered to be compound actions that replace the
original component actions. We use the term here informally
to refer to sequences of actions that have to be applied in a
given order. Our mathematical macros compile complex nu-
meric operations into the restricted language available in RT.

We assume all numbers to be integers and first intro-
duce a formalism that can represent linear expressions in
a straightforward way. By partially using ideas from Hoff-
mann (2003), we show that tasks in this formalism can be
compiled into RT in a way that suggests macro-like con-
structions for the underlying mathematical operations. This
is done by introducing additional variables for controlling
the action execution. One consequence of these results is
that RT and a particular numeric planning formalism INT
have exactly the same expressibility up to polynomial-time
reducibility. We emphasize that INT is able to handle a broad
range of arithmetic operations—INT is a natural numeric
planning subclass of PDDL2.1 level 2 (Fox and Long 2003).

Mathematical macros add a whole new repertoire of pow-
erful and easy-to-use operations to RT. We demonstrate this
by modelling the computational problem underlying the
Collatz conjecture in RT. The Collatz conjecture is one of the
most well-known unsolved problems in mathematics (La-
garias 2010); Paul Erdős famously stated that ”Mathematics
may not be ready for such problems”. The representation
of this problem becomes straightforward and highly under-
standable in RT via the compilations, illustrating that math-
ematical modelling in RT is significantly simplified. Our ap-
proach also allows us to provide a simple undecidability

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

148

proof for RT and it shows that the required number of vari-
ables is notably small—only two numeric and one proposi-
tional variable. The result holds even if every action affects
at most one numeric variable, i.e. in the absence of numeric
cross-effects. This adds new pieces to our understanding of
the complexity landscape of numeric planning.

Restricted Tasks
We start with a fragment of numeric planning based on the
finite-domain planning (FDR) formalism (Bäckström and
Nebel 1995; Helmert 2009) augmented with numeric flu-
ents. We focus on a variant of numeric planning defined by
Hoffmann (2003) called the restricted numeric task (RT).

Formally, we define an RT as a tuple ΠRT = ⟨V ,A, s0, G⟩.
Here, V = Vn ∪ Vp is a set of numeric and propositional
variables, respectively. The set A is the actions of the task,
s0 is the initial state, and G is the set of goal conditions. We
assume all these sets to be finite. Each variable v ∈ Vp has
a finite domain D(v) and each variable v ∈ Vn can take any
rational value, i.e., D(v) = Q. The states of ΠRT form a set
S :=

Ś

v∈Vp
D(v)×

Ś

v∈Vn
Q, corresponding to the possi-

ble assignments to V . A state s ∈ S is a tuple ⟨sp, sn⟩, where
sp ∈

Ś

v∈Vp
D(v) and sn ∈

Ś

v∈Vn
Q. ⟨v, d⟩ denotes a

fact, where v ∈ V and d ∈ D(v). We say that s |= (v = d)
iff ⟨v, d⟩ ∈ s, and write s[v] = d, i.e., s[v] indicates the
value of v ∈ V in state s. A state s can be seen as a set of
facts so we write s = sp ∪ sn as a minor abuse of notation.
A set of facts spt is a partial state if s′ ⊆ s and s ∈ S .

Conditions can be either propositional, i. e., partial propo-
sitional states spt, or numeric, defined as v ▷◁ w, with
▷◁∈ {>,≥, <,≤}, v ∈ Vn, and w ∈ Q. A propositional
condition ψ is satisfied by the state s if spt ⊆ s. A numeric
condition v ▷◁ w is satisfied by s if s[v] ▷◁ w.

An action a ∈ A is a tuple ⟨pre(a), eff(a)⟩, where pre(a)
is the precondition and eff(a) the effect of a. Preconditions
are given by prep(a) ∪ pren(a), propositional and numeric
conditions, respectively. Effects eff(a) := effp(a) ∪ effn(a)
are similarly defined as sets of propositional and numeric
effects. We assume throughout the paper that each action has
at most one effect on each variable. In RT, numeric effects
have the form (v += c), where v ∈ Vn and c ∈ Q\{0}. An
action a is applicable in state s if s |= pre(a). The result of
applying a in s is denoted by sJaK := s′p∪s′n, with s′p[v] = d
if ⟨v, d⟩ ∈ effp(a), s′n[v] = sn[v]+c if (v += c) ∈ effn(a),
and sJaK[v] = s[v] otherwise.

The goal condition G = Gp ∪Gn is a set of propositional
and numeric conditions, respectively. s∗ is a goal state if
s∗ |= G. A plan is a consecutively applicable action se-
quence π that start in s0 and ends in some s∗ |= G.

Each RT can be transformed into its integer form, where
all constants are in Z (Helmert 2003).

Planning over Integers
In this section we present a formalism that extends the arith-
metic operations supported by restricted tasks. Our formal-
ism assumes all numbers to be integers and allows much
broader options for planning over integer numbers. We base

our definition on a subset of numeric planning tasks as de-
fined in PDDL2.1 level 2 (Fox and Long 2003), introducing
additional features to the formalism.

Let an Integer Numeric Planning Task (INT) be a tu-
ple Π = ⟨V ,A, s0, G⟩. The propositional part of the task
is represented in FDR as before. The numeric part of the
task is defined as follows. We assume that all numeric
variables Vn have integer values, so s0[x] ∈ Z for all
x ∈ Vn. For numeric conditions, we allow formulas of the
form

∑
x∈Vn

wxx ▷◁ w0, where ▷◁∈ {>,≥, <,≤}, and
wx, w0 ∈ Z. We say that s |=

∑
x∈Vn

wxx ▷◁ w0 if it holds
that

∑
x∈Vn

wxs[x] ▷◁ w0.1
The numeric effects are more intricate. Unlike RTs that

allow only numeric effects of the form x += c, we introduce
effects of the form x := ξ, where ξ is the linear formula∑
x∈Vn

cξxx + cξ0, with integer coefficients cξx, c
ξ
0 ∈ Z. This

subsumes effects x += c, encoding them as x := x+ c.
We introduce two additional operators: least positive

residue mod, and integer division //. If a, c ∈ Z, then there
are two numbers q ∈ Z and r ∈ N0, s.t. a = c · q + r, and
r < |q|; we write q = a//c and r = a mod c. With this, we
allow two novel numeric action effects in INT: x := y//c
and x := y mod c, where x, y ∈ Vn and c ∈ Z.

From INT to RT in Polynomial Time
It is obvious that any RT can be efficiently transformed into
an equivalent INT: every RT can be converted into an integer
RT (as pointed out earlier) and each effect x += c can be re-
placed with x := x+ c. In the following, we will prove that
any INT can be efficiently transformed into an RT. We start
by transforming all linear conditions into restricted condi-
tions over one variable, as described by Hoffmann (2003).

Every linear condition ψ =
∑
x∈V w

ψ
x x ▷◁ w0 that ap-

pears in INT, can be brought to some canonical integer lin-
ear normal form (ILNF) by dividing it by the GCD of all
constants involved, and assuring that the first variable in a
predefined order is always positive (cf. LNF in Hoffmann
2003). For every condition ψ we then introduce a variable
yψ , and replace all occurrences of ψ ▷◁ w0 with yψ ▷◁ w0.

We need to assure that in every state s it holds that
s[yψ] =

∑
x∈V w

ψ
x s[x]. This is done by initializing all new

variables to s0[yψ] =
∑
x∈V w

ψ
x s0[x], and adding an effect:

yψ :=
∑
x∈V

wψx ξx,

to each action a that affects at least one of the variables in
V ⊆ Vn. Here, either (x := ξx) ∈ effn(a) or ξx = x if
the variable x is not affected by a. The effect on yψ is well-
defined because every action has at most one effect on each
numeric variable x.

It remains to show that a weighted sum of the effects
of the form y := cx, residue y := x mod c, and division
y := x//c can be encoded using only propositional vari-
ables and effects of the form y += c, where x, y ∈ Vn and
c ∈ Z. We do so in the next section by introducing macro-
like constructions that compile these operations into RT.

1Note that any linear formula can be brought to an integer form
by multiplication with the GCD of all denominators.

149

Compiling Integer Arithmetics into RT

We compile away the aforementioned new arithmetic oper-
ations by introducing mathematical macros, i. e., sequences
of actions, that only employ the basic operations supported
by RTs. We do so by adding new variables and actions to or-
ganize the control flow and store interim results. We remark
that we are merely scratching the surface of possible opera-
tions, and statements such as exponentiation, absolute value,
and many others can be compiled into RT in a similar way.

For every compilation scheme, we introduce a proposi-
tional variable ctrl that controls the execution, each of which
has the value ⊥, and a value per component action. To avoid
that intermediate states satisfy the goal condition, we add the
fact ⟨ctrl,⊥⟩ to the initial state s0 and goal G. The variable
ctrl is set to the value of the current macro action executed,
and returns to be ⊥ at the end of the execution of a macro.
The compilations, as defined next, are correct only if there is
a single respective integer effect per action. We discuss how
to support multiple effects at the end of the section.

Assignment: Let a be an action with numeric effects that
include ξ : (x := c) for x ∈ Vn, c ∈ Z:

We introduce a propositional variable vxC with domain
D(vxC) = {⊥}∪ {c | ∃a : (x := c) ∈ effn(a)}. We change
the effect of a by removing ξ and adding a propositional
effect ⟨vxC , c⟩. Furthermore, we add actions that incremen-
tally set the value of x to c as follows (we show the actions
for the case where x < c, the case where x > c works anal-
ogously):

• ax:=C with pre(ax:=C) = {⟨vxC , c⟩} ∪ {x < c} and
eff(ax:=C) = {x += 1},

• ax=C with pre(ax=C) = {⟨vxC , c⟩} ∪ {x = c} and
eff(ax=C) = {vxC = ⊥}.

Finally, we add a precondition ⟨vxC ,⊥⟩ to all existing ac-
tions ensuring that the macro is completed after applying a
and no other action is applicable in between. Note that all
assignment effects to x are encoded in a single propositional
variable vxC . This can be generalized by using vxC for as-
signments to any numeric variable y ∈ Vn by “remember-
ing” the variable to be assigned to in the value of vxC .

Multiplication by a constant: Let a be an action with nu-
meric effects including ξ : (y := cx) for x, y ∈ Vn, c ∈ Z:

We introduce a propositional variable vycx with domain
D(vycx) = {⊥, buf,mul} and a numeric buffer variable b.
We change the effect of a by removing ξ and adding effects
{⟨vycx, buf⟩} ∪ {(y := 0), (b := 0)}, and introduce new
actions that first buffer the value of x and then incrementally
set y to the value cx as follows:

• abufx with pre(abufx) = {⟨vycx, buf⟩} ∪ {x > 0} and
eff(abufx) = {(x −= 1), (b += 1)},

• ab=x with pre(ab=x) = {⟨vycx, buf⟩} ∪ {x = 0} and
eff(ab=x) = {⟨vycx,mul⟩},

• ay:=cx with pre(ay:=cx) = {⟨vycx,mul⟩} ∪ {buf > 0}
and eff(ay:=cx) = {(x += 1), (b −= 1), (y += c)},

• ay=cx with pre(ay=cx) = {⟨vycx,mul⟩} ∪ {buf = 0}
and eff(ay=cx) = {⟨vycx,⊥⟩}.

As before, for x < 0 or c < 0 we need analogous actions,
and to ensure that the macro is completed after applying a,
we add the precondition ⟨vycx,⊥⟩ to all existing actions. A
single propositional variable can be used to compactly en-
code such kinds of effects for all numeric variables.

We remark that this compilation can be generalized to
effects that are linear weighted sums over several numeric
variables by sequentially executing it for all parts of the sum.

Least positive residue: Let a be an action with numeric
effects that include ξ : (x := x mod c) for x ∈ Vn, c ∈ Z:
We introduce a propositional variable vxmodC with domain
D(vxmodC) = {⊥} ∪ {c | ∃a : (x := x mod c) ∈ effn(a)}.
We change the effect of a by removing ξ and adding a
propositional effect ⟨vxmodC , c⟩ and add new actions that
deduct c from x until it has the value x mod c as follows
(for x > 0, c > 0):
• axmodC with pre(axmodC) = {⟨vxmodC , c⟩} ∪ {x ≥ c}

and eff(axmodC) = {x −= c},
• axmod⊥ with pre(axmod⊥) = {⟨vxmodC , c⟩} ∪ {x < c}

and eff(axmod⊥) = {vxmodC = ⊥}.
The cases where x and/or c are negative can be handled

in the same way so there are four cases in total. We add the
precondition ⟨vxmodC = ⊥⟩ to all existing actions as before.

Note that the effect ξ : (y := x mod c) can be modeled
using consecutively y := x and y := y mod c.

Integer division: Let a be an action with numeric effects
that include ξ : (x := x//c) for x ∈ Vn, c ∈ Z:

We introduce a propositional variable vx//C with domain
D(vx//C) = {⊥} ∪ {c | ∃a : (x := x//c) ∈ effn(a)} and
a numeric buffer variable b. We change the effect of a by
removing ξ and adding effects {⟨vx//C , c⟩} ∪ {(b := 0)},
and add new actions that incrementally compute x//c in the
buffer and then set x to the value of b as follows:
• ax//C with pre(ax//C) = {⟨vx//C , c⟩} ∪ {x ≥ c} and
eff(ax//C) = {(x −= c), (b += 1)},

• ax//⊥ with pre(ax//⊥) = {⟨vx//C , c⟩} ∪ {x < c} and
eff(ax//⊥) = {vx//C = ⊥} ∪ {x := b}.

As before, we add guarding preconditions ⟨vx//c,⊥⟩ to
all existing actions, and remark that the cases where x and/or
c are negative can be modelled in the same way.

Linear weighted sums: Let a be an action with numeric
effects that include ξ : (x :=

∑
y∈V wyξy) for V ⊆ Vn, x ∈

Vn, wy ∈ Z. We add a propositional variable vΣ, where
D(vΣ) = {⊥} ∪ {bufy, addy | y ∈ V }, and for each
variable y ∈ V a numeric variable by . The new variables
are initialized to ⟨vΣ,⊥⟩ and by = 0 for each y ∈ V . We
change the effect of a by removing ξ and adding the effect
{⟨vΣ, bufy⟩}. Assume some order on the variables in V :
• Let ξy be one of the following effects cy, y mod c or
y//c. Using the above compilation schemes, we assign
by := ξy , and set vΣ to the next variable in the order of
V until all buffers at initialized.

• When all buffers are set, we set x := 0 and change the
value of vΣ to the first {⟨vΣ, addy⟩} according to the
given order of variables.

150

• Last, in the given variable order, we add x += wyby and
set by := 0 for all y ∈ V , and finally set vΣ to ⊥.

This concludes our introduction of compilations for inte-
ger arithmetics. Note that for the macros to be applicable in
the same plan, each action has to have preconditions of the
form {⟨ctrl,⊥⟩} for each propositional flag variable ctrl of
all other action compilations involved.

Application of multiple numeric effects: Note that
sometimes the application of multiple numeric effects of an
action may lead to inconsistency. Consider, for example, an
action a with two numeric effects x := y and y := x, where
application of one of the effects may hurt the application
of the other. To work around this problem, we introduce
one additional buffer per affected variable. In this example,
these are tempx and tempy . Then, we can use the standard
trick to swap between variables. We use macros to ensure the
following sequence of assignments: we first set the buffers
tempx := x, tempy := y, and then use the buffers to as-
sign the values to the original variables x := tempy and
y := tempx. We remark that multiple action effects can be
handled in the same way for all compilations we introduced.

Collatz Problems
We will next exemplify how our compilations can be em-
ployed in a more intricate setting. Consider the following
function on positive integers:

f(n) =

{
n/2, n is even
3n+ 1, n is odd

Lothar Collatz conjectured that for every n ∈ N there is
a number k such that f (k)(n) = 1, where f (k) denotes k-
times recursive application of f . This conjecture is one of
the most famous open problems in mathematics (Lagarias
2010). Conway (1972) introduced Collatz functions as fol-
lows. Choose an integer p together with rational numbers
ai, bi ∈ Q, 0 ≤ i ≤ p − 1. A function g is Collatz if
g(n) = ain + bi is integral whenever n = i mod p. We
see that the function f above is Collatz by choosing p = 2,
a0 = 1/2, b0 = 0, a1 = 3, and b1 = 1. We show that
for every Collatz function g, there is an RT that gets n as
an input in its initial state and reaches its goal state if and
only if there is a k ∈ N s.t. g(k)(n) = 1. This is not purely
a modelling exercise: Conway (1987) proved the following
undecidability result.

Theorem 1 (Conway 1987). There is a Collatz function g
such that the following problem is undecidable: given a pos-
itive integer n, does there exist a positive integer k such that
g(k)(n) = 1?

Thus, our transformation into RT immediately implies un-
decidability of RT planning. We will now present the details
of the transformation. Let g be a Collatz function and let
ai, bi ∈ Q and 0 ≤ i ≤ p − 1 be the numbers that define
g. The variables of our RT are Vn = {x, buffx} and Vp =
{ctrl}, where D(ctrl) = {⊥, 1modp, . . . , (p − 1)modp}.
The initial state s0 is {⟨x, n⟩, ⟨buffx, 0⟩, ⟨ctrl,⊥⟩} and the
goal condition G is {x = 1, buffx = 0} ∪ {⟨ctrl,⊥⟩}. The

actions first compute x mod p and then do a case distinction
based on the residue values as follows:

• amodp
with pre(amodp

) = {x ≥ p} ∪ {⟨ctrl,⊥⟩} and
eff(amodp

) = {x −= p, buffx += 1}. Note that this
also sets buffx := x//p along application.

• For each i ∈ [p]− 1 we define three types of actions:

– aseti makes the case distinction:
pre(aseti) = {x = i} ∪ {⟨ctrl,⊥⟩}, and
eff(aseti) = {⟨ctrl, imodp⟩} ∪ {x += (ai − 1)i}.

– amulti multiplies x by ai:
pre(multi) = {buffx > 0} ∪ {⟨ctrl, imodp⟩}, and
eff(multi) = {x += aip, buffx −= 1}.

– aaddi
adds bi to x and finishes the macro:

pre(addi) = {buffx = 0} ∪ {⟨ctrl, imodp⟩}, and
eff(addi) = {x += bi} ∪ {⟨ctrl,⊥⟩}.

It is easy to see that this exactly encodes the Collatz prob-
lem for any function g and input value n; the value of gk(n)
is achieved iff buffx = 0 and ⟨ctrl,⊥⟩. Thus, the ability to
encode integer division and residue in RT, allows us to com-
pactly model well-known mathematical problems.

Finally, we remark that, while the above encoding of Col-
latz problems has actions with effects on both numeric vari-
ables, we can easily avoid such cross-effects, so that ev-
ery action affects at most one numeric variable. This is
achieved by introducing additional propositional values to
sequentialize cross-effects. For amulti , we split every value
imodp of ctrl into two, replace the effect (buffx −=

1) by ⟨ctrl, imod1p⟩, and add an action with precondition
{⟨ctrl, imod1p⟩} and effects {⟨ctrl, imod1p⟩, (buffx −= 1)}.

This means that, coming as a surprise to us, RTs are unde-
cidable for only two numeric and one propositional variable,
even in the absence of numeric cross-effects.

Conclusions and Research Directions
We have demonstrated how to compile various not natively
supported mathematical operations into RT. This allows us to
model numeric planning problems in a much more straight-
forward way than by working in the basic RT formalism. A
natural question in this context is what the limits of such
compilations are: can we formally characterize the mathe-
matical operations that are compilable to RT?

Our results show that RT and INT have the same expres-
sive power in a precise sense: the formalisms are equiva-
lent up to polynomial-time preprocessing of planning in-
stances. Moreover, we show that RT is equivalent to lin-
ear numeric tasks (Hoffmann 2003), where all constants are
integers. Analysing and comparing the features of various
planning formalisms has a long history in planning: one of
the first examples of a systematic approach was presented by
Nebel (2000) and there is now a row of related results in the
literature, cf. the recent papers by Lin and Bercher (2022)
and Scheck, Niveau, and Zanuttini (2021). Most of the re-
sults presented in the literature are concerned with finite-
domain planning so our result is different in this respect.
Thus, analysing and comparing the expressive power of nu-
meric planning appears to be a feasible research direction.

151

Acknowledgments
Daniel Gnad was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215, and by the
Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg
Foundation. Peter Jonsson was partially supported by the
Swedish Research Council (VR) under grant 2021-0437.

References
Bäckström, C.; and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence, 11(4): 625–
655.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review, 25(3): 281–297.
Chrpa, L.; and Vallati, M. 2022. Planning with critical sec-
tion macros: theory and practice. Journal of Artificial Intel-
ligence Research, 74: 691–732.
Conway, J. H. 1972. Unpredictable iterations. In Number
Theory Conference, 49–52. University of Colorado.
Conway, J. H. 1987. Fractran, a simple universal computing
language for arithmetics. In Open Problems in Communica-
tion and Computation, 3–27. Springer Verlag.
Fox, M.; and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Giménez, O.; and Jonsson, A. 2008. The complexity of plan-
ning problems with simple causal graphs. Journal of Artifi-
cial Intelligence Research, 31: 319–351.
Helmert, M. 2002. Decidability and undecidability re-
sults for planning with numerical state variables. In Proc.
6th International Conference on Automated Planning and
Scheduling (AIPS-2002), 303–312.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence, 143(2):
219–262.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173: 503–535.
Hoffmann, J. 2003. The Metric-FF planning system: trans-
lating ”ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20: 291–341.
Korf, R. E. 1987. Planning as search: a quantitative ap-
proach. Artificial Intelligence, 33(1): 65–88.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2021. LM-cut and operator counting heuris-
tics for optimal numeric planning with simple conditions. In
Proc. 31st International Conference on Automated Planning
and Scheduling (ICAPS-2021), 210–218.
Lagarias, J. C. 2010. The Ultimate Challenge: The 3x + 1
Problem. American Mathematical Society.
Lin, S.; and Bercher, P. 2022. On the expressive power
of planning formalisms in conjunction with LTL. In Proc.
32nd International Conference on Automated Planning and
Scheduling (ICAPS-2022), 231–240.

Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research, 12: 271–315.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
for numeric planning via subgoaling. In Proc. 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
2016), 3228–3234.
Scheck, S.; Niveau, A.; and Zanuttini, B. 2021. Knowledge
compilation for nondeterministic action languages. In Proc.
21st International Conference on Automated Planning and
Scheduling (ICAPS-2021), 308–316.
Speck, D.; Borukhson, D.; Mattm”uller, R.; and Nebel, B.
2021. On the Compilability and Expressive Power of State-
Dependent Action Costs. In Goldman, R. P.; Biundo, S.; and
Katz, M., eds., Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS
2021), 358–366. AAAI Press.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In Defense
of PDDL Axioms. AIJ, 168(1–2): 38–69.

152

