
Multi Agent Path Finding Under Obstacle Uncertainty

Bar Shofer, Guy Shani, Roni Stern
Software and Information Systems Engineering, Ben Gurion University

shoferb@post.bgu.ac.il, shanigu@bgu.ac.il, roni.stern@gmail.com

Abstract

In multi-agent path finding (MAPF), agents must move from
their current positions to their target positions without collid-
ing. Prior work on MAPF commonly assumed perfect knowl-
edge of the environment. We consider a MAPF setting where
this is not the case, and the planner does not know a-priori
whether some positions are blocked or not. To sense whether
such a position is traversable, an agent must move close to
it and adapt its behavior accordingly. In this work we focus
on solving this type of MAPF problem, for cases where plan-
ning is centralized but cannot be done during execution. In
this setting, a solution can be formulated as a plan tree for
each agent, branching on the observations. We propose algo-
rithms for finding such plans trees for two modes of execu-
tions: centralized, where the agents share information con-
cerning observed obstacles during execution, a decentralized,
where such communication is not allowed. The proposed al-
gorithms are complete and can be configured to optimize so-
lution cost, measured for either the best case or the worst case.
We implemented these algorithms and provide experimen-
tal results demonstrating how our approach scales with re-
spect to the number of agents and the number of positions we
are uncertain about. The results show that our algorithms can
solve non-trivial problems, but also highlight that this type of
MAPF problems is significantly harder than classical MAPF.

1 Introduction
In multi-agent path finding (MAPF), we must plan for sev-
eral agents to move from their current positions to some
target positions without colliding (Stern et al. 2019). This
is an important task with numerous real-world applications,
ranging from the movement of robotic arms, through robots
in automated warehouses, to autonomous cars. Research in
MAPF has mainly focused on the classical case, where the
environment is fully observable. However, in many practi-
cal robotic applications, the robot can only identify obsta-
cles through sensors, typically only within some proximity
(Lenser and Veloso 2003). We model this type of MAPF
problem, where some obstacles (e.g., walls) are known in
advance while other obstacles (e.g., heavy objects or closed
doors) can only be sensed once the agent reaches the prox-
imity of the obstacles. We refer to these obstacles as poten-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tial obstacles and call this problem MAPF under obstacle
uncertainty (MAPFOU).

In MAPFOU, the best action for each agent may depend
on which obstacles have been sensed so far during execu-
tion. Therefore, a solution to a MAPFOU can be formalized
as a set of plan tree (Hoffmann and Brafman 2005), one per
agent, that branch on obstacle observations. Each of these
plan trees can be exponential in the number of uncertain ob-
stacles. Thus, finding a solution for a MAPFOU problem is
harder than for a classical MAPF problem (CMAPF).

Throughout this paper, we assume that planning is done in
a centralized manner. In the first part of the paper, we con-
sider a centralized plan execution, where all agents share
their observations. Under this assumption, the plan tree of
one agent can branch on the observations of other agents.
In the second part of the paper, we consider a decentral-
ized plan execution, where the agents cannot communicate
during execution, and each agent must rely only on its own
observations. We propose complete algorithms for solving
MAPFOU problems under the centralized and the decen-
tralized plan execution modes. These algorithms build on
existing work for CMAPF, namely the conflict-based search
(CBS) algorithm (Sharon et al. 2015), and generalize it to
MAPFOU. We also show how these algorithms can be ad-
justed to guarantee different types of cost optimality.

We implemented our algorithms and analyzed their per-
formance experimentally for different grid sizes, number of
agents, and amount of potential obstacles. Our results show
that the proposed algorithms can be used to solve MAPFOU
problems. The results also highlight that solving MAPFOU
is much more difficult than CMAPF, and scaling to a large
number of agents is a major open challenge.

2 Background and Related Work
We now review relevant background on multi-agent path
finding problems, the CBS algorithm, and contingent plan-
ning under partial observability and sensing actions.

Classic MAPF Problem A classical multi agent path-
finding problem (CMAPF) (e.g. Stern et al. 2019) for k ≥ 2
agents is a tuple ⟨G, s, t⟩ where G = (V,E) is an undirected
graph, and s, t are lists of vertices. s = [s1, s2, ..., sk], t =
[t1, t2, ..., tk] define source and target vertices for each
agent, i.e., si is the initial vertex where agent i begins, and

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

402

ti is the target vertex where agent i should arrive. Time is
discrete, and at every time step each agent performs a single
action: moving to a neighbor vertex or waiting in its cur-
rent vertex. A classical single-agent plan for agent i is a se-
quence of actions corresponding to moving i from si to ti.
A pair single-agent plans πi and πj is said to have a con-
flict if they plan to occupy the same vertex at the same time.
This is called a vertex conflict (Stern et al. 2019). In our
implementation, we allowed swapping conflicts, i.e., where
agents traverse the same edge from opposite directions at
the same time (Surynek 2015), but the theory presented in
this work can be extended to support swapping and similar
types of conflicts. We leave the discussion of other conflict
types to future research. A solution to a CMAPF problem
is a set of classical single-agent plans Π = {πi}ki=0, one
for each agent, such that all pairs of single-agent plans do
not conflict. We assume that agents that arrive at their tar-
get positions exit the graph, and hence, cannot participate
in additional conflicts. This assumption, while less common
in the MAPF literature, has been made in prior work on
MAPF (Svancara et al. 2019; Morag et al. 2022). Extend-
ing our algorithms to agents that remain in the graph until
all agents arrive at their target is straightforward.

A solution to a CMAPF problem can be optimal with
respect to a given objective function. Two common objec-
tive functions in the CMAPF literature are makespan — the
amount of time-steps until the last agent reaches its target
location, and sum of costs (SOC) — the total amount of ac-
tions required by all agents to reach their target location. In
this paper, we focus on the SOC, but conversion to makespan
would not require a significant change.

As with other multi-agent problems, during planning,
MAPF problems can be either distributed or centralized. In
a distributed setting, each agent plans independently, and in-
formation sharing must be done through pre-designed com-
munication protocols, which may incur additional cost. In
a centralized setting, we assume a single central computing
power that plans and searches for a solution for all agents.

In this paper, we focus on centralized planning. However,
in our case, one must consider whether the execution is also
centralized, i.e., whether agents share information over the
obstacles they observe while executing the plans.

Conflict Resolution Once a conflict between several
agents has been identified, it must be resolved to ensure a
safe solution. Given a conflict between a subset of agents,
we can plan jointly for the subset, avoiding joint actions that
lead to a collision (Standley 2010). However, planning for
multiple agents together increases the problem complexity
exponentially. Thus, such methods scale up poorly.

The conflict based search (CBS) (Sharon et al. 2015) al-
gorithm employs a different conflict resolution method in
which constraints are introduced over the set of vertices an
agent can visit at a given time. We denote by ⟨i, v, t⟩ a
constraint on agent i not to visit v at time t. We can then
use standard pathfinding algorithms to solve individually for
each agent subject to these constraints. To ensure optimality,
when two agents i, j have a potential conflict on vertex v at
time t, we can create two possible constraints ⟨i, v, t⟩ and

⟨j, v, t⟩. We can then solve once for each constraint, replan-
ning only for the agent that received the constraint. We can
then observe the two solutions, and choose the one that is
better, e.g., with a lower sum of costs.

As there can be multiple conflicts, CBS maintains a set of
constraints on each agent, and can be considered to search
the space of possible constraint sets. This search process can
be maintained as a binary tree, called the constraint tree.

Contingent Planning In classical automated planning
agents fully observe the current state. In contingent planning
under partial observability (Albore, Palacios, and Geffner
2009; Brafman and Shani 2012; Bonet and Geffner 2011),
some aspects of the problem are hidden, but can be either
directly observed using sensing actions, or reasoned about
given some observations. A solution to such problems can
be formalized as a plan tree, or more compactly, a plan
graph (Muise, Belle, and McIlraith 2014; Maliah, Komar-
nitsky, and Shani 2021). To compute such plan graphs we
can plan until the next sensing action, and then replan fol-
lowing each possible observation (Bonet and Geffner 2011;
Maliah, Komarnitsky, and Shani 2021). Multi-agent exten-
sions were also suggested (Brafman, Shani, and Zilberstein
2013; Bazinin and Shani 2018) in a decentralized setting.

MAPFOU problem can be modeled as a contingent plan-
ning problem (for centralized execution), or as a multi-agent
QDec-POMDP (for decentralized execution). However, cur-
rent contingent solvers support much more complicated set-
tings, such as complex relationships between the unobserved
aspects, and as such, do not scale as well. Our approach can
be considered as a domain-specific adaptation of replanning-
based contingent solvers, scaling to much larger problems.

The concept of optimal plan trees is also not trivial. It is
unclear how one can aggregate over multiple branches to
compare plan trees. Averaging over branches makes the un-
derlying assumption of uniform distribution. As the proba-
bility of obstacle existence is unknown, any such assump-
tion may lead to unjustified preference over plan trees
(Shmaryahu, Shani, and Hoffmann 2019). In this paper, we
focus on either optimizing for the best case, i.e., when all ob-
stacles are absent, or for the worst case, where all obstacles
exist. We make no guarantees over other plan tree branches.

Our problem is also related to the Canadian Traveler Prob-
lem (CTP) (Papadimitriou and Yannakakis 1991; Bnaya,
Felner, and Shimony 2009), a shortest path problem where
some edges are blocked with some probability. In MAP-
FOU, however, we do not have a probability distribution
over the potentially blocked vertices.

MAPF Variants with Uncertainty Various forms of un-
certainty in MAPF were studied in the past. Nebel et al.
(2019) explored uncertainty over the agents’ possible des-
tinations, where the agents cannot directly communicate
except to announce that they reached their destination. In
MAPF with delay probabilities (MAPF-DP) each agent ac-
tion may be delayed with some probability (Wagner and
Choset 2017; Hönig et al. 2016; Atzmon et al. 2020a). In
stochastic MAPF (Levy, Shani, and Stern 2022) an agent
may stochastically move in a different direction than in-
tended. Our problem is fundamentally different, as we do

403

Figure 1: Example grid. Agents must reach their designated treasure boxes. Doors can be open or closed. A possible plan tree
for agent 1. Arrows denote moving actions. di denotes sensing whether door i is open. o, c denote open and closed.

not assume known probabilities over the potential obstacles’
state. MAPF variants under known stochastic uncertainty
were also suggested. Atzmon et al.’s (2020b) work on ro-
bust MAPF finds solutions to CMAPF problems that are ro-
bust to delays up to a fixed threshold. Shahar et al. (2021)
explored MAPF with time uncertainty (MAPF-TU), given a
lower and upper bound over action duration. They proposed
both an offline approach and an online approach, and distin-
guished between free and limited communication, as we do.
They did not propose an offline solution that is optimal and
considers the observed information.

3 Problem Definition
We now describe an extension to MAPF that we call multi-
agent path finding under obstacle uncertainty (MAPFOU).
In MAPFOU, a subset of vertices in the graph may be
blocked by obstacles. We call these vertices potential obsta-
cles (POs). The state of a PO is either blocked or unblocked.
The agents do not initially know the state of the potential ob-
stacles, but can use sensing actions to reveal them. Formally,
a MAPFOU problem is a tuple ⟨G, s, t, O⟩, where G, s, t are
as in a CMAPF problem and O ⊆ V is the set of POs. An
obstacle configuration c : O → {blocked, unblocked, b|u}
is a mapping between POs and their possible state, where
c(p) = b|u represents that the state of p ∈ O is not yet
known. We say that an obstacle configuration c is complete
if every PO is mapped to either blocked or unblocked, i.e.,
there is no PO p such that c(p) = b|u. We say that two POs
c and c′ are consistent, denoted cons(c, c′) if they agree on
the state of every PO they know about, i.e.,

∀p ∈ O : c(p) = c′(p) ∨ c(p) = b|u ∨ c′(p) = b|u (1)

In our setting, there is a single obstacle configuration that is
true and does not change throughout the execution. A PO is
either blocked or unblocked and its state does not change.
The solver, of course, does not initially know the true ob-
stacle configuration. Problems where the state of a PO can
change arbitrarily throughout the execution are perhaps less
interesting, as there is no benefit in communicating an ob-
served PO to the other agents, because the state may change
by the time other agents will approach the PO.

The set of actions of an agent in a MAPFOU problem
contains the move and wait actions of a CMAPF problem,
as well as sense actions for each v ∈ O. In this paper, we
assume that a sensing action takes a single time step and can
only be executed when the agent is near an obstacle. That

is, an agent located at vertex vi can observe the occurrence
of obstacle in vj only if there exists an edge (vi, vj) ∈ E.
Extending the sensing model to allow sensing from a finite
range should not significantly influence our methods. How-
ever, a sensing model that allows agents to observe remotely,
e.g., from high ground from which several POs can be ob-
served, may raise value of information concerns, which are
difficult to model in non-stochastic settings.

A single-agent plan in a MAPFOU problem is a plan tree
τ , where nodes are labeled by actions, and edges are labeled
by observations. For move and wait actions, there is a single
outgoing edge labeled by the null observation. For sense ac-
tions, there are two outgoing edges labeled blocked(v) and
unblocked(v), where v is the sensed vertex. A node n in the
tree is associated with a time step n.t, a vertex n.v ∈ V ,
and an obstacle configuration n.c, which are the time step,
agent’s position, and agent’s knowledge about the state of
the POs, respectively, when it reaches n. In our sensing
model, n.c corresponds to the set of potential obstacles that
were sensed on the path from the root to n.

Example 1. In Figure 1, the vertices of the G are the grid
cells, and edges denote neighboring cells. In this case, move-
ment actions correspond to moving from the current grid cell
in one of the principal directions. Doors here, that may be
open or closed, correspond to the possible obstacles. That
is, O = {⟨1, 1⟩, ⟨3, 3⟩}. Figure 1 also shows an example of
a plan tree. Nodes are labeled by actions, where arrows de-
note movement, and di denote sensing actions over the ver-
tex where di resides. Each such sensing action can have two
possible outcomes — the doors are either open or closed,
and hence, the vertex is either blocked or unblocked, respec-
tively. In this plan tree agent 1 first attempts to move through
door d1. If it observes, once it is near the door, that the door
is open, it moves up toward its treasure box (branch b1). If
d1 is closed, it attempts to go to door d2, to move through
it to the box (b2). If that door is closed as well, the agent is
forced to go around the walls (b3).

To generalize the notion of a conflict, we observe that
a branch in a single-agent plan tree τ represents a clas-
sical single-agent plan. Formally, for a single-agent plan
tree τ and an obstacle configuration c, we denote by
tree2plan(τ, c) the classical single-agent plan represented by
the corresponding branch in τ .

Definition 1 (Conflict between Plan Trees). A pair of plan
trees τ i and τ j has a conflict if there exists a complete obsta-

404

cle configuration c for which the classical single-agent plans
tree2plan(τ i, c) and tree2plan(τ j , c) have a conflict.

Notice that, in the worst-case, identifying a conflict be-
tween plan trees is exponential in the number of POs. A
MAPFOU solution is a set of plan trees, one per agent. For
every leaf node n of τ i, n.v = ti and there are no conflicts
between its constituent single-agent plan trees.

Objective Function We assume that sensing actions do
not have an inherent cost, and only consider the cost of
the agents’ move and wait actions. Following prior work on
MAPF with non-deterministic delays (Shahar et al. 2021),
we consider two alternative objective functions: best-case
SOC and worst-case SOC. This also conforms with solu-
tion cost measures that have been proposed for single-agent
plan trees (Shmaryahu, Shani, and Hoffmann 2019). Let
SOC({πi}) denote the SOC of a set of classical single-
agent plans {πi}, and let C(P) denote all possible obstacle
configurations for a MAPFOU problem P:

best-case SOC: min
c∈C(P)

SOC({tree2plan(τ i, c)}) (2)

worst-case SOC: max
c∈C(P)

SOC({tree2plan(τ i, c)}) (3)

Observation 1. For any MAPFTOU problem P , if {τ i} is
an optimal solution wrt the best-case SOC objective function
then its cost is equal to the SOC of the single-agent plans
corresponding to the obstacle configuration where all poten-
tial obstacles are unblocked. Similarly, the optimal worst-
case SOC is obtained when assuming all POs are blocked.

Centralized vs. Decentralized Execution We assume
planning is centralized, and consider two possible execution
paradigms: centralized and decentralized. In centralized ex-
ecution, agents constantly share their observations and co-
ordinate their actions. That is, when one agent senses a po-
tential obstacle, all agents are immediately notified of the
outcome of this sensing action. Then, an agent can branch
its plan tree based on observations of other agents. In de-
centralized execution, communication during execution is
prohibited, and each agent must rely only on its own ob-
servations. It is also possible that communication has costs,
and agents must decide whether to sense themselves or ob-
tain information from other agents. We leave this for future
research. In summary, we consider in this work four vari-
ants of the MAPFOU problem: Centralized Execution while
optimizing for the Best Case SOC (CEBC), Centralized Ex-
ecution while optimizing for the Worst Case SOC (CEWC),
Decentralized Execution while optimizing for the Best Case
SOC (DEBC), and Decentralized Execution while optimiz-
ing for the Worst Case SOC (DEWC). All variants are at
least NP-Hard, since CMAPF, which is NP-Hard (Nebel
2020; Surynek 2010; Yu and LaValle 2013), is a special case
of MAPFOU without any POs. We conjecture that MAP-
FOU is EXP-SPACE complete, because the size of the plan
trees can be exponential in the number of POs.

Algorithm 1: Centralized execution, best case
1 CEBC

Input: : Graph G, Start vertices S, Target vertices T
Input: : Obstacle configuration c, Unknown POs U

2 G′ ← AssumeObs (G, c ∪ {v : unblocked|v ∈ U})
3 {π1, . . . , πk} ← PlanCMAPF(G′, S, T)
4 foreach agent i do
5 (ni

1, . . . n
i
|πi|)← CreateBranch(πi)

6 for j = 1...max(|πi|)− 1 do
7 Find p ∈ U such that ∃i : ⟨p, ni

j .p⟩ ∈ E
8 if there exists such p then
9 {τ ′i} ←CEBC

(
G, [ni

j .p]i, T,

10 c ∪ {p : blocked}, U \ {p}
)

11 for every agent ℓ do
12 Add a new node nsense with action

Sense(p) before nℓ
j

13 Add an outgoing edge from nsense,
marked unblocked(p), with child nℓ

j

14 Add an outgoing edge from nsense,
marked blocked(p), with child τ ′ℓ

15 Add p : unblocked to c
16 Remove p from U

17 For every agent i, create plan tree τ i, with root ni
1

18 return {τ i}
19 Main
20 CEBC(G, s, t, ∅, O)

4 Solving MAPFOU Using Replanning
We now present a set of algorithms for finding optimal solu-
tions for all the MAPFTO variants we consider in this work.

4.1 Centralized Execution
For the MAPFOU centralized execution variants (CEBC or
CEWC), we propose an iterative approach in which the algo-
rithm focuses on one obstacle configuration at a time, build-
ing the set of plan trees one branch at a time. Observe that
a MAPFOU with a single obstacle configuration is essen-
tially a CMAPF problem. We can use a standard CMAPF
solver to solve this CMAPF problem, resulting in a set of
safe single-agent plans for that particular obstacle configu-
ration. We convert each single-agent plan to a branch in the
set of plan trees, adding a sense action whenever an agent is
adjacent to a potential obstacle that has not been sensed yet.
For each of these sense actions, we call again the CMAPF
solver starting from the agent’s expected location and the
observation outcome that was not explored yet.

Algorithm 1 presents the pseudo code for our algorithm
for CEBC variant (omitting some details for ease of exposi-
tion). The input to our CEBC algorithm is (1) G, the under-
lying graph of the MAPFOU problem, (2) S, the currently
assumed locations of the agents, (3) T , the target location of
the agents, (4) c, an obstacle configuration representing an
assumption over the state of some of the potential obstacles,
and (5) U , a set of potential obstacles whose state is un-

405

known (i.e., b|u) in c. For a MAPFOU problem ⟨G, s, t, O⟩
the initial call to our CEBC algorithm sets S = s, T = t,
c = ∅, and U = O, representing that the agents are in their
initial locations and we do not assume anything yet about
the states of the potential obstacles.

We begin (line 2) by constructing an obstacle configura-
tion that is consistent with c and assumes all vertices in U
are unblocked. Then we create a corresponding graph G′,
removing all vertices that are considered blocked (the As-
sumeObs function), define a CMAPF problem ⟨G′, S, T ⟩
and solve it using an off-the-shelf CMAPF solver (the
PlanCMAPF function). This results in a conflict-free set of
classical single-agent plans Π = {πi} (line 3). Each single-
agent plan in this set is then transformed into a branch in the
plan tree of the corresponding agent (line 4). We then tra-
verse these branches, searching for the earliest node in which
an agent is planned to occupy a vertex that is adjacent to a
potential obstacle p that was not sensed yet (line 7). Then,
we add a Sense(p) action to all plan trees (line 12) creating
a branch in the plan trees to allow all agents to behave differ-
ently depending on whether given that potential obstacle is
blocked or not. In this, we abuse notation, as only one agent
actually senses whether p is blocked, and all other agents
only observe the result. We recursively create plan trees for
the case where p is blocked (line 10), and link the resulting
trees following the sensing nodes (line 14). Finally, we add
the assumption that p is unblocked to c and remove it from
U . Hence, if another agent must later pass through p, it no
longer needs to sense whether it is blocked. We ignore many
details. For example, it might be that multiple agents pass
through possibly blocked vertices at the same time step, re-
quiring a more delicate, but straightforward, treatment with
multiple consecutive sensing actions.

Example 2. Figures 2a and 2b show the plan trees created
by CEBC. We first call CEBC with c = ∅, U = {d1, d2}, the
agent start positions: s1 = ⟨3, 1⟩, s2 = ⟨1, 5⟩, and the agent
target positions, where the boxes are located: t1 = ⟨1, 4⟩,
t2 = ⟨2, 1⟩. First, assuming doors are open, the CMAPF
solver generates (lines 3-5) the topmost branches (b1 in both
trees) , without the sensing action (d1). The CMAPF solver
has identified a conflict and resolved it by moving agent 2
to the side and waiting for agent 1 to get to its target. Then,
agent 2 can move to its own target. After moving left in the
first action, agent 1 can sense whether d1 is open. As obser-
vations are shared during the central execution, we add the
sensing action in both plan trees (line 12), allowing agent 2
to act differently if d1 is closed. When d1 is closed, we call
CEBC recursively (line 10), with c = {blocked(d1)}, and
U = {d2}, and S is the current position of the agents: s1 =
⟨2, 1⟩, and s2 = ⟨1, 4⟩. Now, it is beneficial for both agents
to try and pass through d2. Agent 2 moves to the left of d2,
and senses. Then, again, we branch in both trees. We call
CEBC recursively with c = {blocked(d1), blocked(d2)},
U = ∅, s1 = ⟨4, 1⟩, and s2 = ⟨2, 3⟩.

Optimizing for the worst case, i.e., when all obstacles are
assumed to be blocked, is very similar. CEWC (centralized
execution worst case) differs from CEBC (Algorithm 1) in
that we assume in the CMAPF problem (line 2) that all un-

observed vertices are blocked. The recursive call (line 9), as-
sumes that p is unblocked, allowing a possible shortcut over
the worst case. The children of the sensing nodes are also
attached to the opposite case than in CEBC.

Example 3. Figures 2c and 2d show the plan trees for the
worst case. Here, we assume that all doors are closed. Hence,
the CMAPF solver must move the agents around the doors,
with a long wait (denoted W) for agent 2 until agent 1 moves
past the conflict area. It happens that here both agents move
next to d2 — agent 1 on its shortest path, and agent 2 as
it needs to move aside allowing agent 1 to pass. Then, one
agent can sense for d2, and if it happens to be open, both
agents can design a shorter path (branch b2).

We can see that for our running example, as often happens
in our experiments, the worst case avoids possible obstacles,
and thus the plan trees have fewer branches. For plan cost,
we can see that the best case in CEBC has a sum of costs
of 12 (ignoring sensing), and 16 for CEWC. For the worst
case, the sum of costs is 32 in CEBC, and 29 in CEWC.

Theorem 1. Given a sound, complete, and optimal CMAPF
solver, CEBC and CEWC algorithms are also sound, com-
plete, and optimal, i.e., guaranteed to return a solution, if
such exists, which has no conflicts and is optimal wrt to the
chosen objective function (best- or worst-case SOC).

Proof. Soundness. Every branch in the plan trees returned
by our algorithm is created by running a CMAPF solver un-
der the assumption of a specific obstacle configuration for
all agents. As the CMAPF solver is sound, the branches of
the plan trees do not contain any conflict, and all agents end
at the goal in that branch. In addition, the main loop (lines
6-15) ends after inspecting all actions in the active branch,
and hence the plan tree does not contain any unexplored
branches. Thus, the solution is sound, i.e., conflict-free and
in all leaves all agents reached their target.
Completeness. As the underlying graph G is undirected and
sensing actions do not change it, the agents can always back-
track to any joint state they occupied before. Thus, adding
nodes and edges to the plan trees never results in a dead-
end. The number of potential obstacles in finite and every
recursive call to our algorithm removes one potential con-
flict from U . Hence, we are guaranteed that our algorithm
terminates in finite time.
Optimality. Consider the best-case SOC objective function.
We know that the optimal best-case SOC is equal to the so-
lution of the CMAPF problem that corresponds to assum-
ing all potential obstacles are unblocked (Observation 1). By
construction, our algorithm is guaranteed to include that so-
lution as branches in the resulting set of plan trees.

The computation complexity of CEBC can be, unfortu-
nately, very high. In the worst case, CEBC calls a CMAPF
solver for every possible obstacle configuration, i.e., 2|O|

times. This worst case does not arise in pathological cases
only. When every PO is visited by at least one agent, then all
obstacle configurations must be considered. As finding opti-
mal solutions to CMAPF is NP-Hard (Nebel 2020; Surynek
2010; Yu and LaValle 2013), the worst-case complexity of
CEBC is exponential in both the number of agents and the

406

(a) CEBC, Agent 1 (b) CEBC, Agent 2

(c) CEWC, Agent 1 (d) CEWC, Agent 2

Figure 2: Plan trees for centralized execution for the running example. Arrows denote movement actions, W denotes waiting,
di denotes sensing whether door i is open or closed, and o, c denotes the open and closed observations.

number of POs. If optimality is not required and the under-
lying graph is undirected, then a polynomial-time CMAPF
solver can be used (Daniel Kornhauser 1984), in which case
CEBC complexity is only exponential in the number of POs.

4.2 Decentralized Execution
For decentralized execution, agents do not share their obser-
vations, and hence, different plan trees branch on different
observations. We thus take a different approach, inspired by
the CBS algorithm (Sharon et al. 2015). First, each agent
computes a complete plan tree ignoring all other agents.
Then, we search for possible conflicts between these plan
trees. If a conflict is detected, we resolve it by imposing con-
straints on each of the conflicting agents and revising their
plan trees accordingly. We now describe the key steps of this
algorithm: plan tree generation, conflict detection, and the
constraints imposed to resolve conflicts.

Plan Tree Generation The plan tree generation method
we use in this algorithm is similar to the one used in CEBC,
except that it uses a single-agent solver (A∗) instead of a
CMAPF solver. That is, we maintain an obstacle configura-
tion c which initially assumes all POs are unknown. Then,
we run A∗ to find a shortest path π for the respective agent
assuming all POs are unblocked. Following, for every po-
tential obstacle p ∈ O that is on the shortest path π and is
assumed to be unblocked (in the best case scenario) in c, we
recursively call the plan tree generation method with an ob-
stacle configuration c′ identical to c except for assuming that
p is blocked. This plan tree generation method is called for
each agent, creating an initial set of plan trees τ1, . . . , τk.
For worst case optimization we first assume that all POs are
blocked, and then, whenever passing near a PO, recursively
construct the plan tree where it is unblocked.

Conflict Detection One may detect conflicts between plan
trees τ i and τ j by enumerating all possible complete ob-
stacle configurations c ∈ C(P), checking for conflicts be-
tween the corresponding single agent plans tree2plan(τ i, c)
and tree2plan(τ j , c). We suggest a more efficient method,
based on the following observation.

Observation 2. Plan trees τ i and τ j have a conflict iff there

exists two nodes ni ∈ τ i and nj ∈ τ j such that (1) ni.v =
nj .v, (2) ni.t = nj .t, and (3) ni.c and nj .c are consistent.

That is, a pair of plan tree nodes satisfy the conditions in
Observation 2 if they represent the same location and time,
and their obstacle configurations are consistent. Our MAP-
FOU algorithm for decentralized execution checks if a pair
of plan trees has a conflict by searching for a pair of nodes
in them that satisfy these conditions. This conflict detection
method can be much more efficient than iterating over all
obstacle configurations.

Conflict Resolution CBS resolves conflicts by imposing
constraints of the form ⟨i, v, t⟩, representing that agent i can-
not visit vertex v at time t. In our case, however, a conflict
formed by a pair of nodes at vertex v and time t is only
relevant under the respective nodes’ obstacle configurations.
Therefore, the constraint we use to resolve a conflict formed
by a pair of plan-tree nodes must include information about
the obstacle configurations where it is relevant. We define
the following type of MAPFOU constraint:
Definition 2 (MAPFOU Constraint). A MAPFOU con-
straint is defined by a tuple ⟨i, v, t, ci, cj⟩ where i is an agent,
v is a vertex, t is a time step, and ci and cj are obstacle con-
figurations. A plan tree τ i for agent i violates this MAPFOU
constraint if there exists a node n̂i ∈ τ i where n̂i.v = v,
n̂i.t = t, and for every p ∈ O, where O is the set of all POs,
the following conditions hold:
(ci(p) ̸= b|u) → (n̂i.c(p) = ci(p) ∨ n̂i.c(p) = b|u) (4)
(ci(p) = b|u) → (n̂i.c(p) = cj(p) ∨ n̂i.c(p) = b|u) (5)

Intuitively, the first condition (4) ensures the obstacle con-
figuration of n̂i is on the same branch in the plan tree as ci,
and the second condition (5) ensures that if n̂i is deeper than
ni in the plan tree. To ensure optimality, one can follow the
same framework as CBS, where both options to resolve any
identified conflict are checked. This is managed by main-
taining a constraint tree in which each node represents a set
of plan trees and a set of constraints. A best-first search over
this tree on the desired objective function is guaranteed to be
sound, complete, and optimal following the same proof as in
the original CBS.

407

Figure 3: The grids used in our experiments: rooms (left)
and open grid (right). Red grid cells denote POs.

Theorem 2. DEBC is sound, complete, and optimal.

The proof, as well as an example, can be found in the sup-
plementary material. The runtime of DEBC is challenging
to analyze, as it depends on the number of conflicts found
between the different plan trees. In the worse case, the com-
plexity of generating a plan tree for a single agent is expo-
nential in the number of POs, and DEBC generates a plan
tree whenever a node in the constraint tree is generated. The
number of nodes in the constraint tree is exponential in the
number of conflicting plan trees generated by the algorithm.
Analyzing exactly the number of conflicts considered by
CBS in CMAPF is a known challenge, and also in our case.
However, as a rough estimation, as conflicts occur between
plan tree nodes, a conservative estimate is that the number
of conflicts is polynomial in the number of vertices in the
graph, the number of time steps until all agents reached their
goals, and the number of obstacle configurations. The latter
is exponential in the number of POs, and thus the worst-case
complexity of DEBC is doubly exponential.

This complexity analysis, and difficulty of implementa-
tion, lead us to simplify our implementation of DEBC in
two ways. First, we only considered the condition in Equa-
tion 5 when considering MAPFOU constraints. This does
not hinder completeness or optimality, but may cause the
constraint tree to have more nodes. Second, we searched the
constraint tree with a greedy best-first search, instead of us-
ing optimal search such as A∗. This does have implications
on completeness and optimality. Yet, we observed almost no
quality reductions in our experiments.

5 Empirical Evaluation
In this section, we report on a set of experiments, designed
to evaluate the performance of the proposed algorithms in
different settings. Our methods are implemented in Java and
the source code is available in the supplementary material.
Experiments were run on a an i7, 2.8GHz CPU, with 16GB
RAM, but we limited memory usage to only 4GB.

Benchmark Domains Following most prior MAPF work,
we experimented on different 4-neighborhood grids. We
designated a set of grid cells as potential POs, placing them
at strategic points in the grid, ensuring there is always a path
between any two cells even if all POs are blocked. We ex-
perimented on two types of grids: rooms, where the grid is
split into rooms with one cell doorways, and open grids with

Grid Agents Obstacles Joint CEBC
6× 6 3 2 2.400 0.027
8× 8 3 2 313.780 0.041

13× 13 2 3 11.400 0.140
15× 15 2 3 39.830 0.200
17× 17 2 3 133.330 0.300

Table 1: Comparing runtime (sec) between solving the joint
problem, and our CEBC solver.

randomly places obstacles, some of which were chosen to be
PO. Figure 3 shows these grids, where the red grid cells are
possible locations of POs. In our experiments we varied the
size of these grids, the number of agents, and the number of
POs (sampled from the red cells in Figure 3).

Protocol For each of the grid types, we generate 10 test
problems. Given k, the number of agents, we randomly
choose for each agent a start and target position in the grid.
In a grid with N predefined possible obstacle positions,
given n ≤ N , the number of obstacles in the test problem,
we randomly choose n of the possible obstacle positions, as-
suming the rest of the possible obstacles do not exist. Below,
we report average results over the 10 executions. When test-
ing scaling up, we set a time limit of 15 minutes for a given
experiment. We limit our experiments to cases where all 10
problems were solved within the given time.

Baseline Since this is the first work on MAPFOU, there
is no natural baseline to compare our algorithms with. In-
stead, we considered as a baseline a naive implementation
of a contingent planner (Hoffmann and Brafman 2005) that
runs an A∗ search over the joint state space of all agents for
every possible obstacle configuration. A state in this search
space consists of the positions of all agents, and an action is
a joint action, that is, a combination of single-agent actions
(one per agent) except those directly leading to a conflict.

Results Table 1 shows the results. Clearly, the joint space
grows exponentially, and we cannot handle problems with
more than 2-3 agents and 2-3 obstacles, even for small grids.
Figures 4a and 4b show the runtime as the grid grows. As
expected, the runtime grows exponentially with the grid size.
The runtime in open grids grows faster than for room grids.
This is because in open grids, when agents take the shortest
path, their paths intersect much more often, and the amount
of conflict resolutions grows, requiring more time to resolve.
This is more pronounced in the centralized execution case,
as agents branch on observations from other agents, over ob-
stacles that they do not necessarily pass through.

Figure 4 compares the run time of our algorithms as the
number of agents and obstacles increases. As we can see
(Figures 4c and 4d), increasing the number of obstacles re-
sults in an exponential increase. This is because observations
over obstacles result in a split in the plan tree, which requires
replanning for exponentially more branches. We placed the
POs strategically to avoid positions that are completely ir-
relevant (i.e., not sensed by any agent in any branch). Such
irrelevant obstacles are implicitly ignored by our algorithms
and do not affect the runtime. Our approach would scale

408

(a) Open, x=grid size, 3 agents, 5 obstacles (b) Room, x=grid size, 3 agents, 5 obstacles (c) Open, x=obstacles, 7 agents

(d) Room, x=obstacles, 7 agents (e) Open, x=agents, 9 obstacles (f) Room, x=agents, 9 obstacles

Figure 4: Comparing execution time, given a growing grid size (a,b), obstacles (c,d), and number of agents (e,f)

Worst Best
Agents 2 3 4 2 3 4
Cen. better 44% 50% 38% 50% 44% 38%

Table 2: Advantage in solution costs execution modes.

much better in environments with POs at completely ran-
dom positions, as many of them would be irrelevant. Again,
centralized execution results in splitting over observations
that are not necessarily relevant. This is most obvious in the
open environment, where movement is less restricted, and
hence fewer obstacles are relevant for an agent. An interest-
ing direction for future research is to allow agents to ignore
observations that are not relevant to them.

When increasing the number of agents (Figures 4e and
4f) the increase is almost linear for the distributed execu-
tion case. This is due to our distributed computation, where
we create plan trees for each agent independently. As these
grids are fairly large, with respect to the number of agents,
conflicts do not happen too often. Here, centralized planning
over the open grid presents the toughest problems to solve,
and with 9 agents, both CEBC and CEWC failed to solve the
problem within the 15 minutes timeout. This is because in
the open grid less obstacles are relevant for multiple agents,
yet reporting them requires substantial additional planning.

Centralized vs. decentralized execution. To compare the
execution costs obtained with the centralized and decentral-
ized execution modes, we performed a set of experiments
on a 12 × 12 open grid with 4 obstacles and 2, 3, and 4
agents, with every possible PO configuration. Table 2 shows
the percentage of PO configurations where the centralized
execution mode obtained better solution cost, when optimiz-

ing for the best case and when optimizing for the worst case.
As expected, in most cases the centralized execution, where
agents can share information about the observed obstacles,
leads to a solution cost that is lower than that of the de-
centralized execution, where agents cannot share informa-
tion. The advantage of sharing information allowed agents
to save up to 8 actions. In less than 6% of the cases, there
was a small advantage to the decentralized execution, which
may be because the planner optimized for the worst case (all
obstacles blocked) and thus it may be suboptimal in other
obstacle configurations. Similar results were obtained when
optimizing for the best case.

6 Conclusion and Future Work
This paper explored a new MAPF variant called MAPFOU,
where the problem solver has incomplete knowledge about
the traversability of some vertices. We formally defined the
MAPFOU problem, its solution, and two optimization crite-
ria that focus on the best and worst case. We suggest meth-
ods for two alternatives — when information about observed
obstacles is communicated, and when no communication is
allowed. We show in our experiments how our methods scale
up given the grid size, the number of agents, and the num-
ber of unknown obstacles. Our results show that MAPFOU
problems are much more difficult than MAPF. Our work
opens the path for many research questions, including solv-
ing MAPFOU problems where communication is delayed or
costly, and how to consider different types of conflicts and
more complex sensing models. A major research direction
for future work is to develop algorithms that can scale to a
larger number of agents, e.g., by using non-optimal MAPF
solvers such as prioritized planning (Ma et al. 2019).

409

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In
Twenty-First International Joint Conference on Artificial In-
telligence.
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020a. Probabilistic Robust Multi-Agent Path
Finding. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 29–37.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020b. Robust multi-agent path finding and
executing. Journal of Artificial Intelligence Research, 67:
549–579.
Bazinin, S.; and Shani, G. 2018. Iterative planning for de-
terministic QDec-POMDPs. In GCAI, 15–28.
Bnaya, Z.; Felner, A.; and Shimony, S. E. 2009. Canadian
Traveler Problem with Remote Sensing. In IJCAI, 437–442.
Bonet, B.; and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Twenty-Second International Joint Conference on Artifi-
cial Intelligence.
Brafman, R.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Twenty-Seventh AAAI Conference on Artificial In-
telligence.
Brafman, R. I.; and Shani, G. 2012. Replanning in Domains
with Partial Information and Sensing Actions. J. Artif. Intell.
Res., 45: 565–600.
Daniel Kornhauser, P. S., Gary Miller. 1984. Coordinat-
ing pebble motion on graphs, the diameter of permutation
groups, and applications. In FOCS, 241–250.
Hoffmann, J.; and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proc. ICAPS, volume 2005, 71–80.
Hönig, W.; Kumar, T. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In the International Conference
on Automated Planning and Scheduling (ICAPS), 477–485.
Lenser, S.; and Veloso, M. 2003. Visual sonar: Fast obsta-
cle avoidance using monocular vision. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003)(Cat. No. 03CH37453), volume 1,
886–891. IEEE.
Levy, E.; Shani, G.; and Stern, R. 2022. An Online Ap-
proach for Multi-Agent Path Finding Under Movement Un-
certainty. In International Symposium on Combinatorial
Search (SoCS), 299–301.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with consistent prioritization for multi-
agent path finding. In AAAI Conference on Artificial Intelli-
gence, 7643–7650.
Maliah, S.; Komarnitsky, R.; and Shani, G. 2021. Comput-
ing Contingent Plan Graphs using Online Planning. ACM
Trans. Auton. Adapt. Syst., 16(1): 1:1–1:30.

Morag, J.; Felner, A.; Stern, R.; Atzmon, D.; and Boyarski,
E. 2022. Online Multi-Agent Path Finding: New Results. In
Chrpa, L.; and Saetti, A., eds., International Symposium on
Combinatorial Search (SoCS), 229–233.
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In AAAI Conference on Artificial Intelligence.
Nebel, B. 2020. On the computational complexity of multi-
agent pathfinding on directed graphs. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 30, 212–216.
Nebel, B.; Bolander, T.; Engesser, T.; and Mattmüller, R.
2019. Implicitly Coordinated Multi-Agent Path Finding un-
der Destination Uncertainty: Success Guarantees and Com-
putational Complexity. J. Artif. Intell. Res., 64: 497–527.
Papadimitriou, C. H.; and Yannakakis, M. 1991. Shortest
paths without a map. Theoretical Computer Science, 84(1):
127–150.
Shahar, T.; Shekhar, S.; Atzmon, D.; Saffidine, A.; Juba, B.;
and Stern, R. 2021. Safe multi-agent pathfinding with time
uncertainty. Journal of Artificial Intelligence Research, 70:
923–954.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Shmaryahu, D.; Shani, G.; and Hoffmann, J. 2019. Compar-
ative criteria for partially observable contingent planning.
Autonomous Agents and Multi-Agent Systems, 33(5): 481–
517.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI Conference on Artificial In-
telligence, 173–178.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Twelfth Annual Symposium on Combi-
natorial Search.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI.
Surynek, P. 2015. Reduced time-expansion graphs and goal
decomposition for solving cooperative path finding sub-
optimally. In International Joint Conference on Artificial
Intelligence (IJCAI).
Svancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták, R.
2019. Online Multi-Agent Pathfinding. In AAAI Conference
on Artificial Intelligence, 7732–7739.
Wagner, G.; and Choset, H. 2017. Path Planning for Multiple
Agents under Uncertainty. In the International Conference
on Automated Planning and Scheduling (ICAPS), 577–585.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI.

410

