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Abstract

When agents collaborate on a task, it is important that they
have some shared mental model of the task routines – the
set of feasible plans towards achieving the goals. However,
in reality, situations often arise that such a shared mental
model cannot be guaranteed, such as in ad-hoc teams where
agents may follow different conventions or when contingent
constraints arise that only some agents are aware of. Pre-
vious work on human-robot teaming has assumed that the
team has a set of shared routines, which breaks down in
these situations. In this work, we leverage epistemic logic to
enable agents to understand the discrepancy in each other’s
beliefs about feasible plans and dynamically plan their ac-
tions to adapt or communicate to resolve the discrepancy. We
propose a formalism that extends conditional doxastic logic
to describe knowledge bases in order to explicitly represent
agents’ nested beliefs on the feasible plans and state of ex-
ecution. We provide an online execution algorithm based on
Monte Carlo Tree Search for the agent to plan its action, in-
cluding communication actions to explain the feasibility of
plans, announce intent, and ask questions. Finally, we evalu-
ate the success rate and scalability of the algorithm and show
that our agent is better equipped to work in teams without the
guarantee of a shared mental model.

Introduction
When agents collaborate on a task, it is important that they
have some shared mental model of the task routines – the set
of feasible plans towards achieving the goals. However, in
reality, situations often arise that such a shared mental model
cannot be guaranteed. For example, in online multi-player
games or search-and-rescue missions, people trained sepa-
rately could form an ad-hoc team where they may follow
different conventions. Even if the team has a set of shared
routines, novel situations may still occur in which some con-
tingent constraint that forbids certain plans to be taken be-
comes known only by some agents. In these situations, expe-
rienced teammates keep in mind what others know and what
actions they may take, and communicate when necessary to
make sure the team converges on a feasible plan of action.

Previous work on human-robot teaming, Pike (Levine and
Williams 2018), assumed that agents share common knowl-
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edge of the feasible plans for the task encoded in a knowl-
edge base. Under an equal partner setting, each agent ob-
serves the actions taken by others and adapts their actions
accordingly, only taking what is still feasible. This approach
allows fluid human-robot interaction but breaks down when
the common knowledge assumption no longer holds.

In this work, we generalize the approach to handle sit-
uations where there may be discrepancies in agents’ be-
liefs about plans by incorporating epistemic logic (Van Dit-
marsch et al. 2015), as it provides an explicit representation
of agents’ nested beliefs towards each other and a mecha-
nism to model communication between agents.

The contribution of this paper is threefold: (1) We pro-
pose the formalism of conditional doxastic logic (Baltag
and Smets 2008) extended to knowledge bases in order to
represent agents’ nested beliefs on the set of feasible plans
for the task and the state of execution. (2) We model both
execution and a rich set of communication actions within
the framework, including explanation, intent announcement,
and question-asking actions, that allows agents to explic-
itly talk about the feasibility of plans and exchange their
intent. (3) We provide an online execution algorithm based
on Monte Carlo Tree Search (MCTS) for the agent to dy-
namically plan its action to adapt to others or communicate
to resolve the discrepancy. Finally, we evaluate the success
rate and performance of the algorithm through experiments.

Motivating Example
Consider a pedagogical example where a robot (our agent)
and a human collaborate to prepare a drink. The robot has
a manipulator arm that can fetch a mug or a glass as the
container, and the human can brew some coffee or take some
orange juice from the fridge for the drink. For the task to
succeed, it must satisfy that: (C1) the mug has to go with the
coffee and the glass has to go with the orange juice. Under
an equal partner setting, from the robot’s perspective:

Case1 If the human doesn’t believe constraint C1 holds
and thinks that any container can go with any drink, then the
robot can adapt to the human by waiting for the human to
take the drink first, then fetch the corresponding container.
The robot can also explain to the human about constraint C1,
especially if the task requires the robot to fetch the container
first. The robot can also announce the intent for the human
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to choose coffee, in which case it can just fetch the mug.

Case2 If the human has determined a choice of coffee or
juice, but the robot doesn’t know which one, the robot may
wait for the human to pick first so that it can distinguish their
intent, or it can ask the human about their intent.

Case3 If the human picked up the juice but doesn’t know
that the robot couldn’t reach the glass, the robot may explain
the constraint and that the task has failed.

Background
In order to represent the agents’ nested beliefs, our represen-
tation builds on top of conditional doxastic logic (Baltag and
Smets 2008), which is one variant in the broader epistemic
logic literature. Compared to epistemic logic, it allows the
modeling of false beliefs and belief revision by pre-encoding
the conditional belief of the agents within the model. Given a
set of agents Ag and a set of atomic propositions At, condi-
tional doxastic logic L(At,Ag) is defined by the following
Backus-Naur Form (BNF):

φ := p|¬φ|(φ ∧ φ)|Bφaφ,

where p ∈ At, a ∈ Ag. Bψa φ reads as “agent a believes φ
given ψ”. Denoting ⊤ as tautology, Baφ := B⊤

a φ means
that agent a believes φ. Its semantic model is a plausibility
model, which is a tuple M = ⟨W, {≤a}a∈Ag, L⟩, where
• W : a non-empty set of possible worlds,
• ≤a⊆ W ×W : binary relation on W imposing a relative

plausibility order between any two worlds for agent a,
• L : W → 2At: valuation function mapping each world

to the set of atomic propositions that hold in the world.
w ≤a v means that agent a considers w to be at least as
plausible as v. <a:=≤a ∩ ̸≥a denotes a strict plausibility
order. ≃a:=≤a ∩ ≥a denotes an equi-plausibility order.
∼a:=≤a ∪ ≥a denotes epistemic indistinguishability, and
cca(w) := {v ∈ W |w ∼∗

a v} is the set of worlds that agent
a finds (possibily more or less) plausible given world w,
where ∼∗

a is the transitive closure of ∼a. Note that the plau-
sibility relation is reflexive, transitive, locally connected,
that is, v ∈ cca(w) implies v ≤a w or w ≤a v, and well-
founded, that is, mina(S) := {w ∈ S |∀v ∈ S : v ≮a w}
is well-defined, which is the subset of worlds in S that agent
a finds most plausible. A pair (M,w) is a pointed plausibil-
ity model, which describes a conditional doxastic state with
a pointed view at world w ∈ W , i.e. taking w as the true
world. The truth of a formula φ ∈ L(At,Ag) on (M,w),
i.e. (M,w) ⊨ φ, can be defined inductively as follows:
• (M,w) ⊨ p iff p ∈ L(w)
• (M,w) ⊨ ¬φ iff M,w ⊭ φ
• (M,w) ⊨ φ ∧ ψ iff (M,w) ⊨ φ and (M,w) ⊨ ψ
• (M,w) ⊨ Bψa φ iffmina([ψ]M∩cca(w)) ⊆ [φ]M , where
[φ]M := {w ∈ W |M,w ⊨ φ} is the set of worlds in M
in which φ holds.

Figure 1 shows an example state represented by a pointed
plausibility model (M,w1) with agents a and b. The two
worlds w1 and w2 are labeled with the atomic propositions

that hold in the respective worlds. The pointed world w1

highlighted in bold represents the true world in which p
holds. The single arrow pointing from w1 to w2 labeled
with b indicates that agent b considers w2 to be strictly
more plausible than w1. We say (M,w1) ⊨ Bb¬p since
minb(ccb(w1)) = {w2} ⊆ [¬p]M . If it is instead a double-
headed arrow, then it means that agent b considers w1 and
w2 to be equally plausible. The lack of any arrow between
w1 and w2 for agent a indicates that w1 ̸∼a w2, that is,
when in w1 or w2, agent a does not consider the other
world plausible at all. Since the plausibility relation is re-
flexive, the self-loops indicate that whichever world it is,
the agents find the world plausible. (M,w1) ⊨ Bap since
mina(cca(w1)) = {w1} ⊆ [p]M , and (M,w1) ⊨ BaBb¬p
since mina(cca(w1)) = {w1} ⊆ [Bb¬p]M = {w1, w2}.

Figure 1: Example pointed plausibility model with legend

An action is defined by a plausibility action model A =
⟨Σ, {≤a}a∈Ag, pre, post⟩, which has a similar structure ex-
cept instead of a set of worlds W , it has a set of events Σ
representing possible events that may occur in the action.
pre and post are functions that assign to each event σ ∈ Σ a
precondition and a postcondition in L(At,Ag) respectively,
where the postcondition of an event is restricted to a con-
junction of literals over At or ⊤. A pointed plausibility ac-
tion model is a pair (A, σ), σ ∈ Σ, which describes an action
where σ is the true event.

In general, a pointed plausibility model for state or action
can point at multiple worlds, such as (M,Wd) or (A,Σd).
Wd and Σd are called the designated worlds or events.
For example, given a state (M,w), (M,Wd) with Wd =
mina(cca(w)) represents agent a’s local perspective of the
state, whereWd includes all the worlds that agent a finds the
most plausible. (M,Wd) is a global state if |Wd| = 1. Ad-
ditionally, (M,Wd) ⊨ φ iff (M,w) ⊨ φ for all w ∈Wd. An
action act updates a state s through action-priority update
s ⊗ act, which we refer the readers to the details in (Baltag
and Smets 2008; Bolander and Andersen 2011).

Approach Overview
Our solution requires answering three questions: (1) what
representation to use to capture the agents’ nested beliefs of
the set of feasible plans and the state of execution, (2) how to
model execution and communication actions and how they
update the state, and (3) how to strategically choose the next
action. Our key insight is to extend conditional doxastic
logic to describe knowledge bases, and use the knowledge
bases to encode the feasible plans and state of execution, so
that we can describe agents’ beliefs on the plan space in-
stead of their beliefs on state. As a result of this new logic,
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execution and communication actions can be defined which
operate by adding or removing constraints from the knowl-
edge bases. With the state and action models defined, we use
an MCTS-based algorithm to simulate forward in the next k-
step horizon to decide what is the best action to take.

Figure 2: Plausibility model for nested beliefs on plans

For example, Figure 2 captures the agents’ nested beliefs
on plans from Case1. Each world in the plausibility model
is now a knowledge base that contains the constraints of the
task. Since H (human) finds w2 more plausible, H believes
that constraint C1 does not need to hold. An example action
where the robot announces the intent of coffee is shown in
Figure 3 (left). The action has a single event whose precondi-
tion is that R (robot) must believe that adding the constraint
of coffee is satisfiable given its belief of the current feasi-
ble plans. As a result of the action, all worlds now have the
constraint of coffee added, including w2 that H believes in.

Figure 3: intent announcement (left) & resulting state (right)

Representing Team’s Nested Beliefs on Plans
We describe our representation in two parts: (1) conditional
doxastic logic on knowledge bases and its semantics, (2) our
task representation and its encoding in the knowledge base.

Conditional Doxastic Logic on knowledge Bases
Given a finite set of atomic propositions At, and a finite set
of agentsAg, conditional doxastic logic on knowledge bases
LKB(At,Ag) is defined by the BNF:

φ := in(c)|entailed(c)|¬φ|(φ ∧ φ)|Bφaφ,
in which a ∈ Ag, c ∈ C(At), where C(At) is the classical
propositional logic c := p|¬c|(c ∧ c), p ∈ At. Note that
the formulation naturally extends to constraint systems with
finite-domain variables, which is what we use. We hence re-
fer to c as a constraint. in(c) means constraint c is an explicit
member of the constraints in the knowledge base, entail(c)
means constraint c is entailed by the knowledge base, and we
define sat(c) := ¬entailed(¬c), which means constraint c
is satisfiable by the knowledge base.

The plausibility model for LKB(At,Ag) is a tuple M =
⟨W, {≤a}a∈Ag,KB⟩, where W and ≤a are the same as be-
fore and KB :W → KBC(At) is a function that maps each

world to an associated knowledge base in C(At). When de-
termining the truth of a formula φ ∈ LKB(At,Ag) on a
pointed plausibility model (M,w), we replace the first rule
on (M,w) ⊨ p in the inductive rules with the following:
• (M,w) ⊨ in(c) iff c ∈ KB(w)

• (M,w) ⊨ entailed(c) iff KB(w) ⊨ c

We can say the following about the state in Figure 2:

• BRin((mug ∧ coffee)) ∨ (glass ∧ juice))
• BRBH¬in((mug ∧ coffee)) ∨ (glass ∧ juice))
• ¬BRentailed(mug ∧ coffee)
• BR¬sat(mug ∧ juice) ∧BRBHsat(mug ∧ juice)

Task Representation & Encoding
The set of feasible plans towards achieving the goals of the
task forms a plan library for the task. Additionally, actions
may be ordered in the plan, such as requiring the container to
be picked up first before the drink. Therefore, our task rep-
resentation is a temporal plan library ⟨V,E,O,C⟩, where:
• V is a set of decision variables with domain(v), v ∈ V .
• E is a set of time points with guard condition guard(e)

for each e ∈ E, a conjunction of decision variable as-
signments. e should be executed iff guard(e) is satisfied.

• O is a set of ordering constraints o = ⟨ei, ej , guard(o)⟩,
o ∈ O, requiring time point ei to precede time point ej
in execution order if its guard condition guard(o) is sat-
isfied. We assume guard(o) ⊨ guard(ei) ∧ guard(ej).

• C is a set of constraints scoped on V .
The time points represent the actual events of taking the

actions. In multi-agent case, a multi-agent temporal plan li-
brary ⟨V,E,O,C,Ag, f⟩ additionally has a set of agentsAg
and a function f : E → Ag that maps each time point to an
agent that it belongs to. In our formulation, the decision vari-
ables do not have ownership. This reflects our equal partner
setting in which decisions do not belong to any agent and an
announced intent can affect multiple agents’ actions.

The plan library represents a set of candidate subplans
G, where a subplan g ∈ G is a full assignment to all the
decision variables V . We use Eg and Og to denote the set of
time points and ordering constraints activated by g, i.e. those
whose guard conditions are satisfied. A subplan induces a set
of total orderings on Eg that satisfies Og , which we denote
by Tg . A subplan g is feasible iff all the constraints C are
satisfied, i.e. ∀c ∈ C, g ⊨ c, and there exists a total ordering
of Eg that satisfies Og , i.e. Tg ̸= ∅.
Execution As execution progresses, decision variables are
gradually grounded either implicitly from the execution of
time points or explicitly from announcement of intent. The
execution state is a tuple ⟨t, CI⟩, where t is an execution his-
tory, which is a total ordering of time points (ei, ej , ..., ek)
that have been executed, andCI is the set of intents that have
been announced during execution. An intent, in its most gen-
eral form, can be an arbitrary constraint scoped on V , but is
commonly an assignment to a specific decision variable. The
subplans that are feasible with respect to ⟨t, CI⟩ include any
feasible subplan g such that there exists tg ∈ Tg , where t
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is the prefix of tg , and g satisfies CI . Execution fails when
there exists no feasible subplan with respect to ⟨t, CI⟩. Exe-
cution succeeds when there exists a feasible subplan g with
respect to ⟨t, CI⟩ such that t ∈ Tg . Note that execution can
succeed without ever converging to a unique subplan, and it
is possible for further time points to be executed and move
away from the success state.

Encoding in Knowledge Base We encode the plan library
and the execution state in the knowledge base, so that at any
point during execution, the knowledge base contains all the
feasible subplans with respect to ⟨t, CI⟩. We ensure that the
knowledge base is consistent iff execution has not failed.

The variables of the encoding include (1) a discrete vari-
able for each decision variable vi ∈ V with the same domain
domain(vi), and (2) a boolean variable for each time point
ei ∈ E with domain {T, F}, representing if the time point is
executed. We add the following constraints to the knowledge
base prior to execution:

• The constraints C as defined in the plan library.
• For each time point ei, ((ei = T) → guard(ei)), i.e. if

time point ei is executed, its guard condition must hold.
• Negation of nogoods (Katsirelos and Bacchus 2005) that

represent any combination of choices of V that would
result in an inconsistent ordering of time points. This can
be computed from the ordering constraints O.

During execution, we may additionally add to the KB:

• Announced intents CI .
• For each execution of time point ej , a conjunction of (1)

assignment of variable ej to T, and (2) the negation of the
guard condition ¬guard(o) for any ordering constraint
o = ⟨ei, ej , guard(o)⟩ in which the predecessor ei has
not been executed by the time ej is executed.

The last rule ensures that for any ordering constraint
o = ⟨ei, ej , guard(o)⟩, if the guard condition holds, then
if ej is executed, ei must also have been executed, hence
satisfying the ordering constraint. Note that we only encode
the set of time points that have been executed, instead of
their actual order of execution. With the above encoding,
given a knowledge base KB, execution fails iff KB ⊨ ⊥.
Execution succeeds iff there exists subplan g, i.e. a full as-
signment of V , such that KB∧g ⊭ ⊥ and ∀ei ∈ Eg , KB
⊨ (ei = T). We denote the success condition by suc(V,E),
and say that execution succeeds iff KB ⊨ suc(V,E). Addi-
tionally, (M,w) ⊨ suc(V,E) iff KB(w) ⊨ suc(V,E).

Take Case 1 as an example, the knowledge base contains
discrete variables container with domain {mug, glass}
and drink with domain {coffee, juice}, and boolean
variables emug , eglass, ecoffee, ejuice representing the
events of picking up each item. Using mug as a shorthand
for (container = mug) and similarly for others for the pur-
pose of decluttering, the constraints include:

1. (mug ∧ coffee) ∨ (glass ∧ juice)
2. (emug = T)→ mug, similarly for other time points

Note that we use the same shorthands throughout the rest
of the paper. In this example, when the robot picks up the

Figure 4: Action representations

mug, constraint (emug = T) is added to the knowledge
base. From 2 above, we now have KB ⊨ mug, and conse-
quently from 1, we have KB ⊨ coffee, which limits the hu-
man’s choice of drink to coffee. Picking up juice is no longer
feasible since KB ∧(ejuice = T) ⊨ ⊥. Consider another
case where the robot’s action must precede the human’s ac-
tion, i.e. there are ordering constraints ⟨emug, ecoffee, mug∧
coffee⟩, ⟨eglass, ecoffee, glass ∧ coffee⟩, etc. If the hu-
man picks up the coffee before the robot takes any action,
then (ecoffee = T)∧¬(mug∧coffee)∧¬(glass∧coffee)
is added, resulting in an inconsistent knowledge base.

Dynamic Model of Evolution
In this section, we describe how the model evolves as a re-
sult of execution or communication actions. We first intro-
duce the plausibility action model for our extended logic,
then describe how to model each type of action. In this work,
we assume that agents observe all actions that are taken, that
is, all actions are public.

Plausibility Action Model for Knowledge Bases
A plausibility action model A for LKB(At,Ag) is a tuple
⟨Σ, {≤a}a∈Ag, pre, post⟩, where Σ and ≤a are the same,
and pre and post are functions that map each event to a for-
mula in LKB(At,Ag). The postcondition is restricted to a
conjunction of in(c), which adds constraint c to the knowl-
edge base, and ¬in(c), which removes constraint c from
the knowledge base if it exists, as well as ⊤, i.e. nothing
changes. For this paper, we further restrict the postcondition
to be either in(c) or ⊤, i.e. adding at most one constraint to
the knowledge base. The action-priority update updates the
knowledge bases as described accordingly.

Execution Action An execution action is the action of an
agent executing a time point, such as robot picking up mug.
Recall that in our setting, each time point is assigned to an
agent who can execute it. Given that the time point being
executed is ei ∈ E, and the agent who executes it is a =
f(ei), the simplest case of execution of time point ei that
has no potential predecessors is shown in Figure 4 (left). We
assume agents are rational and for agent a to execute time
point ei, it needs to believe that executing ei is feasible, i.e.
Basat(ei = T). All agents observing the action also observe
the truth of agent a having such belief. For the postcondition,
as ei is executed, the constraint (ei = T) is added to the
knowledge base.

When there are potential predecessors for ei, we need to
make sure the corresponding ordering constraints are sat-
isfied. The postcondition of the event should always add
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Figure 5: Example execution action of ei with ordering con-
straints ⟨ej , ei, guard(oj)⟩ and ⟨ek, ei, guard(ok)⟩

(ei = T) to the knowledge base, and for any ordering con-
straint o = ⟨ej , ei, guard(o)⟩, add (¬guard(o)) on condi-
tion that ¬entailed(ej = T), that is, if ej has not been ex-
ecuted. While a more succinct action model specification is
possible (Van Ditmarsch and Kooi 2008), we use the stan-
dard form defined above by taking the cross product of all
the predecessors, and creating equi-plausible events for them
as shown in Figure 5. Even though the size of the action
model is exponential to the number of potential predeces-
sors each time point has, because the preconditions of these
events are mutually exclusive, the model size for the updated
state will not increase as a result of the action update.

Intent Announcement The model for an intent announce-
ment action is shown in Figure 4 (middle). For agent a to an-
nounce the intent, it must believe that it is satisfiable, hence
the preconditionBasat(c). The intent is added as a postcon-
dition. Figure 3 shows an example intent announcement.

Explanation The model for an explanation action where
agent a explains its belief of φ ∈ LKB(At,Ag) is shown in
Figure 4 (right). The precondition says that agent a has to be-
lieve φ, i.e. agents cannot lie about their belief. To the other
agents, the explanation is essentially a public announcement
that agent a believes φ. This means that whether a particu-
lar agent adopts the explainer’s belief depends on the con-
ditional belief pre-encoded in the initial pointed plausibility
model, which specifies how an agent’s belief gets revised
when a new piece of evidence is received.

Figure 6: Explanation action (left) and resulting state (right)

An example explanation action where the robot explains
constraint C1 is shown in Figure 6. Based on the pointed
plausibility model in Figure 2, upon the announcement that
the robot in fact believes C1 holds, w2 is eliminated as it
does not satisfy the precondition, and the human is left with
w1 in which C1 holds. Depending on the initial conditional

belief, it is also possible to have situations where the human
does not trust the robot and does not adopt its belief.

In this paper, we restrict the explained formula to be
of the BNF form φ := ¬φ|Baφ|in(c), where a ∈ Ag,
c ∈ C(At). This simplifies the explanations in that (1) the
explained formula cannot be arbitrarily complex such as
Bain(c) → Bbin(c), (2) the explanation must be about
whether the knowledge base contains a constraint or not, in-
stead of the satisfiability or entailment of an arbitrary con-
straint. This is similar in spirit to the idea of abductive ex-
planations, where we want to give an explanation c such that
together with the existing theory T , it explains an explanan-
dum O, i.e. T ∪ {c} ⊨ O. In this case, what is satisfiable
or entailed is often the explanandum, and what constraints
should or should not be in the theory is what we explain.

Question-Asking An agent can ask another agent about
something that it is uncertain of. Since we assume public ac-
tions, the answer is observed by all agents. Given that agent
a is asked about its belief on formula φ ∈ LKB(At,Ag), the
pointed plausibility action model is shown in Figure 7. We
place the same restriction on φ as in the explanation actions.

Figure 7: Question-asking action

Figure 8: Example pointed plausibility model where the
robot is uncertain about the human’s choice

Using Case 2 as an example, the robot does not know
which choice of drink the human has determined on, which
is represented by the pointed plausibility model in Figure
8. The robot can ask a question about the human’s belief
on in(coffee), i.e. whether its intent is to take coffee. The
resulting state would have the double-headed arrow in the
middle labeled with R removed, i.e. the robot will be able to
distinguish human’s intent.

Online Execution Problem
We assume that execution is asynchronous, all actions are
public, and communication has a cost. We also assume the
discrepancies in beliefs come only from the agents’ initial
beliefs on constraints C, i.e. they share the belief on the rest
of the plan library such as the ordering constraints and the
guard for the time points. In this paper, we assume that a task
involves two agents (e.g. robot and human), though there
is no theoretical barrier to applying it to more agents. The
online execution problem from a single agent’s perspective,
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say agent a, involves taking the input of the following prior
to execution:
• A multi-agent temporal plan library ⟨V,E,O, {}, Ag, f⟩.
• A pointed plausibility model s0 = (M,Wd) capturing

agents’ initial nested beliefs on constraints C from agent
a’s perspective, such that Wd = cca(w), ∀w ∈Wd.

Note that constraints C is empty in the plan library as it
is captured by the input of s0. Wd includes any world that
agent a finds plausible (not necessarily most plausible), and
we assume that (M,Wd) captures the ground truth state
(M,w∗) as one of its possibilities, so that the agent’s belief
can also be revised if needed. During execution, the agent
receives the input of a stream of actions that are taken by
itself or others in real-time, including execution and com-
munication actions. Each action triggers a callback and the
agent outputs an action to be taken or none.

Overall Algorithm Upon receiving an action, our agent
determines how it should act next – either take an execution
action, communicate, or wait for others to act. It simulates
forward to predict the utility of each possible action, e.g. if
others may follow up with incorrect actions, or if many com-
munication actions will be needed. The algorithm draws in-
sight from epistemic planning for implicit coordination (En-
gesser et al. 2017) and relies on the agent’s ability to take
others’ perspectives to predict their actions.

The overall algorithm is illustrated in Algorithm 1, which
we name it Epistemic Pike (EPike) after Pike (Levine and
Williams 2018). Prior to execution, the agent compiles the
initial state s from s0 and the plan library as described in the
knowledge base encoding section (line 1). Upon receiving
an action act′, the updated state (line 3) is checked for sev-
eral conditions. If the agent believes that execution has failed
(line 4), then it explains the failure when some agent might
not know (line 5 - 6). If the agent is unsure about whether
execution has failed (line 7), then it sees if it can ask some-
one to distinguish it (line 8). If both conditions do not apply,
then execution has not failed, and the agent checks if execu-
tion has succeeded (line 9). If so, then the agent explains it
when some agent might not know (line 10 - 11). If execu-
tion has not succeeded, then the agent searches for the next
action to take, if any, to progress toward completing the task
(line 13). Note that when a question-asking action is taken,
we wait until the answer is announced before encoding the
answer as an explanation action that gets observed.

Each online subroutine in Algorithm 1 calls an MCTS
algorithm with a different configuration. The MCTS algo-
rithm simulates the team’s possible execution in the next
k-step horizon, and based on the result of the simulations,
the agent decides if it should take an action now and which
action to take. Our MCTS algorithm can be configured on
(1) the termination conditions, including the horizon k, (2)
which types of actions to consider for both the ego agent and
the other agents, and (3) the penalties for communication ac-
tions, since we assume communication has a cost. We add a
fifth type of action, noop, to represent agent taking no action
and waiting for others to act.

For SEARCHACTION, a node terminates if its state s sat-
isfies either s ⊨ entailed(⊥), which gives a utility of 0 (ex-

Algorithm 1: Online Execution for Ego Agent a
Input : V , E, O, Ag, f , s0 = ⟨M,Wd⟩, agent a,

Online: act′, an observed action
Output: Online: act, an action or None

1 Offline: s← COMPILEINITIALSTATE(s0, V, E)
2 Online upon observing act′:
3 s← s⊗ act′
4 if s ⊨ Baentailed(⊥) then
5 if s ⊭ Ba(∧i∈AgBientailed(⊥)) then
6 return EXPLAINFAILURE(s)

7 else if s ⊭ Ba¬entailed(⊥) then
8 return ASKIFFAILURE(s)

9 else if s ⊨ BasucV,E then
10 if s ⊭ Ba(∧i∈AgBisucV,E) then
11 return EXPLAINSUCCESS(s)

12 else
13 return SEARCHACTION(s)

14 return None;

ecution fails), or s ⊨ suc(V,E), which gives a utility of 1
(execution succeeds), or if simulation reaches a horizon of k,
which gives a utility of 1 (execution has not failed). Note that
only execution actions increment the horizon, since we care
about the outcome after the next three physical actions. Dur-
ing search, we consider all five types of actions (including
noop) from all agents, except for the intent announcement
and question-asking actions from the other agents. They can
be reasonably omitted to reduce the search space, since they
may be unpredictable and ignoring it does not prevent the
simulated execution to reach success state.

For the rest of the subroutines, a node terminates if its
state s satisfies s ⊨ ∧i∈AgBientailed(⊥) for EXPLAIN-
FAILURE, s ⊨ Baentailed(⊥)∨Ba¬entailed(⊥) for ASK-
IFFAILURE, and s ⊨ ∧i∈AgBisuc(V,E) for EXPLAINSUC-
CESS, all giving a utility of 1. For EXPLAINFAILURE and
EXPLAINSUCCESS, only explanation and question-asking
actions of the ego agent are considered. Asking a question
may still be useful if the agent is uncertain about what oth-
ers currently believe. For ASKIFFAILURE, only question-
asking actions for the ego agent are considered. In these
cases, since the ego agent is just looking to inform others or
ask a question, it is reasonable to ignore what other agents
may do. To penalize communication, we set a penalty factor
of 0.9 for explanation actions and question-asking actions,
and 0.85 for intent announcement actions, though the values
may change depending on applications. Penalty is a multi-
plication factor to the utility of the node. Execution actions
and noop action are not penalized.

Search Tree We describe the expansion of the search tree
using SEARCHACTION as an example, before discussing the
details of MCTS. A partially expanded search tree is shown
in Figure 9. There are four types of nodes in the tree: root
decision node (bold circle), split nodes (diamonds), predict
nodes (squares), and decision nodes (circles). Each node has
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Figure 9: Partially expanded search tree

its state si and has a utility score of between [0, 1].
The root decision node is only used as the root of the tree

and finds the best action to take for the ego agent (including
noop). Given input of s = (M,Wd) from the subroutine, the
state of the root decision node is the ego agent’s current be-
lief of the state sego = (M,mina(Wd)). The node branches
on all the possible actions the ego agent can take based on its
current belief, creating children split nodes. We discuss the
generation of possible actions in the Appendix. If there exist
children with positive scores, the agent chooses the action
that leads to the child with the maximum score, and prefers
non-noop actions when there is a tie.

The split node represents the state after the application
of the action, which may point at multiple worlds. The split
node splits the state into a set of global states where only one
unique world is pointed at, and answers the question of: of
all the possible states that the action can lead to, what is the
worst-case situation that can happen.

Each predict node predicts what may happen from the
global state. To do so, it expands into a set of decision nodes
for the agents and predicts how each agent contributes to
progressing the state toward success. If the parent split node
results from an agent taking noop, then the predict node does
not expand on the decision node for the same agent, that is,
the agent has to wait for someone else to take action.

Each agent’s decision node expands on the set of pos-
sible actions the agent can take. Assuming the parent pre-
dict node has state s = (M,w), this will be the set of
actions that the agent finds feasible from its perspective
(M,mina(cca(w))). For each action, we expand on it both
from the agent’s subjective view of the state (a thick arrow)
to determine how good the action is from the agent’s per-
spective, and from the objective view of the state (a single ar-
row), i.e. the same perspective as the parent predict node, to
determine how good the action actually is. The root decision
node can be considered as a special decision node where the
subjective and objective views are the same. We assume that
the agent only takes the best actions from its perspective,
i.e. the ones with the highest subjective score that is greater
than 0, and has a uniform probability of choosing any action

from that set, with the exception that if there exist perfect
execution actions with subjective scores of 1, then the agent
would not consider taking noop action. For each node, we
can determine what perspective the state is viewed from by
traversing the thick arrows from the root, which represent
perspective shifts. A node reaches termination state if it sat-
isfies the termination condition defined earlier.

Tree Policy & Simulation (Default) Policy Regarding the
tree policy, for each node, we compute the UCB1 score of
the children to select which one to descend down the tree.
For the split node, we use the negative score of each child as
the exploitation term, to prioritize simulations of the worst-
case situation. For the decision node, we use the subjective
score of each action as the exploitation term, to prioritize
simulations of the actions that are likely taken by the agent.
Once the action is selected, out of the two children split
nodes from the objective view and the subjective view, we
select the one that is less expanded.

For the simulation policy, at each decision node, we only
consider the execution actions of the agent, and an agent ran-
domly selects an action with uniform probability if it is fea-
sible from its perspective. The predict node goes through
each agent in random order to find an action to simulate for-
ward. If none exists, simulation ends with a score of 0. This
means that in the ideal case where all agents share common
knowledge of plans, simulation always returns a score of 1.

Back Up We take a more customized approach to comput-
ing the utility score of each node during the back-up phase.
The split node takes the minimum score of the children pre-
dict nodes since it cares about the worst-case outcome, sim-
ilar to the work of (Reifsteck et al. 2019), then multiplies it
by the penalty factor of the action that leads to the split node.

The decision node computes the expected utility of the
agent’s action (including noop) towards contributing to the
progression of the task from the perspective of the parent
predict node, denoted by Ea for agent a. Given that the
subjective (objective) score of an action act is scact (ocact)
and the set of best actions for agent a is Act, the probabil-
ity of action act ∈ Act being taken, denoted by Pa(act),
is scact/

∑
act′∈Act scact′ . The utility score of the decision

node is then
∑
act∈Act Pa(act) · ocact. Additionally, we set

the objective score of the noop action to 0, since it does not
contribute to the progression of the task.

The score of the predict node is computed as:1−
∏
a∈Ag

Pa(noop)

 ∑
a∈Ag

Ea∑
i∈Ag 1− Pi(noop)

 ,

which is the probability of at least some agent will act, multi-
plied by the expected utility of action taken by the first agent
who gets to act, since execution is asynchronous. Given that
some agent will act, we assume that the probability of agent
a acting first is proportional to its probability of taking a
non-noop action, i.e. 1−Pa(noop). Therefore, the expected
utility is the sum of the normalized probability of each agent
a acting first 1−Pa(noop)∑

i∈Ag 1−Pi(noop)
multiplied by the expected

utility of agent a taking a non-noop action Ea

1−Pa(noop)
. This
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Figure 10: Success rate and failure rate of EPike and Pike on a set of hand-crafted test cases

Figure 11: Success rate and failure rate of EPike and Pike on
randomly generated test cases

means that if every agent prefers a noop action, then the pre-
dict node has a score of 0, i.e. execution is stuck. Note that
in reality, agents may decide to act if nobody else does in-
stead of waiting forever. We do not take into account such
interactive behavior, but assume this is a reasonable way to
approximate the utility of the predict node.

Implicit Belief Revision We consider explanations to be
an explicit way of revising others’ beliefs. We consider it an
implicit belief revision when an unexpected execution action
or intent announcement action causes a less plausible world
of an agent to be promoted to be a most plausible world. We
assume agents do not wish to surprise others and penalize an
action that causes implicit belief revision with a score of 0.
This makes sure that our agent always explains its action be-
fore taking it if it is not expected by others. However, during
execution, implicit belief revision may still occur, such as
when others take an action unexpected by our agent which
revises our agent’s belief.

Performance Optimization The performance of our al-
gorithm largely depends on the speed of solving constraint
satisfaction problems (CSPs) from the knowledge bases.
To optimize the performance, we implement incremental
checking and caching for CSPs, since the CSPs are largely
similar throughout the process. At the decision node, we
lazily expand the actions in the order of execution ac-
tions, noop action, then communication actions. For exam-
ple, communication actions do not need to be expanded if
higher-priority actions have a better score than the maximum
possible score for a communication action due to penalty.

Experiment Results
We describe our experiment results on the success rate and
the scalability of our algorithm EPike compared to Pike
(Levine and Williams 2018). We implemented our own Pike
as a naive version of EPike that assumes what it believes
is believed by all, that is, it may falsely assume common
knowledge when there is not. Note that the original Pike

supports some additional functionalities not accounted for
by this paper, such as scheduling. We use z3 as our CSP
solver (Moura and Bjørner 2008). We use an exploration pa-
rameter of 4 for SEARCHACTION, and

√
2 for the rest. We

use a horizon of k = 3 for SEARCHACTION. We limit our
focus to a 2-agent team. The experiments are run by instan-
tiating two EPike or Pike agents that execute together in a
task. We measure the runtime in seconds for one agent be-
ing the ego agent, who we assume gets to be the first agent
to act if it decides to after each action is taken.

Success Rate Since MCTS is an anytime algorithm, we
evaluate the success rate and failure rate of EPike and
Pike, under different timeout in seconds for MCTS (or if
it reaches 1000 iterations of simulations, whichever comes
first). The experiments are run for the domains of (1) Break-
fast, which includes variations of our motivating example,
(2) Word Puzzles, (3) Search-and-Rescue (SAR), (4) Ran-
domly generated sequential tasks. We run each hand-crafted
test case for 20 times for both Pike and EPike with no time-
out, with results shown in Figure 10. We generate random
test cases that vary in the size of the task (number of vari-
ables V ) and the number of constraints that agents differ on,
ranging from [0, 3], for 10 cases per condition, and report
the result after running each case for 2 times for both Pike
and EPike under different timeout, as shown in Figure 11.
Note that it is possible for execution to neither succeed nor
fail, in which case execution hangs as no agents plan to act.
This could be because (1) MCTS algorithm is stopped by
the timeout before it finds a feasible next step, (2) EPike be-
lieves execution is bound to fail no matter its action, such as
when the other agent would not trust its explanation, or (3)
EPike falsely believes that the other agent will act. In prac-
tice, we can adopt mitigations such as allowing EPike to take
the next best action after having waited for a long time.

From Figure 11, we see that as timeout increases, EPike’s
success rate increases, especially for larger-sized tasks, and
is higher than Pike’s success rate given enough time. Mean-
while, its failure rate is consistently low and always lower
than Pike. This shows that EPike is conservative, and when
it does not succeed, it is mainly because it has not found a
good action to take within the timeout, but it does not take an
incorrect action rashly as Pike tends to do. This is consistent
with the result of the hand-crafted test cases in Figure 10.

Scalability To see how EPike scales, we run the MCTS
algorithm for a fixed number of 500 iterations to see how
long it takes to reach a certain level of certainty under dif-
ferent model parameters, such as the size of the initial plau-
sibility model (embodied by the number of constraints that
agents differ on, Diff shown by hue of the plot), the size of
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Figure 12: Runtime of EPike and Pike on random tests

the task (the number of variables V , Num Variables), con-
currency level of the actions (the number of ordering con-
straints O, Num Orders), and the number of constraints C in
the task (Num Constraints). We measure the average runtime
for each callback for Pike and EPike. As shown in Figure 12,
runtime for EPike is heavily affected by how much agents’
beliefs differ, and it also increases as the task size increases.
Pike takes less time than EPike, as expected, but when un-
der common knowledge, EPike’s runtime is closer to Pike
and can also finish relatively quickly.

Related Work
Human-Robot Teaming Our work is related to human-
robot teaming as it considers the collaborative process of
humans and robots working together to achieve tasks. Work
in this field focuses primarily on recognizing and adapting to
humans’ intent, and in some cases, communicating about in-
tent, which we inherit in our work. Pike inspired us to take a
constraint-based approach for concurrent intent recognition
and adaption, in which a library of precompiled plans are
encoded in a knowledge base (Levine and Williams 2018).
Pike is later extended to a probabilistic setting, called Riker
(Levine 2019), where the robot can further ask the human
about their intent (Broida 2021). Other than constraint-based
approaches, work has been proposed using techniques from
classical planning and MDP, such as PReTCIL (Freedman
and Zilberstein 2017) that uses probabilistic plan recognition
and NOPA (Puig et al. 2023) that leverages inverse planning
for goal recognition. In (Unhelkar, Li, and Shah 2020b,a), a
human behavior model is learned through semi-supervised
learning and incorporated into the robot’s POMDP model
that supports bi-directional communication on intent. How-
ever, most work assumes common knowledge of the task, as
opposed to implementing an explicit Theory of Mind.

Epistemic Planning In the field of epistemic planning,
there are two main categories of approaches – the seman-
tic approach based on Dynamic Epistemic Logic (DEL)
(Bolander and Andersen 2011; Le et al. 2018; Fabiano et al.
2020) and the symbolic approach (Muise et al. 2015). Our
work leverages the DEL approach and carries over their in-
sight on how to model announcement and question-asking
actions. In particular, we take an implicit coordination ap-
proach, following from the work of Engesser et al., where
the agent takes into account the spontaneous cooperation of
other agents in achieving the goal, which requires recursive
perspective-taking in order to predict their actions (Engesser
et al. 2017). In (Bolander et al. 2018), the authors further dis-

cussed the impact of eager and lazy agents in the framework,
and in (Reifsteck et al. 2019), an MCTS algorithm is devel-
oped that shares similar insights as our work. Compared to
the work by Engesser et al., we differ in that our framework
based on conditional doxastic logic allows the modeling of
false beliefs and the revision of false beliefs, and our expla-
nations refer directly to the plan space instead of states as a
result of extending the logic to knowledge bases.

XAIP Our work is related to Explainable AI in Planning
(XAIP), especially to the work on plan explanations taking
into account the differences in agents’ mental models. In
(Chakraborti et al. 2017), model reconciliation is proposed
that allows robots to explain the model differences upon mis-
alignment between the human’s mental model of the robot
and the robot’s actual model. In (Vasileiou et al. 2022), a
logic-based approach to model reconciliation is proposed,
where the planning problem is encoded as a SAT problem
using SatPlan, and the model differences are computed with
respect to the human and the robot’s knowledge bases. Since
these approaches consider the entire PDDL planning model,
plan explanations go beyond explaining about the differ-
ences in the initial states but can also be about agents’ dis-
crepancies in goal states and action models. In (Chakraborti,
Sreedharan, and Kambhampati 2019), model reconciliation
is balanced with explicable planning, which allows robots
to find (potentially sub-optimal) plans that are expected by
the human based on the human’s understanding of the robot
(Zhang et al. 2017), and in (Sreedharan et al. 2020), the
two are unified in an expectation-aware planning frame-
work with additional explanatory actions. This inspired us
in thinking about how the robot can balance its adaptation
and communication with the human. However, most of their
work considers humans as observers without much human-
robot cooperation. In (Zahedi, Sreedharan, and Kambham-
pati 2022), the authors pointed out the importance of a richer
mental modeling framework that allows human-robot col-
laboration, which we provide a viable way of filling the gap.

Another line of work from Shvo et al. (Shvo, Klassen,
and McIlraith 2020) provides explanations by considering
agents’ Theory of Mind represented using epistemic logic.
In particular, to resolve the human’s misconceptions about
plans, a symbolic epistemic planner RP-MEP (Muise et al.
2015) is used for the robot to either take actions to align the
true state to the human’s belief or explain the true state to
the human (Shvo, Klassen, and McIlraith 2022). However,
their explanations are also on states rather than plans.

Conclusion
In this work, we combine insights from epistemic logic and
knowledge-base encoding of plans to allow agents to under-
stand discrepancies in their beliefs of feasible plans. We de-
velop an online execution algorithm Epistemic Pike for the
agent to dynamically plan its actions to adapt to others and
communicate to resolve any discrepancy. We show that our
agent is effective in working in teams where a shared mental
model of plans cannot be guaranteed. A natural next step is
to consider cases where actions are partially observable.
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