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Abstract

This paper studies how a domain-independent planner and
combinatorial search can be employed to play Angry Birds,
a well established AI challenge problem. To model the
game, we use PDDL+, a planning language for mixed dis-
crete/continuous domains that supports durative processes
and exogenous events. The paper describes the model and
identifies key design decisions that reduce the problem com-
plexity. In addition, we propose several domain-specific en-
hancements including heuristics and a search technique sim-
ilar to preferred operators. Together, they alleviate the com-
plexity of combinatorial search. We evaluate our approach by
comparing its performance with dedicated domain-specific
solvers on a range of Angry Birds levels. The results show
that our performance is on par with these domain-specific
approaches in most levels, even without using our domain-
specific search enhancements.

Introduction
Angry Birds, a wildly popular mobile game, is an open chal-
lenge problem for AI (Renz et al. 2019) that requires reason-
ing about sequential actions in a continuous world with dis-
crete exogenous events. Different versions of the game have
proven to be NP-Hard, PSPACE-complete, and EXPTIME-
hard (Stephenson, Renz, and Ge 2020), and the reigning
world champion is still a human. The game’s simple layout
and mechanics teamed with human players’ innate spatio-
temporal reasoning and forward state prediction makes for a
challenging task. However, where humans excel, AI agents
struggle. Small errors in initial assumptions can result in
scores and states drastically different from the player’s pre-
dictions. Angry Birds requires a holistic understanding of
each individual level and its relevant characteristics. Under-
standing the relevance of all features and the sum of all of its
parts is not a common trait of AI approaches. Angry Birds is
a difficult and fascinating challenge for autonomous agents,
solving it would prove a significant milestone in AI.

In this work, we present the first successful game playing
agent for Angry Birds that uses a domain-independent plan-
ner and combinatorial search. Most existing planning lan-
guages, such a STRIPS (Fikes and Nilsson 1971), PDDL
(McDermott et al. 1998), and PDDL2.1 (Fox and Long
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2003), lack features such as exogenous activity to capture
the Angry Birds games. In this paper, we study how the
game mechanics can be encoded using PDDL+ (Fox and
Long 2006), a rich planning language that is designed for
mixed discrete/continuous domains. PDDL+ enables mod-
eling the physics-based dynamics such as effect of gravity,
collision between objects, and trajectory of the bird using
equations of motion and their computational approximations
(e.g., Bhaskara’s sine approximation formula).

Our first contribution is a model of Angry Birds using
PDDL+, which includes several important modeling choices
that ensure solution in reasonable time. We employ time dis-
cretization techniques to reason about continuous aspects of
the domain which presents the challenge of combinatorial
search. The second contribution of this work is the devel-
opment of several search enhancements designed specifi-
cally to constrain solution space in the domain. These en-
hancements include domain-specific heuristics and a “pre-
ferred states” mechanism similar to the preferred operators
technique (Richter and Helmert 2009). Third contribution
is through a comprehensive evaluation against some of the
state-of-the-art agents for Angry Birds (Borovicka, Spet-
lik, and Rymes 2014; Wang 2017). Our evaluation demon-
strates that our techniques can solve a greater diversity of
Angry Bird levels compared to other agents thus, show-
casing that proposed domain-independent search strategies
and domain-specific heuristics make search more efficient.
Please note, this is a preliminary exploratory work incor-
porating the initial modeling and searching techniques for
discrete-continuous domains, such as basic features of birds
of point and shoot. Since, submitting this work we have ex-
panded the capabilities to incorporate some of the special
features, such as, second tap to initialize special power of
birds, that will be part of the forthcoming submissions.

The paper is organized as follows. We begin by providing
relevant background on the Angry Birds game and PDDL+.
This is followed by an analysis of different planning for-
malisms and their limitations for this domain. Next, we
present the design of our PDDL+ model for Angry Birds.
Then, we describe how this PDDL+ model is used within
a game playing agent, and propose several domain-specific
search enhancements. Finally, we close with an experimen-
tal evaluation of our approach on a variety of Science Birds
problems comparing our results with state-of-the-art base-
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Figure 1: Trivial Angry Birds level.

Figure 2: Difficult Angry Birds level.

line agents from previous competitions. For the convenience
of the readers we have provided the complete domain, a
problem file and the solution generated as part of the sup-
plementary material with the submission.

Background
PDDL+ (Fox and Long 2006) is an extension of
the well-known Planning Domain Description Language
(PDDL) (McDermott et al. 1998), that maps the planning
constructs to a Hybrid Automata (Henzinger 2000) for im-
proved expressiveness with numeric fluents and metrics, in-
stantaneous actions, exogenous events and durative changes
called processes. PDDL+ is designed to model and plan
for problems requiring both discrete mode switches, con-
tinuous flows with exogenous environmental changes. It
builds on the expressiveness of its predecessors modeling
languages, encapsulating the entire set of features from
PDDL2.1 (Fox and Long 2003) and adding timed-initial lit-
erals from PDDL2.2 (Edelkamp and Hoffmann 2004).

In PDDL+ the domain D for the game environment is a
tuple 〈F,R,A,E, P 〉 where F is a set of discrete state vari-
ables; R is a set of numeric state variables; A is a set of ac-
tions the agent can execute; E is a set of instantaneous events
triggered in the environment directly or indirectly due to ac-
tions of the agent; P is a set of durative process that may be
active in the environment or triggered by the agent. A state
of the environment s is a complete assignment of values to
the state variables F ∪ R. Please note, that the domain of
numeric state variables does not include ⊥ value, i.e., none
of the variables are undefined in the state as the environment
and the transitions are completely deterministic. A planning
problem Π = 〈D, sI , G〉, where sI is the initial state, and

sI ∈ S the set of possible states in the environment; G is the
goal condition for the environment.

The Angry Birds Game consists of several different lev-
els. Every level has some allocated numbers of birds that are
launched using a slingshot in an attempt to hit pigs sitting
inside structures built using platforms and blocks. Pigs can
be killed by a direct hit from a bird, or indirectly by falling
blocks, explosions, or falling from a height. Every level con-
sists of different arrangement of structures and a number of
pigs to be killed. Platforms are indestructible floating ob-
jects, while blocks can be destroyed or toppled over. Blocks
come in various shapes, sizes, and materials. For example,
blocks made of ice break easily, stone blocks are harder to
break, and TNT crates (shown in fig. 2) explodes on im-
pact, destroying close objects and launching others in the
air. Some birds have special abilities, activated by tapping
on the screen during flight. While these special abilities are
needed to pass some levels, we do not model them in this
paper for simplicity.

Aim of the game is to kill the pigs using minimum num-
ber of birds and maximize the game score. A well-known
strategy of angry birds is to hit the weakest point of the
structure, to maximize the impact on the pigs and kill them
quickly. The composition of each level can drastically affect
the choice of strategy for playing the game. For example,
Figure 1 shows a simple level with red birds and a single
pig protected by a weak structure. To pass this level, it is
sufficient to shoot a bird directly towards the pig, causing
the structure to collapse on it. In contrast, Figure 2 shows
a more difficult level where the only viable strategy is exe-
cuting precise shots that set off an explosive chain reaction.
Thus, an intelligent agent playing Angry Birds needs to be
able to predict future states of the world that extend beyond
the immediate and direct consequences of the agent’s ac-
tions. As the game is solved in discrete and continuous state
space, it has become the game of choice for a long running
yearly competition, AI Birds (Renz et al. 2015), organized
by Australian National University at the IJCAI conference.

Modeling Angry Birds
To create a domain for Angry Birds, we need to model the
flight of the bird, collisions between structures, explosions,
and structure collapse after collisions and explosions. In this
section we look at these aspects in some detail. First, we be-
gin with a brief discussion on why we chose PDDL+ as our
modeling language, then describe the PDDL+ components
used to model different objects in the game, and finally the
PDDL+ components used to model the game dynamics.

PDDL+ PDDL2.1 PDDL2.2
Bird Flight X X
Collisions X X
Explosions X X

Structure collapse X X

Table 1: Language support for crucial Angry Birds features.
FSTRIPS+ similar to PDDL2.1 is also able to model only
the Bird Flight.
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Predicate Domain Comments

Birds

bird type Z Different types of birds such as 0 is for the Red bird
x bird, y bird R XY location of the bird
v bird, vx bird, vy bird R Cumulative and XY component of velocity of of the bird
m bird R+ Mass of the bird.
bird id Z Sequence in which the birds will be fired.

Pigs x pig, y pig R XY location of the pig
r pig, m pig R+ Radius & Mass of the pig

Blocks
x block, y block R XY location of the block
block height, block width R+ Height and Width of the block
block mass R+ Mass of the block

Platforms
x platform, y platform R XY location of the platform
platform width R+ Width of the platform.
platform height R+ Height of the platform.

Table 2: Modeling different objects in Angry Birds.

Different aspects of Angry Birds can be modelled with
different levels of expressiveness. For example, PDDL2.1
(Fox and Long 2003) can be used to model the flight of the
bird using numeric fluents similar to an FSTRIPS+ (Ramirez
et al. 2017). Table 1 provides a comparison of PDDL2.1,
PDDL2.2 (Edelkamp and Hoffmann 2004), FSTRIPS+, and
PDDL+, and what parts of the game can be modelled using
them. PDDL2.2 provides a close competition for modeling,
however, PDDL+ provides support for all parts of the game.

PDDL+ planning problems are difficult to solve due to
immense search spaces, and complex system dynamics. In-
deed, planning in hybrid domains is challenging because,
apart from the state space explosion caused by discrete state
variables, the continuous variables cause the reachability
problem to become undecidable (Alur et al. 1995). Thus,
clever design choices when modeling in PDDL+ are often
crucial to solving PDDL+ problems, arguably more so than
for any other planning domain definition languages.

Angry Birds Objects in PDDL+
The objects in the Angry Birds domain are separated into
four types: birds, pigs, blocks, and platforms. Note that
we did not list the slingshot, which is where the birds are
launched from, as an object in the domain. Instead of explic-
itly modeling the slingshot, we assign the coordinates of the
at-rest slingshot to every bird that is about to be launched.
Avoiding modeling unnecessary objects helps in maintain-
ing a light-weight domain definition. Table 2 describes dif-
ferent predicates that were used to model birds, pigs, blocks
and platforms. The state is defined using the XY location of
each object and their specific properties, e.g., mass or radius.

Angry Birds Dynamics in PDDL+
The PDDL+ domain of Angry Birds features a variety of
dynamics which dictate the change and evolution of the sys-
tem. This, however, creates planning problems with vast
search spaces and large branching factors, making them
computationally difficult to solve. Thus, mitigating the is-
sues of solvability and efficiency was at the forefront of the

domain’s development at each step of the process, and is ev-
ident in the resulting PDDL+ model’s composition.

Launching a Bird Our PDDL+ model of Angry Birds
contains a single action – launching a bird from the slingshot
at a chosen angle. Launching of the bird is split into three
separate phases: selecting the launch velocity, finding the
launch angle, and releasing the bird. In our model, we fix the
launch velocity to its maximum possible value to decrease
the solution search space. This decision is motivated by the
fact that maximum velocity shots provide widest range of
targets and the final impact velocity of the bird is directly
proportional to damage it causes to the objects. Moreover,
the same level of reachability can be modeled by changing
the angle of slingshot alone instead of modulating the speed
and angle together.

Next, we address the construction of the action responsi-
ble for selecting the launch angle. In a naive approach, one
could encode a set of instantaneous actions that increase or
decrease the angle, supplemented by an action releasing the
bird from the slingshot. In this approach, the search space
will include many cycles, corresponding to increasing and
decreasing the launch angle by equal amounts. Instead, we
pair the release action with a supporting process that contin-
uously adjusts the angle as soon as a new bird is placed on
the slingshot, ready to be launched. This follows the The-
ory of Waiting (McDermott 2003), which sees the agent
idly waiting until the world evolves into a favorable state in
which to execute actions. This encoding reduces the number
of decision points, cycles, and branching factor, mitigating
state space explosion.

Concretely, the model includes an increase angle process
for increasing the launch angle and a release bird action
(fig. 3) whose effects assign values to the vertical and hori-
zontal velocity variables based on the angle. The velocities
are then used to model the ballistic flight of the birds. Once
a bird is launched, another process is triggered. This flying
process (fig. 4) models ballistic flight of the active bird, up-
dating its velocity and location over time, according to the
governing equations of motion. Note that this process rep-
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(:action release_bird
:parameters (?b - bird)
:precondition (and

(= (active_bird) (bird_id ?b))
(not (angle_adjusted))
(not (bird_released ?b)) )

:effect (and
(assign (vy_bird ?b)

(* (v_bird ?b) SIN(angle)))
(assign (vx_bird ?b)

(* (v_bird ?b) COS(angle)))
(bird_released ?b) (angle_adjusted)) )

Figure 3: PDDL+ action for launching a bird. Since trigono-
metric functions are not included in PDDL+, model relies on
Bhaskara’s small-angle approximations for SIN and COS.

(:process flying
:parameters (?b - bird)
:precondition (and

(bird_released ?b)
(= (active_bird) (bird_id ?b))
(> (y_bird ?b) 0) )

:effect (and
(decrease (vy_bird ?b)

(* #t (gravity) ))
(increase (y_bird ?b)

(* #t (vy_bird ?b)))
(increase (x_bird ?b)

(* #t (vx_bird ?b)))) )

Figure 4: PDDL+ process of a bird’s flight.

resents the domain’s non-linear behavior, which is a major
obstacle in PDDL+ planning as many planners struggle to
handle complex dynamics.

Events All the objects interact with the environment and
other objects through events. Below, we discuss three differ-
ent classes of events for modeling collisions, motion of the
blocks, and auxiliary events at the start and end of each shot.
These events model complex behaviors of destruction, ex-
plosion and structure collapse when hit by birds. In our plan-
ning model, all the post launch system dynamics are caused
by events interacting with the effects of the flying process.

Collisions are the first class of events that are highlighted
in an Angry Birds problem. The main aim of the game is
to kill pigs by directly colliding with them, causing nearby
explosions, or destroying blocks such that pigs are killed by
collapsing structures or falling from heights. Each of those
cases is a crucial tactic in Angry Birds, and any accurate
model of the game must encompass such mechanics.

As an example event, direct interactions between a bird
and a pig are modeled based on elastic sphere collisions in
two dimensions. Pigs are very fragile and disappear upon al-
most any contact from another object. Thus, after a collision,
only the bird’s resulting velocity needs to be calculated, ac-
cording to the angle-free elastic collision formula:

~v′b = ~vb −
2mp

mb + mp

〈~vb − ~vp, ~xb − ~xp〉
||~xb − ~xp||2

(~xb − ~xp) (1)

where ~vb and ~vp are the velocity of the bird and pig, respec-
tively, ~xb and ~xp are their respective positions, mb and mp

are their respective masses, and the angle brackets denote an
inner product of two vectors. Translating this equation into
a PDDL+ event allows us to model behavior beyond the ob-
vious solutions (i.e., aiming directly at an exposed pig). It
enables the planner to find highly innovative solutions such
as deliberately and directly killing two pigs with one bird
(fig. 6). Similarly, we model events for collisions with the
grounds, which also enables finding trick shots in which the
bird bounces off the ground to hit a pig or a block.

The ground in Angry Birds is often overlooked when
playing the game but it can prove useful when aiming at
difficult targets. As such, an event (seen in fig 5 is defined in
the domain that influences the bird’s trajectory after bounc-
ing off the ground, based on energy lost during the collision
(i.e., ground damper). Figure 7 shows how a ground-bounce
event helps in killing a pig when a direct hit is impossible.

(:event collision_ground
:parameters (?b - bird)
:precondition (and

(= (active_bird) (bird_id ?b))
(<= (y_bird ?b) 0) )

:effect (and
(assign (y_bird ?b) 1)
(assign (vy_bird ?b)
(* (* (vy_bird ?b) -1)(ground_damper)))
(assign (bounce_count ?b)
(+ (bounce_count ?b) 1))) )

Figure 5: Event modeling a bird bouncing off the ground.

Most interactions in a level occurs between birds and
blocks in the scene. Blocks form structures which act as a
protection barrier for targeted pigs. Thus, modeling colli-
sions with blocks is vital to playing Angry Birds. However,
similarly to pig collisions, we opt to only define the event’s
effects in terms of the impact it has on the bird’s velocity
and the blocks stability and life values. There are two events,
modeling bird-block collisions with the distinction based on
whether the block is stable enough to withstand the impact
without being knocked out of place or destroyed entirely. In
such cases, the bird bounces back off the block, otherwise it
continues moving forward with a diminished velocity.

Modeling the motion of blocks after impact and chains of
block-block collisions would be prohibitively difficult, re-
quiring a process for tracking each individual block’s change
in position and rotation over time, as well as a set of events
to account for secondary interactions. These additions would
only marginally improve the domain’s accuracy, though the
planner would experience a drastic drop in performance,
having to keep track of dozens of simultaneous non-linear
processes in every state after a collision. Instead, we model
one central block-block interaction, namely dislodging or
destroying blocks supporting larger structures. In such cases,
an event is triggered for every supported block, reducing its
stability value to 0, repositioning the block to the ground,
and adjusting its life value to account for fall damage. Anal-
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Figure 6: Two pigs-one bird plan in execution.

Figure 7: Solution requiring bouncing off the ground and collapsing a structure to kill the target pig.

ogously, we defined another event for killing pigs which sit
atop collapsing block structures.

The two final block-related events concern exploding
TNT crates. Any impact upon the crate causes an explosion
destroying all objects in its immediate vicinity and displac-
ing objects further away. In our PDDL+ model, we incorpo-
rate two simple events modeling the explosive destruction of
pigs and blocks near a TNT crate. As previously indicated,
we omit movement of objects caused by explosions.

Platforms are indestructible objects which the agent needs
to reason with to avoid poor results. However, almost no
meaningful interactions occur between birds and platforms,
and thus our domain contains an event modeling this type of
collision but only to discourage the agent from shooting at
platforms. The event deters the agent by nullifying the bird’s
velocity and expiring it without any impact on the level.

Finally, we encode a supporting event which models the
end of life for an active bird. In the game, a bird expires
when it moves beyond the limits of the scene or when it stops
moving. Modeling the exact timing of the end of a bird’s
life is quite difficult. Instead, we define the birds usefulness
in terms of the number of bounces off other objects. Each
bounce partially reduces the bird’s momentum, and its colli-
sion impact becomes negligible after three bounces. There-
fore, we define a termination event for the active bird once it
has bounced three times. The result of this event is that the
next bird is placed on the slingshot for launch.

Goals While the goal of Angry Birds is to destroy all the
pigs, we consider a simpler formulation for individual plan-
ning problems. The simplified problem splits the original
scenario into single-bird episodes with the goal of killing
at least one pig. During evaluations we start with this sim-
plified approach and use a direct trajectory calculator as a
contingency strategy when the planning phase fails to find a
solution. Table 3 gives a breakdown of the number of events,
processes and actions in a domain, and the number of objects
in a typical level. As noted above, Angry Birds is an atypical
domain as the agent only has one action (release bird).

Level Objects Actions Events Processes

22 7-11 5(1) 19-114(17) 3(3)
25 8-12 5(1) 20-88(17) 3(3)
36 8-12 5(1) 30-114(17) 3(3)
45 9-13 5(1) 37-162(17) 3(3)
46 11-15 9(1) 59-199(17) 5(3)
53 10-14 5(1) 28-163(17) 3(3)
54 8-12 5(1) 30-114(17) 3(3)
57 11-15 5(1) 65-220(17) 3(3)
55 29-138 13(1) 430-13772(17) 7(3)

Table 3: Number of objects and happenings in the grounded
domain (and in the domain template). The main computa-
tional load is checking whether events have occurred.

Solving Angry Birds with a PDDL+ Planner
In this section, we describe how we used the PDDL+ model-
ing of Angry Birds specified above to design an Angry Birds
playing agent called Hydra. We detail how Hydra interacts
with the game, the PDDL+ planner it uses, and search tech-
niques we implemented to improve its efficiency.

From Angry Birds to PDDL+
The game playing API represents an Angry Birds level as
a list of labeled objects and their locations. Hydra supple-
ments this information with background knowledge of the
game and its objects, such as the mass of the different birds.
Then, it automatically translates all the collective relevant
information of the current level into a PDDL+ problem file.

Next, it uses a PDDL+ planner to generate a plan that kills
at least one pig using one bird. If no plan is found in 30s,
we execute a default non-planning action, namely a direct
shot at a random pig. If a plan has been found, Hydra per-
forms the plan. After performing an action, Hydra observes
the updated state of the game, again via the game playing
API. Then, it generates a corresponding PDDL+ problem as
before, and generates a new plan from the current state. This
continues until the level ends, either passing the level or fail-
ing to do so before exhausting all the available birds.
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PDDL+ Planners Any state-of-the-art PDDL+ planners
can be used for solving the Angry Birds game, such as, SMT-
Plan+ (Cashmore et al. 2016), UPMurphi (Della Penna et al.
2009), DiNo (Piotrowski et al. 2016) and ENHSP (Scala
et al. 2016). However, during experimentation we faced sev-
eral challenges due to costly domain-independent heuristics
and lack of ability to incorporate other heuristics for im-
proved results in the game. Thus, we used our own domain-
independent PDDL+ planner in Hydra, which is written in
Python and has been used successfully incorporated for sev-
eral other domains. Now we will discuss some of the search
algorithms that are supported by our planner and the two
heuristics that we evaluated for the domain.

Search and Heuristics
Our domain-independent PDDL+ planner supports sev-
eral search algorithms including depth-first search (DFS),
breadth-first search (BFS), and Greedy Best-First Search
(GBFS)1. GBFS requires heuristic function to evaluate ex-
plored states. We propose two heuristics for our domain.

The Score Heuristic While the agent aims to solve levels
in the game, i.e., kill all pigs, the game itself associates a
score to each state. Specifically, destroying pigs and blocks
increases the score of the current level. The score heuristic,
denoted HS , uses exactly this score as a heuristic. The agent
needs to analyze the opportune angles at which to release
the slingshot and evaluate distant effects. The heuristic is
calculated based on the number of pigs and blocks the bird
will hit multiplied by a constant value.

The Proximity Heuristic The second heuristic we used
calculates the active bird’s proximity to the nearest pig, as a
function of flight time and direction. This heuristic, denoted
HP , is computed as follows.

~d = ~xtarget − ~xbird vector from bird to pig (2)

d̂ =
~d

‖~d‖
unit vector of same (3)

HP (s) =
‖~d‖

~vbird · d̂
flight time to pig (4)

Where ~xtarget, ~xbird and ~vbird are the coordinate vectors of
the pig, the bird and the velocity of the bird respectively,
‖~x‖ is the Euclidean norm, and · is the inner product. Using
this heuristic results in giving preference to states where the
bird is not only closer to a pig, but also heading towards it,
reducing the effort spent on distant trajectories. As a conse-
quence, this heuristic also gives preference to low trajecto-
ries. The heuristic is admissible as the straight-line distance
to the target underestimating the flight time.

Helpful States
Orthogonal to the choice of heuristics, our system incor-
porates domain-specific strategies into the search process.

1Our planner also support A* (Hart, Nilsson, and Raphael
1968), but since we do not aim to find optimal solutions, there is
no benefit in using A*. Nevertheless, we performed an initial eval-
uation of using A* in Hydra, but the results were subpar.

This mechanism, that we refer to as helpful states, is based
on the “helpful operators” mechanism from classical plan-
ning (Richter and Helmert 2009). Helpful operators in clas-
sical planning is a mechanism that prioritizes the use of a
subset of the operators while planning. Porting this mecha-
nism to our case requires some adaptation, since the number
of actions in our domain is very limited.

Our helpful states mechanism accepts some definition of
what a preferred state is, and then prioritize expanding such
states. In our implementation we defined a preferred state as
one in which the active bird is on a trajectory that is expected
to hit a pig or a TNT block. Checking if the active bird is on
a trajectory to hit an object is done by using the equation for
ballistic motion to create a function yt = fi(xt) for each po-
tential target i (pig or TNT block). Given a state, we can cal-
culate whether the bird’s y is close to the desired value, and
if so, mark it as a preferred state. The search strategy can also
be understood as doing Monte-Carlo rollout (Chaslot et al.
2008) only on a smaller set of states, instead of performing
a complete rollout on all the search states.

Throughout the search we maintain two open lists, one
that only includes preferred states, and one that includes all
states. During the search, we alternate between expanding
states from the open list with the preferred states and the
regular open list. To ensure that preferred states are reached
early, we also mark all states where the bird has not yet been
launched as preferred. This ensures the planner reasons with
the full range of possible launch angles. Note that this “pre-
ferred states” mechanism is fairly general, and allows dif-
ferent definitions of preferred states, and multiple open lists
with different priorities. This is a topic for future research.

Experiments
We conducted a set of experiments to evaluate the efficacy
of various planning-related design decisions explored in this
paper to develop Hydra. Particularly, in experiment 1, we
studied how different search perform when playing Angry
Birds using the PDDL+ model introduced in this paper.
Next, in experiment 2, we measured the impact of differ-
ent heuristics have on controlling the search. These experi-
ments were conducting on a benchmark set of Angry Birds
problems. We also present results from three other domain-
specific Angry Birds agents on the benchmark set as a way
to situate Hydra’s performance.

Benchmark Levels Our benchmark set of problems con-
tains simple levels that contain a single bird and a relatively
small number of other objects, and complex levels that con-
tain multiple birds and more than 50 objects. The evalua-
tion is designed to test the agents in situations requiring var-
ied strategies. The simple levels require high accuracy shots
while the complex levels require a high level of physics rea-
soning about interaction with blocks, but can often be passed
by simple curated rules.

In total, we experimented with 9 types of levels, which
are numbered 22, 25, 36, 45, 46, 53, 54, 57, and 55. Every
evaluated agent attempted to solve 25 randomly generated
levels of each type. An example layout for each type of level
can be found in figure 8. Note that the first 8 level types are
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22: A level requiring a single low-
trajectory shot.

25: A level requiring a single high-
trajectory shot.

36: In this level, the TNT is too far
away to kill the pig.

45: To kill both pigs with one bird,
must hit TNT.

46: the TNT is a decoy, must hit each
pig with a bird.

53: Must hit TNT to win, but it is a
difficult shot.

54: Bird must bounce off far plat-
form wall to hit pig.

57: TNT provides a solution to an
‘impenetrable’ box.

55: A complex level.

Figure 8: A screenshot example of each type of level layout

simple levels and the last one is a complex level.

Competing Agents We selected a baseline agent by ANU
and two former champions of the IJCAI competition.
• ANU Baseline (Stephenson and Renz 2017) is a baseline

agent developed by the IJCAI AI Birds competition or-
ganizers. This baseline agent targets a randomly selected
pig with each active bird, and aims to shoot at the selected
pig while disregarding all other objects in the scene.

• DataLab (Borovicka, Spetlik, and Rymes 2014) is the
2014 & 2015 champion of the IJCAI Angry Birds com-
petition. DataLab’s selects from 4 predefined strategies
(destroy pigs, target TNT, target round blocks, destroy
structures), based on predicted utilities.

• Eagle’s Wing (Wang 2017) is the 2016-2018 champion
of the ICJAI Angry Birds competition. Eagle’s Wing
selects from 5 predefined strategies (pig-shooter, TNT,
most blocks, high round objects, and bottom building
blocks), based on predicted utility. Eagle’s Wing supple-
ments these strategies with a trained XGBoost (Chen and
Guestrin 2016) model to optimize its performance.

• Hydra: We evaluated different variations of Hydra
that use different search strategies, breadth-first search
(Hy.,BFS), depth-first search (Hy.,DFS), and greedy-best
first search (Hy.,GBFS). Three variations of Hy.,GBFS
were tested each leveraging different heuristics discussed
in this paper: score heuristic (HS), proximity heuristic
(HP ), and helpful states (HS).

All agents are designed to work with the ANU Science Birds
framework (Renz et al. 2015).

Levels
Agent 22 25 36 45 46 53 54 57 55

Hy., BFS 21 21 18 25 18 15 11 25 4
Hy., DFS 21 16 16 21 10 13 11 17 2
Hy., GBFS(HS) 21 21 20 25 14 15 14 25 1
Hy., GBFS(HP ) 21 21 24 25 25 25 16 25 4
Hy., GBFS(HS) 21 21 25 25 24 25 16 25 9

ANU Baseline 18 0 0 16 0 2 0 11 17
Datalab 15 8 0 24 3 0 0 22 16
Eaglewings 2 6 0 23 2 0 1 21 15

Table 4: Evaluation results for each agent, reporting on num-
ber of levels passed.

Results 1 First, we measure the number of levels passed
by each agent. This metric ensure that we study not only
that the agents can plan but are able to find a plan that can
be executed in the environment for successful goal achieve-
ment. Table 4 shows the number of levels passed from each
of the level templates in our benchmark, by each agent.

The results show several clear trends. First, all Hydra
agents outperformed the other agents in all the simple lev-
els. In some cases, e.g., level type 36, all GBFS variants of
HYDRA passed at least 20 out of 25 levels of this type while
none of the non-Hydra agents were able to pass any levels.
On the other hand, the baseline agents outperformed all Hy-
dra agents in the complex levels.

Hydra’s heuristics guide the planner through the physics
of the problem, and are independent of level structure. As a
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result, Hydra is accurate and versatile, and it can reason with
any level composition. Hydra achieves best performance in
simple levels requiring highly accurate shots.

In contrast, non-Hydra agents were developed for playing
human-designed levels, which are readily solved by a small
number of fixed strategies focused on destroying complex
structures. Low-accuracy strategies fare well on densely-
populated levels (i.e., level 55 in the evaluation). Agents
developed for levels with hand-crafted choices of strategy,
and requiring only low-accuracy shots, do not perform well
when the underlying assumptions for those strategies are
broken (i.e., randomly generated level compositions).

Level 22 25 36 45 46 53 54 57 55

Nodes/s 1,610 1,295 930 624 732 747 1,202 634 36

Table 5: Rate of node expansion, in nodes per second, by Hy-
dra using GBFS with helpful states (GBFS (HS)), for each
of level type in our benchmark (top row).

Hydra does not perform well in complex levels since the
sheer number of objects present require higher computa-
tional resources to reason about them. However, this sug-
gests that smarter search and heuristics may allow our agent
to also solve the complex levels - an extension we are con-
sidering for future work. Consider Table 5 that lists the num-
ber of nodes expanded per second when using Hydra with
GBFS and the helpful states technique. As can be seen,
node generation in the complex level type (type 55) is much
slower, going from 1,610 nodes/s in simple level type 22
to only 36 nodes/s for the complex level type 55. Solving
complex levels with domain-independent planning requires
stronger heuristics and perhaps other search techniques.

Results 2 Next, we study how various heuristics imple-
mented in Hydra impact plan search. To measure search ef-
ficacy, we recorded the number of nodes expanded during
planning. Table 6 shows the average number of nodes ex-
panded by each of the Hydra agents we considered. Here
we see that all of our implemented heuristics are effective as
they reduce the number of nodes expanded during search.

While intuitively appealing, the score heuristic (HS) turns
out to be ineffective since the PDDL+ model of the game

GBFS
Level BFS DFS HS HP HS

22 11,468 20,000 11,495 10,081 8,445
25 36,681 46,108 35,432 21,382 9,668
36 32,111 42,482 32,753 18,383 1,970
45 5,257 21,341 5,279 2,264 1,826
46 31,517 40,871 31,317 15,485 2,674
53 26,340 36,199 29,366 14,909 2,760
54 34,564 42,100 35,115 23,578 15,526
57 6,126 17,974 7,298 2,378 1,753
55 1,208 1,489 1,454 970 707

Table 6: Average total number of nodes expanded by the dif-
ferent Hydra agents for different level types.

has only one action (release the slingshot at an opportune
angle), and the action has distant effects. The score is not a
direct consequence of the action, but rather it is computed
far in the future once the bird collides with other objects.

Helpful states mechanism is the most effective; in some
cases it expands an order fewer nodes before finding a so-
lution (see the row corresponding to level 53 for example).
Returning to the results in Table 4, we see that search ef-
ficiency significantly impacts Hydra’s performance. GBFS
with various heuristics can solve more levels that BFS and
DFS. Between the different search enhancements, the help-
ful states technique is clearly beneficial in most cases.

Conclusion
In this work, we presented a novel approach based on
domain-independent planning for Angry Birds, a popular
mobile games and a challenging AI testbed (Renz et al.
2019). To capture the complex dynamics of the system, we
modeled the game using PDDL+, a rich planning language
developed for hybrid systems supporting exogenous activ-
ity in planning domains via discrete events and continuous
processes. We discuss how expressiveness of PDDL+ can
capture complex, physics-based dynamics of Angry Birds.
We implemented this PDDL+ model within a game playing
planning agent, and explored several domain-specific search
enhancements, such as novel heuristics and the “helpful-
states” search strategy. Such improvements were useful to
efficiently solve the challenging Angry Birds domain, de-
spite a PDDL+ model focused on reducing system complex-
ity and only incorporating a single action. Our evaluation
showed promising results, with our agent able to pass more
levels than multiple champions of the Angry Birds AI com-
petition, in most types of levels we considered. It highlights
that domain-independent planning and combinatorial search
is a viable approach for solving this AI benchmark.

Despite promising results, our current agent can strug-
gle with complex levels composed of several objects on
the scene. Additionally, our implementation does not con-
sider the full range of the Angry Birds game, ignoring birds
with special abilities and various types of pigs. Future work
will address both limitations: develop better heuristics and
search algorithms and extending our domain model to in-
clude birds’ special powers. Future work will also com-
pare Hydra with emerging AI agents such as BamBirds and
Agent X(Lutalo 2022), which improve shot selection by bet-
ter balancing between exploration and exploitation.

Our work demonstrates that PDDL+ is useful for captur-
ing the dynamics of challenging, real-world domains. How-
ever, our experience with Angry Birds demonstrates that
solving planning problems in rich PDDL+ domains is a chal-
lenge for existing planners. The development of solutions for
PDDL+ by the community has been slow. One of the rea-
sons for this is that PDDL+ benchmark domains have been
largely re-purposed from existing domains, which result in
problems that could be addressed by PDDL2.1 techniques.
This work also serves as a call-to-arms for research into
PDDL+ planners and heuristics, both domain-independent
and model-specific.
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