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Abstract

Defining financial goals and formulating actionable plans to
achieve them are essential components for ensuring financial
health. This task is computationally challenging, given the
abundance of factors that can influence one’s financial situ-
ation. In this paper, we present the Personal Finance Planner
(PFP), which can generate personalized financial plans that
consider a person’s context and the likelihood of taking
financially related actions to help them achieve their goals.
PFP solves the problem in two stages. First, it uses heuristic
search to find a high-level sequence of actions that increase
the income and reduce spending to help users achieve their
financial goals. Next, it uses integer linear programming to
determine the best low-level actions to implement the high-
level plan. Results show that PFP is able to scale on generat-
ing realistic financial plans for complex tasks involving many
low level actions and long planning horizons.

Introduction
Setting financial goals and planning ahead are crucial for
achieving financial health whether for individuals, house-
holds or companies. For individuals, financial planning in-
volves managing monetary resources through expenditures,
investments and savings, while considering various life
events, risks and goals. The benefits of financial planning
have been studied and quantified using economic well-being
indicators in both empirical (Warschauer and Sciglimpaglia
2012; Farinella, Bland, and Franco 2017) and theoretical
settings (Hanna and Lindamood 2010).

Consulting a personal finance professional is the most
common way of seeking financial advice, as they can
help clients make decisions about investments, budgeting
and other courses of action to achieve their goals. Such
services are often very expensive and thus inaccessible to
many people. Alternatives to speaking to an advisor include
personal finance assessment tools and questionnaires which
offer semi-personalized advice to users based on their input.
Automated methods for financial planning often rely on
expert systems or similar rule-based approaches (Kindle
et al. 1989; Phillips, Nielson, and Brown 1992; Althnian
2021). The main weakness of these approaches is that they
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do not provide detailed solutions (i.e., plans with monthly
actions). They also do not consider the feasibility of the
recommended plans based on the user financial habits.

In this paper we present the Personal Finance Planner
(PFP), which generates realistic plans that achieve users’
financial goals. Due to the large action space, (i.e., there is a
potentially great number of income and expenses sources),
PFP solves the problem hierarchically in two stages, by ex-
ploiting the task’s structure. First, it uses heuristic search to
find a high-level sequence of income increase and spending
decrease actions at each month that achieve the financial
goal. Then, it uses integer linear programming (ILP) to
decide how to implement the prescribed high-level plan by
composing the right low-level actions to be applied at each
month. In this paper, we primarily focus on personal finance
planning. But our framework can also be applied to assist
with financial planning tasks for households and companies.

Financial Planning Tasks
We aim to find realistic plans that allow users to transit
from their current financial state to a state that fulfills their
financial goals. Formally:

Definition 1. A Financial Planning Task is a tuple FPT =
⟨F ,A, I, G⟩ where F is a set of real-valued variables, A is
a discrete set of joint actions, I is the initial state and G is a
goal state.

The variables in F , that represent each state, are the
time step t, the account balance B, and a set of monthly
income and expenses sources or types T . These income
and expenses types can be seen as the different budgets or
categories individuals can act upon, such as job income or
housing expenses. The account balance B at time step ti+1

is computed as the sum of the balance in t and the sum of
all the monthly income sources in t, minus the sum of all the
monthly expenses sources in t.

A state s of a FPT task is an assignment over the real-
valued numeric variables in F . We will use sX to access
the value of a numeric variable X ∈ F of a state s.
Numeric variables can appear in conditions ξ ▷ k, where
ξ is an arithmetic expression, ▷ ∈ {≤,≥,=, <,>}, and k
is a constant. The goal state is a conjunction of conditions
taking the form ⟨sF , st⟩ ▷ k, i.e., they specify the value
of a real-valued variable in a given time step. In the rest
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of the paper we will assume goals are formed by a single
condition stating the account balance in a given time step.
For example, a goal could be {⟨sB , 4⟩ ≥ 2000}, i.e., to have
at least $2000 in the account’s balance in 4 months time.

Joint actions A are composed of a set of actions A that
modify a financial state. We will use AT to denote the
subset of actions that modify a given budget type T ∈ T .
Each action a ∈ A is defined in terms of its preconditions
(pre(a)), which are conjunctions of numeric conditions over
F ; and effects (eff(a)), which increase/decrease the value of
numeric variables in F by a given percentage. In the rest of
the paper we assume the same percentages effects for all the
budget types. The actions execution is defined as a function
γ : S×A → S that specifies the state that results of applying
an action in a given state. In addition to preconditions and
effects, each action is assigned a likelihood value –a real
number between 0 and 1 that reflects the feasibility of a user
executing that action. For example, an action suggesting a
job income increase of 0% will usually have a likelihood of
1, since no financial effort is required from the user. Instead,
an action suggesting a health expenses decrease of 10%
will have a likelihood close to 0, since this implies a more
demanding change to the users’ financial habits. In practice,
these likelihoods can be given or inferred from data.

At each time step, a discrete set of joint actions A can
be applied to modify the financial state. Each joint action
J ∈ A is a set composed of an action a ∈ A for each
income and expense type in T . Therefore, |J |= |T |. We
overload γ to define the execution of a joint action J ∈ A
as γ : S × J → S. Joint actions can be applied in a
state s when

⋃
a∈J pre(a) are satisfied in s. Their effects

are given as the union of all its actions’ effects
⋃

a∈J eff(a),
plus advancing the time step and updating the balance B by
summing the incomes and subtracting the expenses budgets
in the new state. The likelihood of joint actions is computed
as the product of its actions likelihood, likelihood(J) =
Πa∈J likelihood(a). Therefore, joint actions involving many
demanding actions will have a lower likelihood.

The solution to a FPT is a plan, which consists of a
sequence of joint actions that allow the user to transit
from the initial state I to a state s where all goal con-
ditions in G are true, s |= G. Therefore, a plan π =
⟨J1, J2, . . . , Jn⟩ solves a FPT iff ∀Ji ∈ π, Ji ∈ A, and
γ(. . . γ(γ(I, J1), J2) . . .), Jn) |= G. A plan π solves a FPT
optimally if there is no other plan with higher likelihood
product of its joint actions:∏

J∈π

likelihood(J) (1)

We face two obstacles when trying to use search al-
gorithms to (optimally) solve the problem as defined in
Expression 1: (1) plan optimality is defined as a product,
while the evaluation functions used within search algorithms
typically use additive functions (as the g function used
within A∗); and (2) plan optimality is defined as a maxi-
mization task (maximize likelihood), while common search
algorithms aim to minimize a given function. To overcome
the first problem, we compute the logarithm of each action’s
likelihood score so we can sum them. To overcome the

second problem, we transform the maximization task into
a minimization task by subtracting the logarithm of the
likelihood score from one. This process was previously
proposed by Jimenez et al. (2006) to compile probabilistic
planning tasks into deterministic ones. By performing these
two transformations, now we have the following additive
cost function that search algorithms can minimize:

c(J) = 1− loge(likelihood(J)) (2)

Given a plan π and its cost c(π), we can compute its
likelihood by applying the following operation:

likelihood(π) = e−(c(π)−|π|) (3)

PFP: Hierarchically Combining Heuristic
Search and Linear Programming to Solve FPT
The state space of a FPT grows as we increase the number of
time steps we want to plan ahead (depth); or the number of
income and expenses types and the actions we consider for
each type (breadth). The former is constrained in practice
to relatively small values, since the current use case we
are considering focuses on short or medium term financial
goals. However, the latter leads to a huge joint action
space that renders useless any attempt to solve the problem
monolithically. In our previous attempt to solve this prob-
lem (Pozanco, Papasotiriou, and Borrajo 2022), standalone
automated planning and heuristic search approaches were
not able to scale, even when only considering just two
budgets and three actions. Currently, we are considering a
more ambitious setting where we have nine different budgets
(|T |= 9), and five different actions that can be applied over
each budget. This yields a joint action space A of 59 actions.
One way of reducing this joint action space would be to
work at the action space level by imposing a sequential order
of actions at every month, (i.e. first act on food expenses,
then health expenses, then travel expenses, etc.) and finally
move to the next month. But this approach has two main
drawbacks: we would be increasing the depth of the search
tree a lot; and designing heuristics would be more complex.

In this paper we have chosen a different approach and pro-
pose the Personal Finance Planner (PFP) which leverages
a hierarchical approach that exploits the structure of the task
to overcome the joint action space size challenge. Making
large problems tractable through hierarchical decomposition
have been extensively studied in the search and planning
communities (Knoblock 1990; Bercher, Alford, and Höller
2019), and our approach is inspired by these works. First, we
use heuristic search to find a high-level sequence of income
increase and expense decrease joint actions at each month
that achieve the financial goal. Then, we use ILP to decide
how to implement the joint actions prescribed by the high-
level plan by choosing the best low-level combination of
actions to be applied at each month.

High-Level Planning through Heuristic Search
In order to compute a high-level plan, we need to: (1) define
how to create the high-level problem space from the original
FPT; and (2) define the heuristics that will drive the search
in the high-level task.
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Algorithm 1: Abstract Action Space Computation
Input: A,N
Output: A′

1: Ainc, Aexp ← GROUPBYABSTRACTTYPES(A)
2: minInc,maxInc← GETMINMAXEFF(Ainc)
3: minExp,maxExp← GETMINMAXEFF(Aexp)
4: minIncCost,maxIncCost←

GETMINMAXCOST(Ainc,minInc,maxInc)
5: minExpCost,maxExpCost←

GETMINMAXCOST(Aexp,minExp,maxExp)
6: A′

inc ← LI(minInc,maxInc,minIncCost,maxIncCost, N)
7: A′

exp ← LI(minExp,maxExp,minExpCost,maxExpCost, N)
8: A′ ← {A′

inc ×A′
exp}

9: return A′

Defining the High Level Problem Space The account
balance is computed as a function of the sum of incomes
minus the sum of expenses. Therefore, we can generate
an abstract problem space by reducing the size of T and
only consider two abstract action types: income increase
actions Ainc and expense decrease actions Aexp. However,
we need to exercise caution when creating this abstraction so
it fulfills the downward refinement property (DRP) (Bacchus
and Yang 1991), i.e., given that a low level solution exists,
every abstract solution can be refined to a low level solution
without backtracking across abstract levels.

The computation of the new action and joint action space
is described in Alg. 1. It receives as input the original set of
actions A and the number of buckets N ∈ N ≥ 2, which de-
termines the level of abstraction of the new action space. The
algorithm first groups the actions in A into the two different
abstract types: Ainc (those that increase income) and Aexp

(those that decrease expenses). The algorithm then computes
the min and max increase (min/max effect of Ainc actions)
and decrease (min/max effect of Aexp actions) effect as well
as their cost (lines 2-5). The cost is computed through the
GETMINMAXCOST function, which sums the cost of all the
actions that produce the given max/min income(expense)
increase(decrease). This information is used to generate
the new action space of each abstract type in the linear
interpolation (LI) function (lines 6-7). This function takes
the action with the min and max increase (decrease) effect
over the income (expenses) abstract types, and generates N
new actions by linearly interpolating these two points and
returning N − 2 points equally spaced between the min
and max values. For example, assuming minInc = 0%,
maxInc = 10%, minIncCost = 1, maxIncCost = 3 and
N = 3, this function would return the two input actions plus
an interpolated action a with eff(a) = 5% and c(a) = 2.
Finally, the algorithm returns the set of high-level joint
actions. We also compact the state representation by sum-
marizing all the budget types in T into two abstract types
T ′ = ⟨Inc,Exp⟩. We refer as F ′ = ⟨t, B, Inc,Exp⟩ to the
new abstract state representation, and FPT′ = ⟨F ′,A′, I, G⟩
as the new high-level task. As a reminder, we are assuming
goals related to increasing the account balance. Alg. 1
guarantees A′ does not contain actions that can increase the
balance more than the actions in A.

Algorithm 2: Greedy Heuristic (GH)

Input: s,G,A′, Admissible
Output: h
1: h←∞, remainingTimeSteps← Gt − st
2: for J ∈ SORTBYCOST(A′) do
3: s′ ← EXECUTE(remainingTimeSteps, J, s)
4: if s′ |= G then
5: if Admissible = True then
6: h← c(J)
7: else
8: h← c(J)× remainingTimeSteps
9: return h

10: return h

Therefore, any plan solving FPT′ will use income in-
creases and expense decreases that can be replicated by
actions in A to achieve the goal and solve the FPT. Thus,
PFP′ satisfies the DRP.

Computing a High-Level Plan We use A∗ (Hart, Nilsson,
and Raphael 1968) to solve FPT′. The cost of reaching a
state s is computed using Eq. 2. In order to estimate the cost
of reaching the goal from s, we propose a heuristic based
on solving a relaxation of the problem where only the same
joint action can be applied at every step. In other words, the
number of potential plans is limited to the number of joint
actions. Alg. 2 outlines the computation of this heuristic.

The algorithm receives as input the current state (s) and
goals (G), the available high level joint actions (A′), and
a parameter that indicates whether the heuristic should be
admissible or not. It first computes the number of remaining
time steps from s to reach G. Next, the algorithm iterates
over the list of joint actions (sorted according to their cost
as per Eq. 1), executing the given joint action J from s for
the number of remaining steps, and yielding a state s′. If the
goal is satisfied in s′, the algorithm finishes and returns the
heuristic estimate h. This heuristic value will depend on the
admissibility parameter. If we are interested in an admissible
heuristic (GHa), Alg. 2 returns the cost of executing that
joint action, c(J). If we want a more informative but inad-
missible heuristic (GHi), Alg. 2 returns the cost of executing
that action times the number of remaining time steps. The
output of using A∗ with the defined heuristic will be a high
level plan π′ consisting of high level joint actions J ′ ∈ A′

that solve FPT′ prescribing a summary of how individuals
should modify their income and expenses on each month.

Low-Level Planning through ILP
We compute an actionable low-level plan from π′ by sequen-
tially solving an optimization task at each time step (e.g.
month). This process is shown in Alg. 3. It receives as input
the high level plan, the original actions, and the initial state;
and returns a low-level plan π which is the solution of a
FPT. The algorithm iterates over π′, extracting the high-level
joint action J ′ prescribed for each month. This joint action
is given as input to the ILP model below, which computes
the low-level joint action J that better replicates J ′.

minimize
∑
a∈A

xa × c(a) (4)
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Configuration 3 months 6 months 9 months 12 months
Heuristic #Buckets N c(π) Time (s) c(π) Time (s) c(π) Time (s) c(π) Time (s)

GHi

2 111.0± 12.4 0.3± 0.0 53.3± 8.2 0.6± 0.0 43.8± 0.0 0.9± 0.0 26.1± 7.5 1.2± 0.0
3 101.6± 18.9 0.3± 0.0 47.7± 3.4 0.6± 0.0 30.3± 0.2 0.9± 0.1 20.6± 3.3 1.2± 0.0
4 98.3± 21.1 0.3± 0.0 45.3± 5.3 0.6± 0.0 25.7± 0.0 0.9± 0.0 19.6± 2.6 1.3± 0.1
5 98.3± 21.1 0.4± 0.1 43.3± 4.8 0.6± 0.1 29.6± 2.3 0.9± 0.1 18.1± 1.6 1.2± 0.0

GHa

2 111.0± 12.4 0.3± 0.0 40.3± 7.9 0.6± 0.0 30.8± 2.5 0.9± 0.0 26.1± 7.5 1.3± 0.0
3 101.6± 18.9 0.3± 0.0 35.5± 4.7 0.7± 0.0 21.2± 0.4 1.6± 0.0 20.6± 3.3 7.0± 1.7
4 98.3± 21.1 0.3± 0.0 36.0± 2.9 1.4± 0.1 25.4± 1.0 19.5± 1.5 − −
5 98.3± 21.1 0.4± 0.1 31.0± 3.4 4.5± 1.3 − − − −

Table 1: Solution cost (c(π)) and total execution time (Time(s)) in problems with increasing complexity (number of months)
for different configurations of PFP where we vary the heuristic (GHi and GHa) and #buckets.

Algorithm 3: Computing a Low-Level Plan

Input: π′, A, I
Output: π
1: π ← ∅
2: for J ′ ∈ π′ do
3: J ← ILP(J ′, A, I)
4: π ← π ∪ J
5: I ← γ(J, I)
6: return π

subject to: ∑
a∈AT

xa = 1, T ∈ T (5)

∑
a∈Ainc

IncomeDiff(xa, I) ≥ IncomeDiff(J ′
inc, I) (6)

∑
a∈Aexp

ExpensesDiff(xa, I) ≥ ExpensesDiff(J ′
exp, I) (7)

We create one binary decision variable xa for each action
a ∈ A. These variables will take a value of 1 if action
a is included in the joint action J , and 0 otherwise. The
ILP minimizes the sum of the costs of the actions included
in J (Eq. 4). Constraint 5 ensures that only one action
of each type is included in J , i.e., the joint action does
not suggest two expense decreases over the same budget.
Constraint 6 ensures that the income difference achieved by
the combination of actions a ∈ A is greater than or equal
to the income difference achieved by the joint action J ′,
while Constr. 7 does the same for the expenses. After the
ILP returns a joint action J , it is added to the plan π and the
state is I updated.

Evaluation
We evaluate PFP in problems with 9 different budgets,
divided into 2 income and 7 expense budgets. These budgets
range from job income to food and housing expenses, and
were selected by domain experts. We consider 5 different
actions to be applied over each budget by either increasing
or decreasing it by: 0, 2.5, 5, 7.5 and 10%. Note that a 0%
increase or decrease action is equivalent to a no-op action
over that budget. Each action has a different likelihood
provided by domain experts. This results in a joint action

space A of 59 actions. We generate FPTs of increasing
difficulty by varying the time horizon when the goal balance
has to be achieved: 3, 6, 9 and 12 months. We set the initial
balance to $1000, and the goal balance to be a random
number between 2.0 and 2.2 times the initial balance. The
sum of all income budgets is also $1000, as well as the
sum of all expense budgets, thus creating problem instances
where no savings are generated if the initial financial state
remains unchanged. We randomly distribute these numbers
into the different income and expenses budgets. Search
algorithms and heuristics have been implemented in Python
3.8. ILP tasks are solved using the PuLP library (Mitchell,
OSullivan, and Dunning 2011) and the CBC solver (Forrest
and Lougee-Heimer 2005). We solve each problem with
the two different heuristics GHa and GHi and 4 different
number of buckets: 2, 3, 4 and 5. We stop there because
otherwise the abstract search would be more granular than
the original FPT. Experiments were run in Intel(R) Xeon(R)
E3-1585L v5 @ 3.00GHz machines with 64GB of RAM and
a 30s timeout, as PFP is meant to work in a real-time setting.
Results for these configurations are reported in Tab. 1.

The high-level search is PFP’s bottleneck, as it requires
> 80% of the total execution time in all configurations. PFP
scales better when using the inadmissible heuristic GHi to
solve the higher level task, returning solutions in around
1s. On the other hand GHa returns better solutions in some
scenarios, but cannot solve the high level tasks in problems
with long time horizons or many buckets. As expected, we
observe a trend across heuristics and time horizons where
higher N ’s values translate to less costly, i.e., more likely
plans. However, this trend is not always monotonic, as in
some cases our linear interpolation might not accurately
represent some of the non-linear relationships between the
likelihoods of the original actions in the FPT. Finally, plans
involving longer horizon goals tend to be less costly since
they allow the planner to pick less aggressive actions.

Conclusions
In this paper we have presented PFP, a personal finance plan-
ner that generates realistic financial plans by hierarchically
combining heuristic search and ILP. Experimental results
show how PFP scales to large instances and returns results in
real time. An ongoing qualitative evaluation of the planner is
showing users are interested in having software that guides
them through their financial planning.
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