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Abstract

This work investigate temporal planning to synthesize per-
sonalized physical rehabilitation programs. The first contri-
bution of the work concerns the representation of (heteroge-
neous) clinical and spatial constraints into a planning frame-
work. The second contribution is the integration of numer-
ical and symbolic reasoning to synthesize technically valid
and coherent plans with respect to different clinical objec-
tives. The experimental section discusses the developed plan-
ner from a technical view, assessing solving and personal-
ization capabilities, and from a clinical view, assessing the
efficacy of plans on the involved patients.

Introduction
According to the last EU Commission’s Report on Aging,
the share of the age cohorts above 65 years in the EU pop-
ulation is expected to rise from 20% to 30% by 2070. In
contrast, the working-age population is expected to fall from
59% to 51% of the total population 1. The aging of the pop-
ulation is fostering an increase in the diffusion of neuro-
logical disorders that entails a high amount of resources for
the healthcare system. The request for continuous monitor-
ing, early diagnosis, and personalized therapy administra-
tion would be hard to sustain and very expensive with cur-
rent (centralized) healthcare models. Investing in sustainable
healthcare services becomes therefore urgent given the fore-
seen increase of assistance demand and shortage of health-
care professionals.

Technological innovation can play a role in overturning
such situation by offering new opportunities (Fiorini et al.
2022; Illario et al. 2016). Novel assistive technologies based
on Robotics, Internet-of-Things (IoT) and Artificial Intelli-
gence (AI) can positively impact the lives of older adults,
and support more efficient care processes (Cesta et al. 2016;
Vermesan et al. 2017). The design of innovative services
is however challenging and require efforts and contribu-
tions from different fields. A multi-disciplinary methodology
putting domain experts (e.g., therapists, doctors, psychol-
ogists), technological experts (e.g., roboticists, AI experts,
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1The 2021 Ageing Report: Economic & Budgetary Projections
for the EU Member States (2019-2070).

engineers) and end-users into the decision loop is crucial
(Cortellessa et al. 2021).

Among neurological disorders, Parkinson’s Disease (PD)
is described as the fastest growing in prevalence and strictly
linked to the rising of the ageing population (de la Torre
et al. 2016; Levy 2007). Within non-pharmacological treat-
ments, studies have demonstrated that regular physical exer-
cise practice has a beneficial effect on balance and gait func-
tional mobility (dos Santos Delabary et al. 2018). Consid-
ering recent interventions based on different types of dance
(Carapellotti, Stevenson, and Doumas 2020), a novel reha-
bilitation program conducted by a robotic coach and super-
vised by a physiotherapist have been designed (Bevilacqua
et al. 2021). Within this novel rehabilitation program for
early stage PD patients, we propose the use of Automated
Planning to support therapists in the synthesis of rehabili-
tation sessions. Rehabilitation sessions are shaped as danc-
ing lessons administrating a number of physical stimuli to
patients. Such stimuli consist of dancing steps/motions se-
lected by a planner to solicit a certain type of response from
patients, according to their rehabilitation needs. We propose
a timeline-based planner to combine numerical and sym-
bolic reasoning suitable to decide the (best) set of steps that
fit the desired clinical objectives.

Combinatorial capabilities of planning technologies well
support therapists to shape rehabilitation programs. Plan-
ning implements detailed reasoning on multiple aspects aug-
menting decisions of therapists. However, the application of
AI planning to healthcare and/or rehabilitation domains is
not straightforward given the lack of benchmarks, and “stan-
dard” models. When planning is applied to contexts where
decisions directly affect humans, beyond performance, it is
of key importance the quality of planned solutions. A correct
acquisition and modeling of clinical knowledge is crucial
generate plans that are effective. The acquisition and model-
ing of relevant knowledge requires the non-trivial interaction
between planning experts and therapists. The first contribu-
tion of this paper thus concerns problem modeling and the
acquisition of needed technical and clinical data. The second
contribution concerns the integration of numerical and sym-
bolic constraints for the synthesis of plans that are techni-
cally valid and coherent with the clinical objectives specified
by a therapist. Experiments show the capability of adapting
reasoning to specific rehabilitation needs of users.
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Physical Therapy and Parkinson’s Disease
The rising prevalence of PD is correlated to the ageing of
population. Cares aiming at slowing the progression of the
disease help PD patients maintaining a good quality of life,
feeling active, and reducing costs in the long run (Chaudhuri
and Titova 2019). Physical therapy at the early stage of the
disease is recommended to counteract the insurgence of mo-
tor symptoms (Keus, Hendriks, and Bloem 2004). Recent
studies have demonstrated that aerobic physical exercises
have beneficial effects on balance and functional mobility
(dos Santos Delabary et al. 2018). In this regard, interven-
tions based on different types of dance (e.g., Tango or Irish
dance) have been designed to recover the normal gait of pa-
tients with PD (Carapellotti, Stevenson, and Doumas 2020).

Within the SI-Robotics dance-based rehabilitation pro-
gram (Bevilacqua et al. 2021), we investigate the use of AI
planning to support the synthesis of suitable physical ex-
ercises. Many works in the literature investigate the use of
AI in healthcare and PD (Belic et al. 2019). AI is used for
example to predict the wearing-off of symptoms (Victorino
et al. 2021), support decisions (Devarajan, Sreedharan, and
Narayanamurthy 2021) or early diagnosis of PD (Parisi,
RaviChandran, and Manaog 2018). The majority of these
works adopt AI solutions based on deep/machine learning
and focus on the diagnosis of the disease. Few works inves-
tigate the use of Automated Planning (AP) to support ther-
apists in the synthesis of rehabilitation programs. The work
(González, Pulido, and Fernández 2017) for example inte-
grates AP into a control architecture to allow a social robot
to physically show motions to a patient during physical re-
habilitation. The work (Baschieri, Gaspari, and Zini 2018)
uses AP to synthesize stimulation scenarios within a seri-
ous game for cognitive rehabilitation. This work pursues an
objective similar to us but in a different clinical scenario.

We here propose AP to support the synthesis of physical
rehabilitation programs for PD patients. A key aspect of the
developed planning framework is the combined reasoning
about spatial and clinical effects of stimuli (i.e., motions or
dancing steps) that is necessary to synthesize plans that are
technically valid and effective from a clinical point of view.

Therapy Design through AI Planning
Compared to a manual definition of the rehabilitation ses-
sion, the use of a planner aims at improving the quality, the
accuracy, and the engagement of the resulting rehabilitation
programs. A therapist provides a planner with data about the
rehabilitation session (song time, song rhythm, and difficulty
level) and the clinical objectives. Given this input, the plan-
ner decides a sequence of steps, optimized according to an
objective function encoding the specified clinical objective.
Planned steps are thus chosen according to the rehabilitation
needs of the participating patient (personalization).

A rehabilitation session is structured as a dance lesson
where a smart TV plays some music and shows an avatar
mirroring the steps (i.e., physical exercises) a patient should
perform under the supervision of a therapist. The patient
should move within a predefined dancing area, keeping the
head pointed to the TV screen. Dancing steps consist of

combinations of simple body motions validated by the ther-
apist. The planner controls the avatar of the TV to imple-
ment the planned sequence of steps and guide the patient
within the session. It is necessary to carefully shape tech-
nical and clinical knowledge about steps (physical stimuli)
and their correlations with the rehabilitation program. This
knowledge is indeed essential for the planner to make deci-
sions that are technically valid and coherent with respect to
the clinical objective of a session.

Reification of Rehabilitation Knowledge
A planner should know a possibly rich set of stimuli (i.e.,
dancing steps), and their (cumulative) effects on the envi-
ronment and health-related aspects of a patient. The acqui-
sition and modeling of such knowledge is not trivial and en-
tails continuous refinements and interactions between plan-
ning experts and therapists. We have implemented an iter-
ative modeling processes consisting of three main phases.
The therapist is involved in the “modeling loop” and moni-
tors rehabilitation sessions to continuously assess the valid-
ity and efficacy of the stimuli generated by the planner. Feed-
back from the therapist is crucial to refine acquired planning
knowledge and improve planning decisions.

Stimuli. The first phase defines the set of physical exer-
cises representing the stimuli of the rehabilitation sessions.
Input from therapists is essential to shape the set of basic
motions implementing the dancing steps performed by pa-
tients during the rehabilitation sessions. These motions con-
stitute the “primitive actions” the planner would consider
to achieve the desired rehabilitation objectives. The larger
the set of motions the higher the number of alternative se-
quences (i.e., plans) a planner would take into account when
synthesizing a rehabilitation session. The outcome of this
first step is a dataset containing a total number of 62 dancing
steps. Considering the specific needs of the target users, ther-
apists designed dancing steps as simple motions on lower
and upper limbs. Example are “step forward with left foot”,
“step backward with the right foot and simultaneous rise of
the left arm above the shoulder’ or “body tilt to the right and
simultaneous rise of both arms above the shoulders”. Such
steps were considered suitable physical exercises that could
be administered during a session.

Features. The second phase defines the set of features as-
sociated with each physical exercises. Table 1 shows the de-
fined set of features. Features #3 and #4 are technical fea-
tures characterizing space requirements for the execution of
motions. Each motion is assumed to consume one “space
unit” along a vertical or horizontal axis composing a two
dimensional grid. Considering the horizontal axis (feature
#3) for example a positive value of space requirement en-
tails a rightward movement of the patient while a negative
value a leftward movement. The same apply to the verti-
cal axis (feature #4) where positive values entail forward
movements while negative values backward movements. All
movements assume a fixed frontal orientation of the body of
a patient in order to keep constant the reference system. Fea-
ture #5 characterizes the rehabilitation level recommended
for the session. Not all the defined steps are suitable for all
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Feature ID Name Type Description
#1 Description String Textual description providing a simple description of the movement

a user is supposed to perform.
#2 Step duration Integer ∈ N+ Information about the number of expected beats a user needs to

perform the requested movements.
#3
#4

Horizontal space requirement
Vertical space requirement Integer ∈ [−1, 1] Information about spatial effects of requested movements with

respect to the horizontal/vertical axis of the layout.
#5 Rehabilitation Level Integer ∈ [1, 4] Characterize the training level needed to perform the requested

movement.
#6 Energy Integer ∈ [0, 10] Estimate the amount of energetic effort required for the execution of

requested movements.
#7 Coordination Integer ∈ [0, 10] Characterize the amount of coordination effort required for the

execution of requested movements.

Table 1: Technical and clinical features associated to single motions

the patients, depending on their physical conditions and/or
the stage of the rehabilitation. This feature allows a therapist
to control the difficulty level of planned exercises.

Features #6 and #7 are clinical features representing the
“effects” that exercises have on the physical coordination
and mobility of a patient. The scores associated to each step
have been carefully assessed by therapists. Energy estimates
the metabolic response solicited by the execution of a phys-
ical exercise. Coordination estimates the effort required for
maintaining a good balance of the body while performing a
motion. While technical features allow the planner to gen-
erate sequences that are technically valid (e.g., keep the pa-
tient inside the dancing area), clinical features are necessary
to evaluate the fitness of alternative sequences of steps to the
clinical objective of the rehabilitation session.

Clinical Objectives. The third phase defines possible clin-
ical objectives of a rehabilitation session. These objectives
determine the “reasoning logic” implemented by the plan-
ner. The planner optimizes plans (i.e., sequences of steps)
with respect to an objective functions by evaluating the fea-
tures of the selected steps. The particular clinical objective
of a session is selected by the therapist who thus determines
the way the planner evaluates the cumulative contribution of
the clinical features associated with the steps (i.e., the objec-
tive function). Two objectives are considered: (i) the stimu-
lation of physical equilibrium solicits the body coordination
of patients (e.g., administrate stimuli requiring simultaneous
and asymmetric movements of lower and upper limbs), and;
(ii) the stimulation of metabolic response solicits the energy
expenditure of patients.

Before entering into the details of the implemented rea-
soning the next section briefly describes the timeline-based
planning formalism and the resulting model.

Rehabilitation Sessions as Timelines
The planning system relies on the timeline-based formalism
(Cialdea Mayer, Orlandini, and Umbrico 2016) which inte-
grates planning and scheduling through the synthesis of flex-
ible temporal behaviors of domain entities (i.e., timelines)
(Jonsson et al. 2000). We here apply timelines to the do-
main of physical rehabilitation by extending an open-source

framework called PLATINUm 2 (Umbrico et al. 2017).
The timeline-based specification of the planning model

follows the formalism introduced in (Cialdea Mayer, Orlan-
dini, and Umbrico 2016). Broadly speaking, a model con-
sists of a number of state variables describing temporal
behaviors of domain features, and a number of synchro-
nization rules describing domain constraints among differ-
ent state variables. State variables specify local constraints
characterizing the correct (temporal) dynamics of the mod-
eled domain features. Synchronization rules specify global
constraints coordinating state variables to achieve complex
goals. The combination of local and global constraints sup-
ports the synthesis of valid temporal behaviors (i.e., time-
lines) achieving the desired goals. A planning problem con-
sists of a set of partially instantiated timelines that spec-
ify known facts about the initial state of the modeled state
variables, and planning goals representing states that one
or more state variables should achieve within certain tem-
poral intervals. A planning process should synthesize valid
and complete temporal behaviors (i.e., timelines) of all state
variables such that all domain constraints are satisfied within
a known temporal horizon 3.

In the rehabilitation scenario, the timeline-based model
specifies rules necessary to synthesize valid sequences of
physical exercises. Goals represent requests to plan rehabili-
tation sessions. In addition to clinical and spatial constraints
the model defines rules necessary to comply with the speci-
fied rehabilitation level, song rhythm, and song duration.

A goal state variable SVG describes the high-level
planning requests specified by a therapist. The set of
values VG contains a default value Idle and the val-
ues Equilibrium and Stamina representing requests
associated with the clinical objectives, respectively the
stimulation of equilibrium maintenance and metabolic re-
sponse. These two values are enriched with parame-
ters specifying: song duration; song rhythm and; reha-
bilitation level. A level state variable SVL describes

2https://github.com/pstlab/PLATINUm.git
3Due to space limitations it was not possible to include a more

detailed description of the formalism. We invite readers to refer
to the work (Cialdea Mayer, Orlandini, and Umbrico 2016) for a
complete and formal description of the planning formalism.
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the session steps structuring a rehabilitation session.
The set of values VL contains a default value Idle
and the values SessionStepL1, SessionStepL2,
SessionStepL3, and SessionStepL4 associated
with four rehabilitation levels (see feature #5 in Table 1).
Independently from the actual steps selected by the planner,
these values determine the number of physical exercises ad-
ministrated to a patient within a rehabilitation session. The
duration bound of these values is set according to the min
and max duration of known steps (see feature #2 in Table 1).

A first set of synchronization rules decompose goal val-
ues vGi ∈ VG (e.g., Stamina or Equilibrium) into
values vLj ∈ VL through CONTAINS temporal constrains.
The values vLj used to decompose a goal value vGi depend
on the specified rehabilitation level. Token variables associ-
ated with the value SessionStepL1 for example would
be considered when the rehabilitation level is set to 1. The
number of token variables considered by the synchroniza-
tion rules depends on the duration and the rhythm of the song
selected for the session. The rhythm of a song is expressed
in bpm (beats per minute) while song and step duration in
beats. This means that a song with a rhythm of 120 bpm
and duration of 90 seconds would contain 180 beats. Con-
sidering for example 2 beats as average duration of physical
exercises (i.e., dancing steps), a number of 90 session steps
would be necessary to complete the session. This kind of
reasoning is dynamically performed in order to compute the
number of token variables associated with session step val-
ues vLj ∈ VL. No ordering constraints between the token
variables of the body of these rules are specified within the
decomposition. The actual scheduling of session steps is de-
cided by the planner when evaluating spatial constraints.

A step state variable SVS describes all the physical exer-
cises (i.e., dancing steps) known by the planner. The set of
values VS contains a symbol Step0 denoting a default “rest
position” and symbols Step1, ..., Step64 each denoting a
physical motion of the dataset defined in conjunction with
the therapist. The duration of these values is generally set to
2 beats. Note that the time necessary for the actual execution
of a physical motion depends on the selected rhythm of the
song. For example a song with a rhythm of 120 bpm entails
2 beats per second and thus a motion of 2 beats should be
executed in 1 second. A song with a rhythm of 60 bpm in-
stead entail 1 beat per second and thus a motion of 2 beats
should be completed in 2 seconds.

A second set of synchronization rules decomposes ses-
sion steps vLj ∈ VL into dancing steps vSk ∈ VS through
CONTAINS temporal constraints. In principle, each session
step vLj ∈ VL entails a decomposition choice with a branch-
ing factor of 62 alternative implementations (the number of
defined motions). The selected rehabilitation level of the
session reduces this branching factor discarding motions
that are associated with a higher level (e.g., a session step
SessionStepL2 would be decomposed into a dancing
step with a rehabilitation level equals or lower than 2). These
rules encode disjunctive choices necessary to reason about
alternative sequences of motions.

Algorithm 1: Timeline-based plan synthesis

Input: SV , S ,Hπ ,Hϕ

Output: π = (FTL,R)
1: Π ← ∅
2: π ← initialize (SV ,S)
3: while ¬ isSolution (π,SV ,S) do
4: Φ ← flaws (π,SV ,S)
5: Φ∗ ← chooseFlaws (Φ,Hϕ)
6: for ϕ ∈ Φ∗ do
7: Π ← refine (π, ϕ.resolvers)
8: end for
9: π ← choosePlan (Π,Hπ)

10: end while
11: return π

Symbolic and Numerical Reasoning

Based on the symbols and logic rules of the planning model,
the planner simultaneously reasons about the structure of a
plan and the effects of stimuli on space occupancy and clin-
ical parameters. Algorithm 1 summarizes the general PLAT-
INUm solving procedure. Given a set of input state variables
(SV) and synchronization rules (S) a partially instantiated
set of timelines π is created according to known facts and
goals (row 2). Timelines are refined until a complete and
valid behavior is synthesized for each variable SV (rows 3-
8). Each iteration consists of three steps: (i) detect the flaws
Φ of the current plan π (row 4); (ii) select some flaw(s)
Φ∗ ⊆ Φ to solve (row 5) and; (iii) compute and apply flaw
solutions ϕ ∈ Φ∗ (rows 6-7). Alternative plans are collected
into the fringe of the search space Π (row 7). The procedure
stops when no flaw is detected on a visited plan π (row 3).

Algorithm 1 is modular and can be extended by integrat-
ing new flaw selection heuristics Hϕ and search strategies
Hπ . The implemented flaw selection heuristics relies on hi-
erarchical information automatically extracted from the do-
main specification as presented in (Umbrico, Orlandini, and
Cialdea Mayer 2015). The novel contribution of this work
specifically concerns the introduction of new search strate-
gies Hπ to evaluate technical and clinical features of physi-
cal stimuli while searching for a valid and effective plan. De-
veloped strategies integrate pruning mechanisms to discard
plans that violate spatial constraints. They support clinical
objectives by integrating different optimization functions.

Mapping Timelines to Vector Space of Motions

Planned sequences of steps entail certain combinations of
movements that must comply with the spatial constraints of
the layout (i.e., the physical “dancing area”). The developed
search strategies entail pruning mechanisms to discard plans
that violate such spatial constraints. The dancing area is a
two dimensional grid Xmax× Ymax, where Xmax and Ymax

delimit the maximum reachable coordinates on the horizon-
tal and vertical axes respectively. The starting position of a
user is known, p0 = (x0, y0). Each token ai of the step state
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Algorithm 2: Spatial feasibility check

Input: π = (FTL,R), Xmax, Ymax

Output: ⊤ if feasible, ⊥ otherwise
1: FTLS ← plannedSteps (π)
2: ∆ ← (x∆ = 0, y∆ = 0)
3: p0 ← (x0, y0)
4: for ai ∈ A do
5: pi ← (xi−1 + horizontal (ai) , yi−1 + vertical (ai))
6: ∆← (max (x∆, |x0 − xi|) ,max (y∆, |y0 − yi|))
7: end for
8: if x∆ > (Xmax − x0) ∨ y∆ > (Ymax − y0) then
9: return ⊥

10: else
11: return ⊤
12: end if

variable timeline FTLS represents a planned exercise 4.
The ordered sequence of tokens A = ⟨ a1, ..., ak⟩ com-

posing FTLS can be projected to a vector space in order to
evaluate the physical position of a user over time, according
to the technical features of Table 1. This allows the planner
to compute the maximum deviation ∆ = (x∆, y∆) of the
position of the user from p0 as shown in Algorithm 2.

For each token ai ∈ A of FTLS the physical position pi
of the user at plan step i is computed to update the maximum
deviation ∆ (rows 4-6). The physical position pi of a user at
plan step i is computed by adding the horizontal and vertical
translations of planned stimulus to the coordinates xi−1 and
yi−i of the previous position (i.e., the position at plan step
i−1, row 5). Coordinates xi and yi are then used to compute
the absolute distance from the starting position p0 (row 6).
Such distance are then compared to coordinates x∆ and y∆
and used to update the maximum deviation ∆ if necessary
(row 6). When all tokens ai ∈ A have been considered the
obtained maximum deviation ∆ is compared to the spatial
bounds of the area Xmax and Ymax in order to verify the
spatial feasibility of plan π (rows 7-10). If spatial constraints
are violated (rows 7-8) then π is pruned.

It is important to point out that the spatial feasibility check
of Algorithm 2 analyzes the scheduled tokens of the step
state variable FTLS . Namely, it takes into account consoli-
dated sequences of planned steps (row 1) to properly evalu-
ate violations of spatial constraints. The procedure therefore
acts as a kind of pruning mechanism of partial plans and is
integrated into the feasibility check of Algorithm 1 (row 3).

(Clinical) Objective Functions
Clinical objectives entail the maximization of the qualities of
a plan with respect to one or more clinical features of Table
1 (i.e., energy and coordination). Two distinct search strate-
gies each addressing a specific clinical objective have been
developed and integrated into PLATINUm. In case of stim-
ulation of physical equilibrium the strategy would synthe-

4A token ai instantiates a state variable value vi over a flexi-
ble temporal interval [ei, e

′
i], [di, d

′
i] composing the timeline of the

related state variable, see (Cialdea Mayer, Orlandini, and Umbrico
2016) for further details.

size plans whose stimuli maximize the coordination effort
required for the execution of a plan. In case of stimulation
of metabolic response instead the strategy would synthesize
plans whose stimuli maximize the energy effort required for
the execution of a plan. Defined strategies follow an A* ap-
proach: fi (π) = gi (π) + hi (π).

The cost function gi (π) evaluates plans by taking into
account tokens ai ∈ A of FTLS . The heuristic func-
tion hi (π) instead evaluates plans by taking into account
tokens wj

k ∈ Ωj associated with the possible refine-
ments Ω (FTLS) = {Ω1, ...,Ωt} of FTLS . Following well
known heuristics like e.g., hadd or hmax (Bonet and Geffner
1999), hi (π) computes the maximum expected value of a
partial plan π by analyzing sets of tokens Ω (FTLS) that
might be part of FTLS in future refinements.

A search strategy denoted with objective 1 addresses
the clinical objective stimulation of physical equilibrium. It
maximizes the cumulative coordination effort required by
selected stimuli. The evaluation function fc (π) is thus de-
fined as follows:

fc (π) =
∑

ai∈ A
coordination (ai)+

max
ΩJ∈ Ω(FTLS)

∑
ωj

k∈ Ωj

coordination
(
ωj
k

) (1)

where coordination (ai) and coordination
(
ωj
k

)
retrieve the

value of the feature coordination in Table 1.
A search strategy denoted with objective 2 addresses the

clinical objective stimulation of metabolic response. It max-
imizes the cumulative energy effort required by selected
stimuli. The evaluation function fe (π) is:

fe (π) =
∑

ai∈ A
energy (ai)+

max
ΩJ∈ Ω(FTLS)

∑
ωj

k∈ Ωj

energy
(
ωj
k

) (2)

where energy (ai), energy
(
ωj
k

)
retrieve the value of the fea-

ture energy in Table 1.

Experimental Assessment
This section shows an experimental evaluation of the plan-
ning framework.It first shows the technical feasibility of the
planner. Regardless of the solving time, the results show the
desired capabilities of adapting the “qualities” of generated
plans to different clinical objectives. This was a primary re-
quirement with respect to the use of the planner in the reha-
bilitation program. This section then discusses some results
on real patients collected during the actual experimentation.
The discussion specifically focuses on two patients with dis-
tinct clinical objectives showing the effectiveness of the de-
signed rehabilitation program.
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Figure 1: Average planning time.

Technical Evaluation
The reasoning capabilities are assessed on a number of plan-
ning problems of growing size. All problems consider a
physical layout with Xmax = 8 and Ymax = 8 denot-
ing the bounds of the “dancing area”. A number of prob-
lem instances are thus defined by varying the following pa-
rameters: (i) song time with values 60, 90, 120, 150, 180,
210 and 240 seconds; (ii) song bpm with values 60 bpm
and 120 bpm; (iii) rehabilitation level with values from 1
to 4. Two planning configurations are defined: (i) objective
1 uses the search strategy addressing stimulation of equi-
librium through Equation 1, and; (ii) objective 2 uses the
search strategy addressing stimulation of metabolic response
through Equation 2. Planners are run on all problem in-
stances for a total number of 112 experiments (56 for each
configuration) 5.

Figure 1 shows the performance of the two configurations.
Both solve all problems instances. The bar chart aggregates
the results comparing performances on problems with dif-
ferent song bpm. The threshold denotes the song duration
and gives a reference for the evaluation of planning time.

Problems with 60 song bpm are solved quite efficiently. In
all cases the planning time is significantly under the thresh-
old (85 seconds for song duration of 240 seconds). Perfor-
mance instead get worse for songs with 120 bpm. The plan-
ning time is significantly higher than the threshold for song
duration of 210 and 240 seconds. Although planning con-
figurations struggle in solving problems with songs of 120
bpm, observed performances are suitable for the deployment
on the rehabilitation scenario. Songs used for the actual re-
habilitation indeed mainly rely on a rhythm of 60 bpm. Few
songs use a rhythm of 120 bpm (maximum duration within
200 seconds).

Most importantly, Figure 2 shows the qualities of synthe-
sized plans. Figure 2(a) compares the cumulative energy ef-
fort while Figure 2(b) compares the cumulative coordina-
tion effort. Notably, the two configurations synthesize plans
“pushing” different qualities according to the specified clin-
ical objective. Figure 2(a) shows indeed that configuration

5Runs made on a workstation with 2,8 GHz quad-core CPU and
16 GB RAM.

(a)

(b)

Figure 2: Comparison of plans stimulating equilibrium (ob-
jective 1) and metabolic response (objective 2): (a) plan en-
ergy and; (b) plan coordination.

(a)

(b)

Figure 3: Comparison of average energy and coordination
of plans stimulating: (a) equilibrium (objective 1) and; (b)
metabolic response (objective 2).
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objective 2 always synthesize plans with energy effort higher
than plans synthesized by configuration objective 1. Con-
versely, Figure 2(b) shows that configuration objective 1 al-
ways synthesize plans with coordination effort higher than
plans synthesized by configuration objective 2. A compari-
son of the qualities of the plans synthesized by the same con-
figuration confirms this result. According to Figure 3(a) and
Figure 3(b), plans generated by configuration objective 1 al-
ways have coordination effort higher than the energy effort,
while plans generated by configuration objective 2 always
have energy effort higher than coordination effort.

Feasibility Assessment in the Field
Given the discussed technical results, the planner was de-
ployed on a novel monitoring service specifically designed
and integrated in the daily activity of the Rehabilitation and
Physiotherapy Operating Unit of INRCA IRCCS 6 in An-
cona (Italy) that routinely conducts group therapy with older
PD patients at different stage of disease severity.

A clinical study was designed with the aim of verifying
the acceptability of the novel therapy by patients diagnosed
with early stage PD. More details on the study protocol
can be retrieved in (Bevilacqua et al. 2021). The (ethically
validated) experimental protocol consisted of 16 rehabilita-
tion sessions, one hour duration each and distributed over 8
weeks. Within each sessions, traditional physical exercises
(e.g., mobility, strengthening, stretching, coordination and
breathing exercises) were offered followed by 20 minutes
of dance-based stimuli (i.e., steps planned by the integrated
planner). The evaluation of the outcome of the study con-
cerned patient’s quality of life, daily autonomy, motor per-
formance, and acceptability of the system by the patient.

In this feasibility evaluation phase, nine subjects among
those joining the telerehabilitation group of the rehabilita-
tion unit of INRCA IRCCS, met the inclusion criteria. Fig-
ure 4 shows a patient joining a session with the planner syn-
thesizing the dancing steps that are administered through
the TV. While more details regarding the clinical-related
findings can be found elsewhere (Bevilacqua et al. 2022),
preliminary results about the acceptability suggest that the
novel service was perceived as usable and effective in treat-
ing conditions typical of PD. One of the aim of the study
was to analyze the modification of dimensions related to the
general functional status of patients in terms of gait, fear
of falling, cardio-respiratory performance, motor symptoms
related to PD, and quality of life. In this regard, we here fo-
cus on the results of two patients of the study to discuss the
contribution of the planner, by illustrating improvements in
specific metrics measured at the baseline (T0), at midterm
after 4 weeks (T1), and at the end of the rehabilitation ses-
sion after 8 weeks (T1).

• Patient G.C., is male, born 09/10/1953, with stage 2 ac-
cording to Hoen and Year scale (Hoehn and Yahr 1967),
the disease was diagnosed 10 years earlier. Objective ex-
amination demonstrates poverty of general movements,
bradykinesia, gait pattern with small and crawling steps,

6https://www.inrca.it/inrca/?lingua=en

minimal rigidity. Tremors and freezing were not appre-
ciated during evaluation and treatment. The primary aim
for the patient was to improve gait pattern, reduce the risk
of falling, and increase speed. The patient showed con-
sistent improvement in the six minute walk test (6MWT)
(Enright 2003) and Timed Up and Go (TUG) (Balke
1963). In the 6MWT trial, the patient went from 310mt
(T0), 360mt (T1) and 428mt (T2). In the TUG trial, the
patient significantly reduced the time from 14.97 seconds
to 10.2 seconds. Also at the E.O. by the therapist, an im-
provement in gait pattern could be appreciated.

• Patient R.C, is female, born 2/23/1942, with a stage 2
according to Hoen and Year scale, diagnosis occurred
6 years earlier. The objective examination shows only
an unsteady gait and reduced balance in static and dy-
namic phases although no history of falls in the last year.
The objective examination and assessments showed re-
duced balance in both dynamic and static phase, assessed
through the short physical performance battery (SPPB)
(Pavasini et al. 2016) and TUG. The primary goal was
to provide greater safety and reduce the risk, albeit min-
imal, of falling. At the end of the treatment, a significant
improvement in TUG was appreciated, which was con-
sistently reduced from 14.66 seconds to 9.56 seconds.
The SPPB scale improved in all its items showing an im-
provement in the total score from 8 to 10.

According to these results we can confirm the efficacy of the
planner in generating plans suitable for the different objec-
tives of the rehabilitation sessions.

Concerning acceptability, Figure 5 shows the aggregated
results measured through the UTAUT scale (Venkatesh et al.
2003). The feedback of the patients was overall positive
judging the technology as acceptable. The system was per-
ceived as useful (PU), easy to use (PEOU), and enjoyable
(PENJ). Furthermore, patients felt a low level of anxiety
(ANX) during the exercises and trusted the System (TR).
Nevertheless, the low score on facilitating conditions (FC)
reports doubts about the capability of supporting the use of
the technology with the existing organizational and technical
infrastructure.

Conclusions and Future Works

The paper shows the use of timeline-based planning for the
synthesis of physical stimuli tailored to the rehabilitation
needs of patients. An experimental evaluation shows the effi-
cacy of the developed framework in adapting the qualities of
plans to the clinical objectives specified by a therapist. Next
steps will concern the continuous use of the tool during the
designed experimentation in real settings. Furthermore we
will investigate the enhancement of solving capabilities by
integrating learning at both symbolic and numerical level.
For example we plan to investigate the extraction of land-
marks or quality bounds that (according to the objective)
can be used to synthesize specialized heuristics and improve
pruning mechanisms.
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Figure 4: Deployment of the planner into the rehabilitation scenario. The planner is integrated with a game engine showing the
steps the patient should perform on a TV screen. The game engine is in charge of “executing” plans by playing the selected
song, and prompting the planned steps according to the selected rhythm (60 or 120 bpm).

Figure 5: Results of the UTAUT scale. Scale from 1 to 5
where 1=strongly disagree and 5=strongly agree. ANX =
Anxiety; ATT= Attitude towards Technology; FC= Facil-
itating Conditions; PAD= Perceived Adaptability; PENJ=
Perceived Enjoyment; PEOU= Perceived Ease of Use;
PU=Perceived Usefulness; TR= Trust.
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