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2School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom

{mattia.chiari, alfonso.gerevini, luca.putelli1, ivan.serina, m.olivato}@unibs.it, f.percassi@hud.ac.uk

Abstract

Recognising the goal of an agent from a trace of observations
is an important task with many applications. The state-of-the-
art approach to goal recognition (GR) relies on the applica-
tion of automated planning techniques. We study an alterna-
tive approach, called GRNet, where GR is formulated as a
classification task addressed by machine learning. GRNet is
primarily aimed at solving GR instances more accurately and
more quickly by learning how to solve them in a given do-
main, which is specified by a set of propositions and a set
of action names. The goal classification instances in the do-
main are solved by a Recurrent Neural Network (RNN). The
only information required as input of the trained RNN is a
trace of action labels, each one indicating just the name of an
observed action. A run of the RNN processes a trace of ob-
served actions to compute how likely it is that each domain
proposition is part of the agent’s goal, for the problem in-
stance under consideration. These predictions are then aggre-
gated to choose one of the candidate goals. An experimental
analysis confirms that GRNet achieves good performance in
terms of both goal classification accuracy and runtime, ob-
taining better results w.r.t. a state-of-the-art GR system over
the considered benchmarks. Moreover, such a state-of-the-art
system and GRNet can be combined achieving higher perfor-
mance than with each of the two integrated systems alone.

Introduction
Goal Recognition is the task of recognising the goal that
an agent is trying to achieve from observations about the
agent’s behaviour in the environment (Van-Horenbeke and
Peer 2021; Geffner 2018). Typically, such observations con-
sist of a trace (sequence) of executed actions in an agent’s
plan to achieve the goal, or a trace of world states gener-
ated by the agent’s actions, while an agent goal is specified
by a set of propositions. Goal recognition has been studied
in AI for many years, and it is an important task in sev-
eral fields, including human-computer interactions (Batrinca
et al. 2016), computer games (Min et al. 2016), network se-
curity (Mirsky et al. 2019), financial applications (Borrajo,
Gopalakrishnan, and Potluru 2020), and others.

In the literature, several systems to solve goal recogni-
tion problems have been proposed (Meneguzzi and Pereira
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2021). The state-of-the-art approach is based on transform-
ing a plan recognition problem into one or more plan gen-
eration problems solved by classical planning algorithms
(Ramı́rez and Geffner 2009; Pereira, Oren, and Meneguzzi
2020; Sohrabi, Riabov, and Udrea 2016). In order to perform
planning, this approach requires domain knowledge consist-
ing of a model of each agent’s action specified as a set of
preconditions and effects, and a description of the initial
state of the world, in which the agent performs the actions.
The computational efficiency (runtime) largely depends on
the planning algorithm performance, which could be inade-
quate in a context demanding fast goal recognition (e.g., in
real-time/online applications).

In this paper, we investigate an alternative approach in
which the goal recognition problem is formulated as a clas-
sification task, addressed through machine learning, where
each candidate goal (a set of propositions) of the problem
can be seen as a value class. Our primary aim is making
goal recognition more accurate as well as faster by learning
how to solve it in a given domain. Given a planning domain
specified by a set of propositions and a set of actions names,
each one denoting an agent’s action whose execution can be
observed, we tackle the goal classification instances in the
domain through a Recurrent Neural Network (RNN). A run
of our RNN processes a trace of observed actions to com-
pute how likely it is that each domain proposition is part of
the agent’s goal, for the problem instance under considera-
tions. These predictions are then aggregated through a goal
selection mechanism to choose one of the candidate goals.

The proposed approach, that we call GRNet, is generally
faster than the model-based approach to goal recognition
based on planning, since running a trained neural network
can be much faster than plan generation. Moreover, GRNet
operates with minimal information, since the only informa-
tion required as input for the trained RNN is a trace of action
labels (each one indicating just the name of an observed ac-
tion), and the initial state can be completely unknown.

The RNN of GRNet is trained only once for a given do-
main, i.e., the same trained network can be used to solve a
large set of goal recognition instances in the domain. On
the other hand, as usual in supervised learning, a (possi-
bly large) dataset of solved goal recognition instances for
the domain under consideration is needed for the training.
When such data are unavailable or scarce, they can be syn-
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thetized via planning. In such a case, the resulting overall
system can be seen as a combined approach (model-based
for generating training data, and model-free for the goal
classification task) that outperforms the pure model-based
approach in terms of both classification accuracy and classi-
fication runtime. Indeed, an experimental analysis confirms
that GRNet achieves good performance obtaining better re-
sults with respect to the state-of-the-art goal recognition sys-
tem LGR (Pereira, Oren, and Meneguzzi 2020) for the con-
sidered benchmark domains.

Moreover, we propose an effective method to integrate
GRNet and LGR in an ensemble fashion, and we experi-
mentally show that this system combination performs con-
sistently better than both GRNet and LGR considered alone.

In the reminder of the paper, after giving the necessary
background and preliminaries, we describe the GRNet ap-
proach and how it can be combined with LGR, we present
the experimental results, and we discuss the related work.1

Preliminaries
We describe the problem of goal recognition, starting with
its relation to activity and plan recognition.

Activity, Goal and Plan Recognition
Activity, plan, and goal recognition are related tasks (Geib
and Pynadath 2007). Since in the literature sometime they
are not clearly distinguished, we begin with an informal def-
inition of them following (Van-Horenbeke and Peer 2021).

Activity recognition concerns analyzing sequences of
(typically low-level) data generated by humans, or other au-
tonomous agents acting in an environment, to identify the
corresponding activity that they are performing. E.g., data
can be collected from wearable sensors, accelerometers, or
images to recognize human activities such as running, cook-
ing, driving, etc. (Vrigkas, Nikou, and Kakadiaris 2015).

Goal recognition (GR) is the problem of identifying the
intention (goal) of an agent from observations about the
agent behaviour in an environment. These observations can
be represented as an ordered sequence of discrete actions
(each one possibly identified by activity recognition), while
the agent’s goal can be expressed either as a set of propo-
sitions or a probability distribution over alternative sets of
propositions (each one forming a distinct candidate goal).

Plan recognition is more general than GR and concerns
both recognising the goal of an agent and identifying the
full ordered set of actions (plan) that have been, or will be,
performed by the agent in order to reach that goal; as GR,
typically plan recognition takes as input a set of observed
actions performed by the agent (Carberry 2001).

Model-based and Model-free Goal Recognition
In the approach to GR known as “goal recognition over a do-
main theory” (Ramı́rez and Geffner 2010; Van-Horenbeke
and Peer 2021; Santos et al. 2021; Sohrabi, Riabov, and

1Additional material including source code and hyperpara-
mentes of GRNet, the test data sets, and further experimental re-
sults are available from https://github.com/mattia93/GRNet.

Udrea 2016), the available knowledge consists of an under-
lying model of the behaviour of the agent and its environ-
ment. Such a model represents the agent/environment states
and the set of actions A that the agent can perform; typi-
cally it is specified by a planning language such as PDDL.
The states of the agent and environment are formalised as
subsets of a set of propositions F , called fluents or facts, and
each domain action in A is modelled by a set of precondi-
tions and a set of effects, both over F . An instance of the GR
problem in a given domain is then specified by:

• an initial state I of the agent and environment (I ⊆ F );
• a sequence O = ⟨obs1, .., obsn⟩ of observations (n ≥ 1),

where each obsi is an action in A performed by the agent;
• and a set G = {G1, .., Gm} (m ≥ 1) of possible goals of

the agent, where each Gi is a set of fluents over F that
represents a partial state.

The observations form a trace of the full sequence π of ac-
tions performed by the agent to achieve a goal G∗. Such
a plan trace is a selection of (possibly non-consecutive) ac-
tions in π, ordered as in π. Solving a GR instance consists of
identifying the G∗ in G that is the hidden goal of the agent.

The approach based on a model of the agent’s actions
and of the agent/environment states, that we call model-
based goal recognition (MBGR), defines GR as a reasoning
task addressable by automated planning techniques (Ghal-
lab, Nau, and Traverso 2016; Meneguzzi and Pereira 2021).

An alternative approach to MBGR is model-free goal
recognition (MFGR) (Geffner 2018; Borrajo, Gopalakrish-
nan, and Potluru 2020). In this approach, GR is formulated
as a classification task addressed through machine learning.
The domain specification consists of a fluent set F , and a set
of possible actions A, where each action a ∈ A is specified
by just a label (a unique identifier for each action).

A MFGR instance for a domain is specified by an observa-
tion sequence O formed by action labels and, as in MBGR,
a goal set G formed by subsets of F . MFGR requires mini-
mal information about the domain actions, and can operate
without the specification of an initial state, that can be com-
pletely unknown. Moreover, since running a learned classi-
fication model is usually fast, a MFGR system is expected
to run faster than a MBGR system based on planning algo-
rithms. On the other hand, MFGR needs a data set of solved
GR instances from which learning a classification model.

Example 1 As a running example, we will use a very sim-
ple GR instance in the well-known BLOCKSWORLD do-
main, in which the agent has the goal of building one or
more stacks of blocks, and only one block may be moved at
a time. There are four types of actions: Pick-Up a block
from the table, Put-Down a block on the table, Stack a
block on top of another one, and Unstack a block that
is on another one. We assume that a GR instance in the
domain involves at most 22 blocks. In BLOCKSWORLD
there are three types of facts (predicates): On, that has
two blocks as arguments, plus On-Table and Clear that
have one argument. Therefore, the fluent set F consists of
22 × 21 + 22 + 22 = 506 propositions. The goal set G of
the instance example consists of the two goals G1 = {(On
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Block F Block C), (On Block C Block B)} and G2 =
{(On Block G Block H), (On Block H Block F)}; the
observation sequence O is ⟨(Pick-Up Block C), (Stack
Block C Block B), (Pick-Up Block F)⟩.

Goal Recognition through GRNet
Our approach to goal recognition, called GRNet, is depicted
in Figure 1. It consists of two main components. The first
component takes as input the observations of the GR in-
stance to solve, and gives as output a score (between 0 and
1) for each proposition in the domain proposition set F . This
component, called Environment Component, is general in
the sense that it can be used for every GR instance over F
(training is performed once for each domain). The second
component, called Instance Component, takes as input the
proposition ranks generated by the environment component
for a GR instance, and uses them to select a goal from the
candidate goal set G.
GRNet can be used alone or it can be combined with the

MBGR system LGR (Pereira, Oren, and Meneguzzi 2020),
as shown in the last part of this section.

The Environment Component of GRNet
Given a sequence of observations, represented on the left
side of Figure 1, each action ai corresponding to an observa-
tion is encoded as a vector ei of real numbers by an embed-
ding layer (Bengio et al. 2003). In Figure 1, the observed ac-
tions are displayed from top to bottom in the order in which
they are executed by the agent. The embedding layer is ini-
tialised with random weights, and trained at the same time
with the rest of the environment component.

The index of each observed action is simply the result of
an arbitrary order of the actions that is computed in the pre-
processing phase, only once for the domain under considera-
tion. Note that two consecutively observed actions ai and aj
may not be consecutive in the full plan of the agent, which
may contain any number of actions in between ai and aj .

The Environment Component is based on a Long Short-
Term Memory network (LSTM), which is a kind of RNN es-
pecially suitable for processing sequential data like signals
or text documents (Hochreiter and Schmidhuber 1997) (in
our case the sequence of observed actions).2 A LSTM layer
is composed by cells, which process each element of the
input sequence (each observed action) considering also the
previous inputs (actions in the sequence). The output of each
cell is processed by an Attention Mechanism (Bahdanau,
Cho, and Bengio 2015), in particular, the variant proposed
by (Yang et al. 2016), which computes the weights repre-
senting the contribution of each element of the sequence,
and generates a unique representation (also called the con-
text vector) of the entire plan trace. The context vector is
then passed to a feed-forward layer, which has N output
neurons with sigmoid activation function. N is the number
of the domain fluents (propositions) that can appear in any
goal of G for any GR instance in the domain; for our ex-
periments N was set to the size of the domain fluent set F ,

2We considered also using standard RNN or Gated Recurrent
Units, but both performed worse than LSTM for our GR task.

i.e., N = |F |. The output of the i-th neuron oi corresponds
to the i-th fluent fi (fluents are lexically ordered), and the
activation value of oi gives a rank for fi being true in the
agent’s goal (with rank equal to one meaning that fi is true
in the goal). In other words, our network is trained as a multi-
label classification problem, where each domain fluent can
be considered as a different binary class. As loss function,
we used standard binary crossentropy.

As shown in Figure 1, the dimension of the input and
output of our neural networks depend only on the selected
domain and some basic information, such as the maximum
number of possible output facts that we want to consider.
The dimension of the embedding vectors, the dimension of
the LSTM layer and other hyperaparameters of the networks
are selected using the Bayesian-optimisation approach pro-
vided by the Optuna framework, (Akiba et al. 2019), with a
validation set formed by 20% of the training set, while the
remaining 80% is used for training the network.

The Instance Specific Component of GRNet
After the training and optimisation phases of the environ-
ment component, the resulting network can be used to solve
any goal recognition instance in the domain through the
instance-specific component of our system (right part of Fig-
ure 1). Such component performs an evaluation of the can-
didate goals in G of the GR instance, using the output of the
environment component fed by the observations of the GR
instance. To choose the most probable goal in G (solving the
multi-class classification task corresponding to the GR in-
stance), we designed a simple score function that indicates
how likely it is that G is the correct goal, according to the
neural network of the environment component. This score
is defined as SGRNet(G) =

∑
f∈G of where of is the net-

work output for fact f of the current GR instance. For each
candidate goal G ∈ G, we consider only the output neu-
rons that have associated facts in G. By summing only these
predicted values, we derive an overall score for G being the
correct goal. The element with the highest score is the most
probable goal in G.

Example 2 In our running example, since we are assum-
ing that the GR instances involve at most 22 blocks, we
have that the action set A is formed by 22 Pick-Up ac-
tions, 22 Put-Down actions, 22 ∗ 21 = 462 Stack ac-
tions and 462 Unstack actions, for a total of 968 = |A|
different actions in the domain. Suppose that the three
observed actions (Pick-Up Block C), (Stack Block C
Block B) and (Pick-Up Block F) forming the observa-
tion sequence O have ids corresponding to indices 5, 17
and 21, respectively. In the Environment Component of GR-
Net, after being processed by the embedding layer, the in-
put O is represented by the sequence of vectors e05, e17
and e21. Then this sequence is fed to the LSTM layer and
subsequently to the attention mechanism, producing a con-
text vector c representing the entire plan trace formed by
the observed actions. Finally, the vector c is processed by
a final feed-forward layer made of |F | = 506 output neu-
rons. In this representation, each neuron corresponds to a
distinct proposition in F . Considering two possible goals,
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Figure 1: Architecture of GRNet. The input observations are encoded by embedding vectors and then fed to a LSTM neural
network. After that the attention mechanism computes the context vector, which is used by a feed-forward layer to define the
corresponding output values. This layer is composed by |F | neurons, each one representing a possible fluent in the domain. The
output of the neural network is then used by the instance component for selecting the goal with the highest score (G1 in the
example of the figure). The observed actions a05, a17, ..., a31 are ordered from top to bottom according to their execution order.

G1, made by (On Block F Block C) and (On Block C
Block B), and G2 made by (On Block G Block H) and
(On Block H Block F), if the network has to predict G1,
the neurons associated to the different propositions should
have value 1, while the neurons of the propositions in G2

should have value zero.
Therefore, in the Instance Component of GRNet, the pre-

diction values of G1 and G2 is the sum of the predic-
tions for the neurons representing their facts. Suppose that
o(On Block F Block C) = 0.017, o(On Block C Block B) = 1.000,
o(On Block G Block H) = 0.000, o(On Block H Block F) = 0.003,
we have that the final score of G1 is 1.017, while the final
score of G2 is 0.003. The goal with the highest score (G1) is
selected as the most probable goal solving the GR instance.

Integrating GRNet and LGR
GRNet can be integrated with an approach based on plan
generation such as the state-of-the-art system LGR (Pereira,
Oren, and Meneguzzi 2020). GRNet and LGR focus on dif-
ferent aspects of the problem. While GRNet has the capa-
bility of learning from experience the relations among ac-
tions and fluents belonging to the goal, LGR exploits domain
knowledge and automated reasoning for selecting the most
probable goal. Combining these two ways of addressing goal
recognition can lead to better accuracy results, overcoming
the limits of the automated reasoning approach, especially
in the presence of incomplete plan traces, and improving
GRNet when the learned experience is inadequate to solve
the task. Therefore, we have created an integrated system,
called LGRN, that combines LGR with GRNet.

The integration is simple and effective. Both GRNet and
LGR provide a numerical score for each goal in G, and each
system considers the goal with the highest score as the most
probable one. Therefore, we can combine them by using an
aggregated score defined as the normalized sum of the scores
of the two individual systems. More formally, given a GR in-
stance, for each candidate goal G ∈ G, the score SLGRN(G)
computed by LGRN for G is:

σ([SLGR(Gi)|Gi ∈ G])G + σ([SGRNet(Gi)|Gi ∈ G])G

Domain |A| |F | |Gi| |G|
BLOCKSWORLD 968 506 [4,16] [19,21]
DEPOTS 13050 150 [2,8] [7,10]
DRIVERLOG 4860 156 [4,11] [6,10]
LOGISTICS 15154 154 [2,4] [10,12]
SATELLITE 33225 629 [4,9] [6,8]
ZENOTRAVEL 23724 66 [5,9] [6,11]

Table 1: Size of A, F , Gi ∈ G and G in the considered GR
instances for each considered domain. Interval [x, y] indi-
cates a range of integer values from x to y.

where SLGR(G) is the score of LGR for G, and σ([·])G is
the output for G of the softmax function applied to the in-
put score vector [·]. The softmax normalisation is chosen in
order to have the same value distribution space for the two
scores, i.e., values in the range [0, 1] with sum 1. Further-
more, the softmax function tends to flatten the score values,
which helps to avoid cases where the sum is extremely bi-
ased towards one approach or the other.

Experimental Analysis
Benchmark Suite and Data Sets
We consider six well-known benchmark domains:
BLOCKSWORLD, DEPOTS, DRIVERLOG, LOGISTICS,
SATELLITE and ZENOTRAVEL (McDermott 2000; Long
and Fox 2003). Of course GRNet can be trained and tested
also using other domains.

Training sets In order to create the (solved) GR instances
for the training and test sets in the considered domains, we
used automated planning techniques. Concerning the train-
ing set, for each domain, we randomly generated a large
collection of (solvable) plan generation problems of dif-
ferent size. We considered the same ranges of the num-
bers of involved objects as in the experiments of Pereira,
Oren, and Meneguzzi (2020). For each of these problems,
we computed up to four (sub-optimal) plans solving them.
As planner we used LPG (Gerevini, Saetti, and Serina 2003;
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Gerevini and Serina 2003), which allows to specify the num-
ber of requested different solutions for the planning problem
it solves. From the generated plans, we derived the observa-
tion sequences for the training samples by randomly select-
ing actions from the plans (preserving their relative order).
The selected actions are between 30% and 70% of the plan
actions.3

The generated training set consists of pairs (O,G∗) where
O is a sequence of observed actions obtained by sampling a
plan π, and G∗ is the hidden goal corresponding to the goal
of the planning problem solved by π. For each considered
domain, we created a training set with 55000 pairs.

Test sets For evaluating GRNet, we generated two test sets
formed by GR instances not seen at training time: TSPerGen
and TSRec. Such test instances were generated as for the train
instances, except that the observation sequences were de-
rived from plans computed by LAMA (Richter and Westphal
2010), while for the training instances we used plans com-
puted by LPG; this change is to make the testing more robust.

TSPerGen is a generalisation and extension of the test set
used in (Pereira, Oren, and Meneguzzi 2020) for the same
domains that we consider. We indicate Pereira’s test set with
TSPer. TSPerGen includes all TSPer instances; moreover, the
goal sets (G) of TSPer and TSPerGen are the same. The ad-
ditional instances in TSPerGen are motivated by the limited
number and particular structure of those in TSPer. The struc-
ture is limited because the observations in the instances of
TSPer are created from plans for the goals in G that are all
generated from the same initial state. In TSPerGen, the GR
instances are created combining different initial states with
the candidate goal sets, obtaining a richer diversification of
the observation traces and a larger number of test instances.
In particular, for each of DEPOTS, DRIVERLOG, SATELLITE
and ZENOTRAVEL, TSPer contains only 84 instances, while
TSPerGen contains 1000 instances for each domain.

For each plan generated for being sampled, we randomly
derived five different action traces formed by 10%, 30%,
50%, 70% and 100% of the plan actions, respectively. This
gives five groups of test instances, for each considered do-
main, allowing to evaluate the performance of GRNet also
in terms of different amounts of available observations.

Table 1 gives information about the size of the GR in-
stances in our test and training sets for each domain, in terms
of number of possible actions (|A|), facts (|F |), min/max
size of a goal (|Gi|) in a goal set G, and min/max size of a
goal set (|G|).

Test set TSRec was created to evaluate how well the com-
pared systems behave on GR instances of different difficulty.
We focus this analysis on a specific domain (ZENOTRAVEL).
In TSRec, the generated GR instances are grouped into sev-
eral classes according to their difficulty. As difficulty mea-
sure, we used the notion of recognizability of the hidden
goal, which is inspired by the notion of the “uniqueness
of landmarks” introduced by Pereira, Oren, and Meneguzzi
(2020). Specifically, the recognizability R(G) of a goal G ∈
G is defined as

3Note that the test sets (described next) also include GR in-
stances with lower and higher percentages of observed actions.

R(G) =
∑

f∈G
1

|{G′ | G′∈G∧f∈G′}| .
The lower R(G) is, the more difficult recognising G is; vice
versa, the higher R(G) is, the more discernible G is. We nor-
malize R(G) as a value between 0 and 1, denoted RZ(G).
E.g., if G = {G1, G2, G3}, with G∗ = G1 = {a, b, c},
G2 = {a, e, f} and G3 = {g, h, i}, then R(G∗) = 1

2 + 1 +

1 = 5
2 and RZ(G

∗) = 0.75 (high recognizability). If G =
{G1, G2, G3} with G∗ = G1 = {a, b, c}, G2 = {a, b, x}
and G3 = {a, b, y}, then R(G∗) = 1

3 + 1
3 + 1 = 5

3 , and so
RZ(G

∗) = 0.33 (low recognizability).
Using different values for RZ(G

∗), we generated nine
classes of GR instances, denoted C1, ..., C9. For each GR in-
stance in class Ci, we have 0.1 · i ≤ RZ(G

∗) < 0.1 · (i+1),
for i = 1...9. Each class consists of 100 GR instances.

Evaluation measures We use the GR accuracy for a set
of test instances as the main evaluation criteria, which is de-
fined as the percentage of instances whose goals are cor-
rectly identified (predicted) over the total number of in-
stances in the test set. If for an instance the evaluated system
provides k different goals with the same highest score, then,
in the overall count of the solved instances, this instance has
value 1/k if the true goal is one of these k goals, 0 otherwise.

Following the methodology in (Pereira, Oren, and
Meneguzzi 2020), we also analyze the GR θ-accuracy. This
measure assumes that the scores assigned to the goals by
the GR system are values between 0 and 1, and uses a θ
threshold to select the set of candidate goals whose score
is greater than or equal to the highest assigned score minus
θ. If the true goal belongs to the set of selected goals, the
instance is considered correctly identified, and this instance
obtains θ-accuracy 1 (otherwise θ-accuracy is 0). For eval-
uating the θ-accuracy for GRNet and LGRN, their predic-
tion scores (positive numbers) are scaled using the min-max
normalization which sets each score to a value in the [0, 1]
range. For θ = 0 the system selects the k ≥ 1 goals with
the highest score, and if the true goal belongs to this set, the
instance is considered solved obtaining value 1, instead of
1/k as in the standard accuracy metric.

The θ-accuracy is analysed together with the Spread mea-
sure, i.e., the average number of predicted goals for an in-
stance according to the used θ threshold.

Experimental Results
We experimentally evaluate GRNet and LGRN, and we com-
pare them with the state-of-the-art system LGR. For the goal
selection in LGR we used heuristic huniq because the authors
stated that it performs better than heuristic hgc.

Accuracy Results for TSPerGen Table 2 summarizes the
performance results of LGR, GRNet and LGRN in terms of
GR accuracy using TSPerGen. Bold results for GRNet and
LGRN indicate better performance w.r.t. to LGR. GRNet and
LGRN perform generally well, and they improve their per-
formances with the increase of the percentage of the ob-
served actions. With 30% of the actions, the accuracy of
GRNet improves w.r.t. 10% of the action in every domain by
more than 20 points. For instance, in DRIVERLOG, GRNet
improves from 39.8 to 65.4. Similar improvements can be

564



Domain 10% of the plan 30% of the plan 50% of the plan 70% of the plan 100% of the plan
LGR GRNet LGRN LGR GRNet LGRN LGR GRNet LGRN LGR GRNet LGRN LGR GRNet LGRN

BLOCKSWORLD 20.39 22.85 30.80 38.92 52.35 63.70 53.02 71.10 79.30 72.25 84.90 90.60 88.62 92.02 96.81
DEPOTS 25.42 32.95 40.30 47.52 59.80 71.90 65.88 74.70 87.60 78.78 84.90 93.60 93.17 91.95 97.25
DRIVERLOG 25.43 39.80 44.50 41.27 65.40 72.70 59.07 78.40 82.90 76.32 86.20 91.10 89.94 90.78 94.28
LOGISTICS 27.20 39.15 43.60 55.50 68.80 77.60 73.93 80.40 90.90 85.06 89.20 97.10 90.14 93.94 99.23
SATELLITE 41.26 45.50 58.70 73.95 75.10 85.50 84.35 88.30 94.50 92.34 96.10 97.80 96.44 98.73 99.36
ZENOTRAVEL 28.37 48.00 58.00 49.70 76.90 85.70 69.90 89.20 94.80 88.18 96.80 98.80 98.71 98.73 99.58

Table 2: Goal recognition accuracy (% of GR instances correctly predicted) by LGR, GRNet and LGRN with test set TSPerGen.
Results for GRNet and LGRN are in bold when they are better than the corresponding results for LGR.

observed considering 50%, 70% and 100% of the actions.
E.g., with 70% of the observed actions, the accuracy of
GRNet is higher than 96 in SATELLITE and ZENOTRAVEL.
GRNet always obtains higher accuracy w.r.t. LGR except in
DEPOTS with 100% of the observations, and in many cases
the performance improvement is of several points (e.g., more
than 12 points for BLOCKSWORLD, DRIVERLOG, LOGIS-
TICS and ZENOTRAVEL with 30% of the actions).

Regarding the accuracy of LGRN, it always performs bet-
ter than both LGR and GRNet. Moreover, in several do-
mains, we can see a remarkable improvement w.r.t. both
LGR and GRNet, especially with 30% and 50% of the ac-
tions. For instance, in DEPOTS the accuracy of LGRN for
30% of actions is almost 72, 24 points better than LGR and
12 points better than GRNet. With 100% of the actions, the
accuracy scores of GRNet and LGRN are higher than or
equal to 90%, and still generally better than (especially for
LGRN) the accuracy scores of LGR.

Moreover, GRNet’s performance does not seem to be af-
fected by the diversity of the domains indicated by the four
parameters of Table 1. While the remarkable performance
obtained for ZENOTRAVEL might be correlated with the fact
that in this domain the test instances have only 66 facts (see
column |F | of Table 1), the results for SATELLITE are not so
distant even if the instances in this domain have 629 facts.
Analysing the experimental results, it seems that also the
number of the actions has no significant impact on the per-
formance. In fact, while BLOCKSWORLD has only 968 ac-
tions, the other domains have more than 15000 actions, and
GRNet obtains better results for them. This is probably due
to the embedding layer that is able to learn a compact and
informative representation even with a large vocabulary of
actions. Overall, GRNet exhibits good robustness with re-
spect to the size of the space of actions and the number of
facts in the domains (the output of the network).

θ-accuracy results for TSPerGen Table 3 compares GRNet
and LGRN with LGR in terms of θ-accuracy and the cor-
responding spread in G. Considering θ equal to either 0 or
0.1 and partial plan traces (from 10% to 70% of observed
actions), GRNet obtains a better θ-accuracy w.r.t. LGR in
44 out of 48 configurations, while LGRN has better per-
formance in 47 out of 48 configurations. In several cases,
the improvement is by several points, such as in DRIVER-
LOG with 10% of the actions. With θ = 0.2, overall GRNet
and LGRN perform better than LGR. There are two notable

exceptions, DEPOTS and SATELLITE. In DEPOTS, LGR ob-
tains a higher θ-accuracy w.r.t. GRNet but not w.r.t. LGRN.
However, this result should be analysed also in terms of
spread in G. LGR has a considerably higher spread than
GRNet, especially considering low percentages of actions.
According to the definition of θ-accuracy, an instance is
considered correctly solved if the true goal belongs to the
selected set of goals, and so a higher spread can lead to
a higher θ-accuracy. The same can be said for SATELLITE
with θ = 0.2, in which GRNet and LGRN have consider-
ably lower spreads and worse θ-accuracy (but in most cases
performing similarly).

We can observe that GRNet and LGRN have lower spreads
in all but three considered configurations. In particular, with
θ = 0 the spread of GRNet is always 1. With θ > 0, espe-
cially when considering low percentages of actions, we have
a remarkable improvement in terms of spread w.r.t. LGR
alongside an improvement in terms of θ-accuracy (see, e.g.,
DRIVERLOG and ZENOTRAVEL with 30% of the actions).

Concerning instances with complete plan traces (100% of
the actions), in terms of θ-accuracy, all three systems obtain
very good results, in many cases close to 100%. Although
for these cases LGR often has better θ-accuracy, considering
also the lower spreads of GRNet and LGRN, we think that
overall the results for the full plan traces are comparable.

In term of CPU time to solve (classify) a GR instance,
GRNet is generally much faster than LGR. The average ex-
ecution time of LGR is 1.158 seconds with a standard devi-
ation of 0.87 seconds, while GRNet runs on average in 0.06
seconds with a standard deviation of 0.04 seconds.

Results for TSPer While we consider the evaluation us-
ing the extended set TSPerGen more significant and informa-
tive than using the restricted set TSPer, we compared LGR,
GRNet and LGRN also with TSPer. Overall, in terms of ac-
curacy, θ-accuracy and spread, the results are still in fa-
vor of GRNet compared with LGR, and substantially bet-
ter for LGRN compared with LGR. However, this is not the
case for domain SATELLITE with test instances that have
70% of the actions. In this case LGR reaches accuracy 93.4,
while GRNet and LGRN have accuracy 84.5 and 88.1, re-
spectively. Most of the errors made by GRNet are due to
the restricted and particular set of instances in TSPer, which
has instances with very similar goals in G. These are not
clearly distinguished by GRNet, making LGRN less effec-
tive in such cases.
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Domain plan %
LGR GRNet LGRN

θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓)
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

BLOCKS

10 21.7 43.8 64.2 1.07 3.65 7.94 23.0 56.9 65.9 1.00 3.39 4.46 31.2 53.4 68.3 1.00 2.49 4.51
30 40.4 63.3 77.9 1.07 3.07 6.43 52.5 79.5 86.5 1.01 2.26 3.00 65.8 78.6 87.5 1.00 1.56 2.28
50 56.1 77.3 88.7 1.10 2.69 5.60 71.3 90.3 94.3 1.00 1.89 2.55 80.2 88.3 93.3 1.00 1.28 1.66
70 75.9 89.8 96.2 1.11 2.14 4.40 85.2 96.2 98.3 1.01 1.65 2.24 91.4 95.7 98.3 1.01 1.15 1.33

100 98.5 100.0 100.0 1.25 1.66 3.19 92.2 99.9 99.9 1.00 1.46 1.96 98.6 99.5 100.0 1.00 1.05 1.13

DEPOTS

10 27.2 47.3 69.6 1.15 2.49 4.56 33.0 50.5 56.4 1.00 1.78 2.19 40.9 57.4 73.3 1.00 1.87 3.07
30 49.3 67.0 82.3 1.10 2.10 3.79 59.8 72.6 79.0 1.00 1.45 1.73 72.8 81.4 86.9 1.00 1.34 1.72
50 68.0 80.8 92.1 1.07 1.78 3.08 74.7 87.4 90.9 1.00 1.36 1.54 88.9 92.3 94.7 1.00 1.12 1.28
70 80.8 90.9 97.2 1.05 1.52 2.43 84.9 92.4 95.0 1.00 1.25 1.38 94.2 96.4 97.7 1.00 1.05 1.13

100 96.2 99.2 99.8 1.06 1.30 1.63 91.9 96.6 98.2 1.00 1.16 1.24 97.7 98.1 98.5 1.00 1.01 1.04

DRIVERLOG

10 26.9 46.1 67.6 1.06 2.12 3.61 39.8 58.4 71.4 1.00 1.72 2.40 45.6 54.2 65.6 1.00 1.38 1.90
30 43.1 64.1 80.8 1.07 1.97 3.23 65.4 82.5 89.8 1.00 1.61 2.23 73.8 79.8 85.4 1.00 1.18 1.45
50 61.9 76.8 91.3 1.09 1.77 2.77 78.4 90.5 96.4 1.00 1.45 1.96 84.3 88.6 91.6 1.00 1.11 1.24
70 80.3 90.3 96.3 1.11 1.58 2.30 86.2 95.2 98.4 1.00 1.37 1.75 92.3 94.9 97.1 1.00 1.06 1.17

100 97.2 99.0 99.6 1.18 1.32 1.78 90.8 98.0 99.3 1.00 1.27 1.57 95.7 97.4 98.4 1.00 1.04 1.10

LOGISTICS

10 29.0 47.3 65.6 1.10 2.44 4.58 39.2 57.1 63.8 1.00 1.66 2.06 44.2 64.1 79.7 1.00 2.02 3.70
30 57.4 71.5 82.3 1.07 1.71 2.82 68.8 81.6 85.3 1.00 1.54 1.75 77.7 87.9 93.9 1.00 1.31 1.78
50 75.8 84.5 92.2 1.06 1.41 1.94 80.4 91.0 92.6 1.00 1.43 1.58 90.9 95.3 97.9 1.00 1.14 1.33
70 89.0 93.7 98.0 1.11 1.25 1.50 89.2 96.5 98.0 1.00 1.32 1.45 97.3 98.8 99.9 1.00 1.05 1.11

100 99.6 100.0 100.0 1.22 1.24 1.31 93.9 99.8 100.0 1.00 1.18 1.24 99.2 100.0 100.0 1.00 1.01 1.02

SATELLITE

10 47.4 84.5 97.7 1.27 3.25 5.27 45.5 68.9 81.1 1.00 1.92 2.52 60.1 83.5 94.2 1.11 2.14 3.18
30 78.4 92.2 98.4 1.20 1.96 3.27 75.1 91.4 95.8 1.00 1.56 1.82 87.1 94.0 97.6 1.11 1.34 1.61
50 87.9 95.7 98.8 1.16 1.52 2.20 88.3 97.0 98.6 1.00 1.26 1.40 95.5 97.5 98.9 1.11 1.18 1.26
70 95.3 98.4 99.7 1.14 1.29 1.59 96.1 99.4 99.7 1.00 1.13 1.23 97.9 99.0 99.4 1.11 1.14 1.17

100 98.5 99.6 99.8 1.12 1.19 1.37 98.7 99.6 99.8 1.00 1.08 1.19 99.7 99.8 99.8 1.12 1.12 1.13

ZENO

10 29.6 46.1 63.1 1.05 1.89 3.04 48.0 71.7 89.6 1.00 1.97 2.98 59.4 70.0 80.8 1.00 1.43 2.00
30 50.5 67.4 80.0 1.03 1.74 2.65 76.9 88.0 94.7 1.00 1.32 1.65 87.5 91.0 94.3 1.00 1.12 1.28
50 70.5 83.9 92.1 1.02 1.53 2.24 89.2 94.7 97.7 1.00 1.15 1.27 95.7 97.4 98.6 1.00 1.04 1.09
70 88.6 94.4 98.8 1.01 1.27 1.64 96.8 99.0 99.6 1.00 1.05 1.10 99.4 99.5 99.8 1.00 1.00 1.02

100 99.8 99.9 100.0 1.02 1.04 1.15 98.7 99.4 99.8 1.00 1.01 1.04 99.8 99.8 99.9 1.00 1.00 1.01

Table 3: θ-accuracy and spread of LGR, GRNet and LGRN for test set TSPerGen. Results for GRNet and LGRN are in bold when
they are better than the corresponding results for LGR.

Figure 2: Accuracy results of LGR and GRNet on GR in-
stances grouped into classes of decreasing difficulty with test
set TSRec. C1 is the most difficult class; C9 is the easiest one.

Results for TSRec and sensitiveness to the training set size
Figure 2 shows the accuracy of the two compared systems
considering different classes of test sets with decreasing dif-
ficulty measured using RZ . We focus this analysis on in-
stances with 30-50-70% of observed actions. As expected,
the accuracy of GRNet depends on the difficulty of the prob-
lem, since there is an increasing trend in terms of accuracy
for each observation percentage. This trend is more evident
when we have 30% of the actions and becomes less marked

Figure 3: Accuracy of GRNet trained using data sets of
different sizes (% of the original train set) using test set
TSPerGen in domain SATELLITE.

as the number of observations grows. LGR appears to be
more stable over the recognizability classes than GRNet.
However, GRNet always performs significantly better than
LGR regardless the value of RZ .

Since the predictive performance of a machine learning
system can be deeply influenced by the number of training
instances, we experimentally investigated how much GRNet
is sensible to this issue. We focus the analysis on the domain
SATELLITE, training several neural networks with different
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fractions of our training set: 20%, 40%, 60% and 80%. Fig-
ure 3 shows how accuracy increases for TSPerGen when the
training set size increases. In particular, for TSPerGen we can
observe that using only 20% of the training instances gives
accuracy lower than 40 in all three cases (30-50-70% of
observed actions), but accuracy rapidly improves reaching
more than 60 using 60% of the training instances.

We evaluated GRNet also for larger training sets, up to
twice the number of instances in the original training set.
As it can be seen in Figure 3, the enlarged training set for
TSPerGen produces only a small improvement in accuracy.

Related Work
Goal recognition has been extensively studied through
model-based approaches exploiting planning techniques
(Meneguzzi and Pereira 2021; Ramı́rez and Geffner 2010;
Sohrabi, Riabov, and Udrea 2016; Santos et al. 2021;
Pereira, Oren, and Meneguzzi 2020) or matching techniques
relying on plan libraries (e.g., (Mirsky et al. 2016)). LGR is
a state-of-the-art model-based approach exploiting plan gen-
eration and landmarks (Pereira, Oren, and Meneguzzi 2020).
Differently from GRNet, LGR uses domain knowledge and
performs no learning from previous experiences.

Several approaches to human activity recognition adopt
architectures based on a RNN (Yin et al. 2022; Chen et al.
2016). These systems address a problem different from goal
recognition; they deal with noisy input data from sensors,
and perform a specific classification task (with fixed clas-
sification values). Consequently, these architectures provide
solutions to very specific problems. The work in this paper
addresses goal recognition, it deals with the lack of observ-
ability in the actions of the agent’s plan, and proposes a more
general approach allowing to solve, by the same trained net-
work, different goal recognition instances in the domain.

Concerning GR systems using neural networks, some
works use them for specific applications, such as game play-
ing (Min et al. 2016). GRNet is more general, as it can be
applied to any domain of which the sets of fluents and ac-
tions (F and A) are known. In order to extract useful infor-
mation from image-based domains and perform goal recog-
nition, Amado et al. (2018) used a pre-trained encoder and
a LSTM network for representing and analysing a sequence
of observed states, rather than actions as in our approach.
Amado et al. (2020) trained a LSTM-based system to iden-
tify missing observations about states in order to derive a
more complete sequence of states by which a MBGR sys-
tem can obtain better performance.

Borrajo, Gopalakrishnan, and Potluru (2020) investigated
the use of XGBoost and LSTM neural networks for goal
recognition using only traces of plans, similarly to our ap-
proach. However, they train a specific machine learning
model for each goal recognition instance (the goal set G is
fixed), using instance-specific datasets for training and test-
ing. In our approach, we train a general-purpose neural net-
work that can be used to solve a large number of different
goal recognition instances, without the need of designing or
training a new model. Moreover, the experimental evalua-
tion of the networks proposed in (Borrajo, Gopalakrishnan,
and Potluru 2020) use peculiar goal recognition benchmarks

with custom-made instances. Instead, in our work we evalu-
ate GRNet and LGRN much more in depth by a substantially
larger experimental analysis.

Maynard, Duhamel, and Kabanza (2019) compared
model-based techniques and approaches based on deep
learning for goal recognition. However, as in (Borrajo,
Gopalakrishnan, and Potluru 2020), such a comparison is
made using specific instances, and several kinds of neural
networks are trained to directly predict the goal among a
set of possible ones, instead of the facts that belong to the
goal, as in our approach. This makes the trained networks
in (Maynard, Duhamel, and Kabanza 2019) specific for the
considered GR instances in a domain, while our approach
is more general since it trains a single network for the do-
main. Another substantial difference is that, while in a typ-
ical goal recognition problem we can have missing obser-
vations across the entire plan of the agent(s), the work in
(Maynard, Duhamel, and Kabanza 2019) considers only ob-
servations from the start of the plan to a given percentage of
it, treating every possible successive observation as missing.

Amado, Mirsky, and Meneguzzi (2022) proposed a frame-
work that combines off-the-shelf model-free reinforcement
learning and state-of-the-art goal recognition techniques
achieving promising results. However, similarly to (Borrajo,
Gopalakrishnan, and Potluru 2020), their approach is de-
signed to solve a specific goal recognition instance where
the goal set G is fixed. On the contrary, the trained RNN of
GRNet is used to solve all GR instances definable over the
fluent and action sets.

Conclusions
We have proposed GRNet, an approach to address goal
recognition as a deep learning task. Our system learns to
solve (classify) goal recognition tasks from past experience
in a given domain. Learning consists in training only one
neural network for the considered domain, allowing to solve
a large collection of GR instances in the domain by the same
trained network. Moreover, GRNet can be effectively inte-
grated with the state-of-the-art model-based system LGR.
An experimental analysis shows that GRNet and LGRN, our
system integrating GRNet and LGR, perform generally well
for the considered benchmark domains, in terms of accuracy,
θ-accuracy and spread.

Differently from LGR, the GR instances addressable by
GRNet are limited to those involving subsets of fluents and
actions that were used in the training phase. If the GR in-
stance to solve involves a new fluent, clearly such a fluent
cannot be predicted in GRNet; if the instance involves a new
action, such an action cannot be part of the input observed
actions for GRNet. An interesting question for future work
is how to extend GRNet to solve GR instances involving
new actions and fluents; this can be performed considering
the object names involved in the GR instance to solve, and
defining a mapping with the object names of instances con-
sidered in the training phase. Preliminary results in this di-
rection are encouraging. We also intend to investigate the use
of other deep learning architectures (Serina et al. 2022), as
well other ways of integrating model-free and model-based
approaches.
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