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Abstract

Recent years have seen an increasing number of applications
that have a natural language interface, either in the form of
chatbots or via personal assistants such as Alexa (Amazon),
Google Assistant, Siri (Apple), and Cortana (Microsoft). To
use these applications, a basic dialog between the assistant
and the human is required. While this kind of dialog exists
today mainly within static robots that do not make any move-
ment in the household space, the challenge of reasoning about
the information conveyed by the environment increases sig-
nificantly when dealing with robots that can move and ma-
nipulate objects in our home environment. In this paper, we
focus on cognitive robots, which have some knowledge-based
models of the world and operate by reasoning and planning
with this model. Thus, when the robot and the human com-
municate, there is already some formalism they can use – the
robot’s knowledge representation formalism. In this paper we
describe an approach for translating natural language direc-
tives into the robot’s formalism, allowing much more compli-
cated household tasks to be completed. We do so by combin-
ing off-the-shelf SoTA large language models, planning tools,
and the robot knowledge of the state of the world and of its
own model. This results in much more accurate interpretation
of directives in natural language.

Introduction
Virtual assistants such as Amazon Alexa, Google Assistant,
Apple Siri, and others are becoming more and more com-
mon. These virtual assistants are able to understand com-
mands and, for example, control smart home products and
perform simple household tasks. However, these assistants
are very limited in both their understanding of the world
around them, and in the actions they can perform. Impor-
tantly, these assistants are static – they do not move around
the house, and they can not physically manipulate the world
around them.

We are concerned with more advanced versions of these
assistants, which might be installed on mobile manipulators
– robots which drive around our homes, and can perform
many various actions. We would like these robots to be able
to follow directives given by human users and perform much
more complicated tasks. We take the view that such robots
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must already be cognitive (Levesque and Lakemeyer 2008)
– that is, they must have some internal model of the world
and of their actions, and they must have some formalism
to represent and reason about knowledge. This allows such
robots to understand what they are sensing and to come up
with long term courses of action.

In this paper, we describe a system which can take direc-
tives given to such a cognitive robot in natural language, and
translate them into a formalism the robot can reason about
and plan with. Our system contains two innovations. First,
it combines state-of-the-art large language models, which
translate the natural language directives into a formal lan-
guage, with classical planning tools which validate and and
verify the output from the language model. Second, it incor-
porates the state of the world (that is, the context in which
the robot is situated) into the translation process.

To train our system for a specific application, we require
examples which consist of (a) a high-level robot trajectory
(that is, a sequence of high-level actions performed by the
robot, together with the initial state of the world), (b) a nat-
ural language description of these actions, and (c) a natu-
ral language description of the goal this plan achieves. We
start with a pretrained large language model, and fine tune
it based on the given training examples. As the language
model already has wide commonsense knowledge (for ex-
ample, that a fork is a type of utensil), this allows our train-
ing to focus on the domain-specific aspects of the applica-
tions, and thus, as our empirical evaluation shows, our sys-
tem achieves good accuracy after seeing only a relatively
small number of training examples.

As is evident from the structure of the training examples
we use, humans can give instructions at different levels of
detail – they can give the robot a mission (a high-level goal),
or they can give the robot more detailed instructions. Our
system translates natural language directives into a formal
representation which combines both a high-level goal and a
plan template for the robot to follow. Of course, using off-
the-shelf machine learning tools does not guarantee that both
parts of the output will be consistent with each other. There-
fore, we use automated planning to check that the output is
consistent, and if the output is not consistent we try to find
alternative predictions of the machine learning model which
are consistent. We also use the automated planner to fill out
some details in the detailed instructions, as humans rarely
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give enough detail for robots to be able to follow their in-
structions directly.

Background
We now describe some necessary background to understand
our paper. Our system relies on a pretrained large language
model. These days, these are based on the Transformer neu-
ral network architecture (Vaswani et al. 2017).

Transformers are designed to handle sequential input data,
however, they do not necessarily process the data in order.
That is, transformers allow parallelization and therefore re-
duce training time. The encoder and decoder are the basic
components of the original Transformer’s architecture. The
encoder processes the input, while the decoder consists of
decoding the encoder’s output. The key component in the
transformer architecture is the attention mechanism. In gen-
eral, the attention mechanism focuses on certain parts of the
input sequence when predicting a certain part of the output
sequence. In other words, when generating the output, the
attention unit will dynamically highlight relevant features of
the input data and generate each output token according to
its relative attention weights. Transformers had great suc-
cess in natural language processing (NLP) tasks, and most
of the latest NLP models are based on this neural network
architecture.

In this paper, we use two specific large language mod-
els: GPT-2 (Radford et al. 2019) and T5 (Raffel et al. 2019).
Unlike other transformer models, GPT-2 is a decoder-only
transformer model, consisting of 1.5 billion parameters. It
was trained on a dataset of 8 million web pages. Unlike the
GPT architecture, T5 uses both the transformer’s encoder
and decoder. The idea behind the T5 model is to convert
every language problem into a text-to-text format. This ap-
proach enables using the same model, objective, training
procedure, and decoding process for different tasks, such as
machine translation, sentiment analysis, summarization, and
question answering. Both GPT-2 and T5 are general-purpose
learners, which can perform different tasks.

As previously mentioned, our system uses large language
models to translate its input into a formal representation, and
then uses automated planning tools to check that the out-
put of the system is consistent. Specifically, we rely on the
PDDL, the Planning Domain Definition Language (McDer-
mott et al. 1998). While a complete specification of PDDL is
beyond the scope of this paper, we highlight the aspects of it
which are important for this paper.

In PDDL, a planning task is described by a domain, which
will typically be the same for a given application, and a prob-
lem, which varies according to the specific planning task at
hand. The domain description specifies the possible object
types and the possible relations between them (called pred-
icates in PDDL). The domain also describes the possible ac-
tions that the robot can execute. Each action is parameterized
by some objects, and has some preconditions and effects. We
adopt the view that any cognitive robot (Levesque and Lake-
meyer 2008) should have some domain model regardless of
its ability to understand natural language, and thus assume
such a domain is available (or, at least, that the effort re-

quired to develop this domain should be amortized among
different components of the cognitive robot).

On the other hand, the PDDL problem typically changes
every time we want to generate a new plan for the robot.
The problem describes the set of objects in the world as well
as the relations between them in the current state – known
as the initial state. The problem also describes the goal we
would like to achieve at the end. Our system assumes there is
some perfect state estimator which gives us the initial state,
and translates natural language directives into the goal, as
well as into some constraints on the plan, as we explain in
the next section.

Translation System
We now describe our system, which is illustrated in Figure 1,
in more detail. First, we assume that we already have a cog-
nitive robot, with a domain theory that describes the types
of objects in the world, the possible relations between them,
and the possible actions that the robot can execute – that is, a
PDDL domain. We also assume that our robot is clairvoyant,
and has complete and perfect information about the state of
the world, including which objects exists in the world and
the relations between them.

Clearly, this assumption is not realistic, as the information
about the state of the world is typically obtained from vision,
which could be imprecise, and might require the robot to
perform some actions to actively gather information. How-
ever, as our focus in this paper is on translating natural lan-
guage instructions, we assume our robot is clairvoyant, and
leave incorporating more realistic models of sensing to fu-
ture work.

The input to our translation system consists of two dif-
ferent modalities. First, the robot is given a directive in nat-
ural language by a human, which instructs it to perform a
particular task. As previously mentioned, a human can give
language commands to a robot in multiple ways. The first
option is to provide the agent with high-level task descrip-
tion, such as “put a slice of tomato in the fridge”. On the
other hand, more detailed instructions could be given also,
for example, “go to the kitchen, pick up the knife from the
table, go to the tomato that is on the counter, slice the tomato,
etc.”. We call this part of the input the “directive”. Second,
the robot know the state of the world, including the objects
that exist in the world and the relations between them. We
call this part of the input the “state”.

Ultimately, the output of our system is a robot plan – a
sequence of high-level actions for the robot to follow. This
plan should achieve the high-level task that the human gave
the robot, in a way that is consistent with the detailed in-
structions the human gave. To compute the plan, our system
has two phases. In the first phase, we feed both parts of the
input into a large language model. This language model out-
puts two types of information: a goal which corresponds to
the high-level task, and a plan template which corresponds
to the detailed instructions. Both of these are encoded in
PDDL and, together with the information about the state of
the world, create a PDDL problem.

In the second phase, we call a PDDL planner on the gen-
erated problem (using the PDDL domain the robot already
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Figure 1: Diagram of Translation System

has), to find a plan. If a valid plan is found, we can output it.
However, it could be the case that the prediction of the lan-
guage model is not consistent, in which case the planner will
not find a valid plan. In this case, we repeat this process us-
ing alternate (lower confidence) predictions of the language
model, until either one of these returns a valid plan, or until
some predefined number of tries B passes, in which case we
do not return a plan.

Of course, the user has the option to only specify only a
goal or only a plan template. If the user specifies a goal only,
the planner is simply called with the goal that our system
outputs, with no constraints on the plan. If the user speci-
fies a plan template only, the planner is called with an empty
goal, but must still obey the constraints from the plan tem-
plate. We now explain how each of these phases work in
more detail.

Phase I: From Natural Language to PDDL
In the first phase of our translation system we use a large
language model to translate the input: a natural language
directive together with state information, into the output
we require: a predicted goal and plan template. As previ-
ously mentioned, we start with a pretrained large language
model, which already contains commonsense knowledge.
Thus, when we train the language model, we only need to
fine tune it for the specific domain at hand. As our empirical
evaluation will show, we require a small number of training
examples to achieve very good accuracy.

As in earlier work, we model this translation process
as a sequence-to-sequence task, and use on transformers
(Vaswani et al. 2017) to solve it. Specifically, we used two
language models, GPT-2 (Radford et al. 2019) and T5 (Raf-
fel et al. 2019). Both of these are designed to handle tex-
tual input, so we can feed the natural language directive into
these directly. To feed the state information into the trans-
former, we encode each fact in the state of the world as
text. For example, (on A B) would be encoded as “A on

B”, which the transformer can then process.
As we want to predict two types of output, a goal and

a plan template, our transformer consists of two translation
channels, which both take the same input mentioned above.
With GPT-2, we trained separate models – one for each such
channel. However, since training a new task on T5 requires
only changing the prefix of the input, we fine-tuned a single
T5 model for both channels.

Predicting Goals The goal channel captures the user’s de-
sired outcome of a task by describing the state of the world
at the end of the plan’s execution (“sliced tomato”, “cold
tomato”). One important point to note is that humans are
unlikely to name specific objects in their natural language
directive, as there is no agreed upon naming convention for
objects in the real world. Therefore, when the goal includes
some desired state of an object type, we accept any plan that
reaches this state any instance of this object type.

For example, assume the user’s directive is “put a sliced
tomato on the countertop”, and there are two tomatoes in
the kitchen (assume the robot identifies these as tomato1
and tomato2, although the human does not know which is
which). The human user does not care which tomato the
robot uses, and thus out language model translates the goal
into “sliced tomato, on tomato countertop”, without com-
mitting to a specific object.

Recall that the next step in our system is to encode this
goal in PDDL. We do this by using existentially quantified
goals, and thus we would translate the above goal into:

(exists (?tomato0 - tomato
?countertop0 - countertop)

(and (sliced ?tomato0)
(on ?tomato0 ?countertop0)))

This encoding allows us to accept any plan that achieves a
final world state in which there exists a sliced tomato on any
countertop.
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Predicting Plan Templates The plan template channel
outputs a sequence of actions that follows the detailed in-
structions in the input. As above, humans do not typically
name specific objects, and thus an action occurrence in a
plan template consists of an action type and parameter types.
For example, a plan template could be “go to dining table,
pick up apple dining table, go to fridge, put apple fridge”.
As there might be multiple apples and tables in our scene,
this can not be translated directly into a sequence of actions.
Therefore, we encode these into PDDL, and allow the plan-
ner to choose which objects to use for each action.

Our PDDL encoding enforces three types of constraints,
according to the plan template: length of the plan, action
type, and parameter type. These are encoded as follows:
• Length - we add two predicates to the domain -
(next ?si ?sj) and (current step ?si). Each action in
the domain gets the current step, si, and increases it to
sj , where sj is the next step number in the (next si sj)
predicate. By initializing the problem with the predicates:
– (current step s0) = True

– (next si si+1) = True ∀i : 0 ≤ i < T

and adding the predicate (current step sT ) to the goal,
we force the planner to generate only plans of length T
(where T is the number of actions in the predicted plan
template).

• Action allowance - for each time step i ≥ 0, we add
the predicate (allowed action si), where action is some
action type from the domain, forcing the planner to gen-
erate plans whose i’th action type is consistent with the
plan template.

• Object allowance - This predicate is similar to the previ-
ous one. The predicate is (allowed objectj objtype si),
which indicates that the j’th parameter of i’th action in
the plan can be of type objtype.

To demonstrate this, consider the following plan template:
“go to table, pick up apple table” would be encoded in PDDL
as follows:
• Length - since the length of the plan template is 2,

we add the predicates (next s0 s1), (next s1 s2),
(current step s0) to the initial world state and
(current step s2) to the goal predicates.

• Action allowance - for each element in the predicted
sequence, we add the action allowance predicate of the
element’s action type and index - (allowed goto s0),
(allowed pickup s1).

• Objects allowance - as in the previous case, we
add the object allowance predicate for each object
in the sequence. Each predicate consists of the ob-
ject type, its location in the action, and its action’s
location in the sequence. - (allowed arg1 table s0),
(allowed arg1 apple s1), (allowed arg2 table s1).

Implementation Details Since we use two different lan-
guage models in our evaluation, GPT-2 and T5, we have
to adjust the input to the correct form that these models
accept. We fine-tune GPT-2 on the natural language di-
rectives and gold targets using GPT’s sos and eos tokens:

“<| startoftext |> directive Task Type:
target <| endoftext |>”

Where Task Type is either “Goal” or “Actions” accord-
ing to the prediction task we are performing. During eval-
uation and testing, we feed the model with the input “<|
startoftext |> directive Task Type:” and let it generate to-
kens until a <| endoftext |> token is generated.

On the other hand, the T5 fine-tuning process on a new
task is done by providing a unique prefix before the direc-
tive. In our work, the goal task’s prefix is “translate task to
goal” and the plan template task’s prefix is “translate plan
to actions”. Since T5 is an encoder-decoder model, at every
training step we feed the model with source and target se-
quences. The source phrase is the prefix with the directive,
and the target phrase is either the goal or the plan template.

Phase II: PDDL Consistency Checking
After generating the PDDL encoding for the predicted goal
and plan template, we combine it with the initial state to
generate a PDDL problem. We then use the robot’s PDDL
domain model, and call an automated planner to solve this
planning task. The solution is thus constrained to achieve the
predicted goal, while conforming to the constraints given by
the plan template. If the planner finds a solution, it means
the predicted goal and predicted plan template are consis-
tent with each other, which gives us higher confidence that
these predictions are correct. Thus, we output this plan for
the robot to follow.

If the planner does not find a solution, it does not mean all
is lost. Instead, we go back to our language model and “ask”
it to generate another plan template. This is done by taking
the next prediction in the model’s beam search output. We
then check if this new prediction is consistent (by calling the
planner again). We repeat this procedure until a valid plan
is found, or until the number of iterations exceeds a given
number B – in which case we fail and do not return any plan.
Note that w keep the same goal prediction throughout this
process, as our goal prediction accuracy is typically higher
than the plan template accuracy. However, in future work we
could exploit the confidence of the goal and plan template
predictions, to choose which one to keep and which one to
change.

Implementation Details
We used the FF planner (Hoffmann and Nebel 2001), al-
though any automated planner can be used. Interestingly, FF
was used before for natural language generation (Koller and
Hoffmann 2010). Additionally, we set the maximum number
of predictions to test, B, to be 5.

Empirical Evaluation
Although the system we described above is general, there
are very few datasets which can be used to evaluate it. There-
fore, we train and evaluate our system on the ALFRED (Ac-
tion Learning from Realistic Environments and Directives)
dataset (Shridhar et al. 2020), which is built on top of the
AI2-Thor simulator (Kolve et al. 2017). AI2-Thor simulates
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Figure 2: An example from the ALFRED dataset. The green text box contains the high level task and the blue text box contains
the high level instructions needed for accomplishing that task. The images represent the egocentric vision input of the agent at
each time step.

a robot which can perform high-level actions in a home en-
vironment. Some of these actions are irreversible (for exam-
ple, slicing a tomato), which presents a challenge as misun-
derstanding an instruction can lead to a dead-end.

All of our code and data is available as supplementary
material, and will be made publicly available once the paper
is accepted.

Experimental Setup
The ALFRED dataset consists of 8,055 samples in which the
robot executes a plan (a sequence of high-level actions). For
each of these, a video of the robot’s egocentric visual obser-
vations was shown to mechanical turkers, who were asked
to formulate in natural language the high-level goal (called
task in ALFRED terms) as well as the plan (called instruc-
tions in ALFRED terms). Figure 2 shows one example from
this dataset. As each sample was annotated by multiple turk-
ers, there are 25,743 examples in total.

Domain Model Examples in ALFRED come from 7
different task types, which take place in 120 differ-
ent scenes. The tasks are Pick & Place, Stack &
Place, Pick Two & Place, Clean & Place, Heat &
Place, Cool & Place and Examine in Light. These in-
volve 8 types of actions that the robot can execute:
pickup, put, slice, heat, cool, clean, toggle and goto
and 84 different object types.

We modeled the domain in PDDL, and used the fol-
lowing predicates to describe the state of the world:
robot has obj, on, sliced, hot, cold, cleaned, toggled
and can reach. One specific detail is that we created a spe-
cial predicate (two task) which is an indicator for the “pick
two” task. For example, the natural language instruction
“pick up two apples” would be translated by our language
model into “pick up apple, two task”, which is then encoded
into PDDL which forces the planner to pick up two different
apples:

(exists (?apple0 - apple
?apple1 - apple)

(and (not (= ?apple0 ?apple1))
(robot_has_obj ?apple0)

(robot_has_obj ?apple1)))

Pre-Processing In our work, we train language models to
predict both the goal, which expresses the desired final state
of each object as derived from the language directive, and
the plan template. To create the targets for the language mod-
els, we focused on the PDDL parameters and the high-level
actions provided by the ALFRED samples. The evaluation
data in ALFRED is divided into validation and test datasets,
where the labels of ALFRED’s test set are hidden (as it is
still an ongoing challenge). Each of these is split also into
seen and unseen environments. The purpose of the second
split is to examine how well a model generalizes to entirely
unseen new spaces with novel object class variations.

As we require the ground truth labels to evaluate our sys-
tem, we evaluate only on ALFRED’s training and valida-
tion sets, which we split into our own train, val, and test.
Furthermore, we combine ALFRED’s seen type validation
set with our validation set and test our model both on our
test data and ALFRED’s validation unseen data, which we
term test unseen. We might encounter duplicates between
our datasets since we ignore the vision part of the data.
Hence, the training and validation data are cleaned by re-
moving duplicate samples with the same language directive
as our test data.

Data Validation A data sample will be considered valid
for training if its original action sequence solves the sam-
ple’s problem. To obtain the initial state for the problem, we
used the initial location of each object and the scene type,
taken from the ALFRED dataset, and loaded them into the
AI2-Thor simulator. By doing so, we retrieve the metadata
of the scene, which provides more information about objects
and their spatial relations. Concretely, we create relations in
the form on obj1 obj2, where obj1 is on top of obj2 or inside
it. Lastly, the goal for each problem was generated from the
“PDDL parameters” field of the data sample.

After creating the domain and problem files, we extracted
the PDDL action sequence from the “high level plan” of
each sample (which specifies the objects’ ids) and used
the VAL plan validator (Howey, Long, and Fox 2004) to
check if this plan solves the PDDL problem of this sample.
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Model Input Consistency
Directive 0.69

GPT-2 State 0.00
Directive + State 0.83
Directive 0.77

T5 State 0.59
Directive + State 0.97

Table 1: Consistency Results

Samples whose gold PDDL action sequence did not achieve
the goal of the problem were marked as invalid samples and
were removed from the data. Eventually, the train, val, test,
and test unseen datasets had 13893, 1650, 1010, and 682
samples, respectively. This division reflects an 80-10-10
(%) train-val-test partition.

Results
In this section we present the results of our empirical evalua-
tion on ALFERD’s val unseen set. Due to the fact that these
instances contain novel environments and objects, they pro-
vide the most accurate representation of the model’s perfor-
mance and generalization. We present results for both the
GPT-2 and T5 large language models, with three different
input modalities (natural language directive only, state only,
and both).

Consistency As a first sanity check, we would like to mea-
sure how often our translation system produces consistent
plans. Thus, we predict both the goal (from the task descrip-
tion), and the plan template (from the detailed instructions),
and measure how often the plan that is produced by our sys-
tem achieves the goal it predicted. Note that this does not
mean the goal or the plan have anything to do with what the
user said, merely that the output is consistent. Recall that our
system guarantees that any plan that is output is consistent,
and so the failures here mean that the first B plan templates
produced by the language model were not consistent with
the goal.

Table 1 presents the results for this measure. As the re-
sults show, using T5 with the directive and the state results
in consistent plans 97% of the time. Not surprisingly, using
GPT-2, a less powerful language model, yields less accurate
results. Also of note is the observation that GPT-2 is unable
to produce any consistent plans with the state only, while T5
is able to produce consistent plans from the state only 59%
of the time. This suggests that T5 might predict easier goals
when the input is non-informative.

Goal Prediction Next, we present the accuracy for our
system’s goal prediction. The models’ accuracy scores on
the goal prediction task are shown in Table 2.

For each goal prediction, we measure accuracy at several
different levels, to be compatible with previous work (Jansen
2020). First, for each predicted fact in the goal we check
whether the predicate is correct – that is, the predicate name
only, without regard to the other arguments. We also check
whether the first argument (arg1) and the second argument

(arg2, if it exists) are correct, both of these independently
of the other measures. Finally, we also check whether the
entire goal fact (that is, the predicate and all arguments are
correct).

Additionally, we check whether the entire goal is correct.
As the goal is an unordered set of facts, we do not care about
the order here, but simply check whether the predicted set of
goal facts is correct. We also measure these using permissive
scoring (Jansen 2020), which accepts predictions of objects
that are similar to the original ones, e.g., “lamp - floor lamp”,
“knife - butter knife”. These are indicated with p.

As expected, accuracy based on state alone is almost 0 for
both GPT-2 and T5. When using the natural language direc-
tive alone, without taking the context (that is, the state) into
account, the better model (T5) is able to achieve 78% ac-
curacy. However, incorporating the context into the model’s
input (Directive + State, denoted by D+S) increases accu-
racy to 85%, showing that there is relevant information for
the goal prediction task in the state information. The results
from adding the context for GPT-2 are very similar, albeit
with lower accuracy. These findings suggest that encoder-
decoder architectures might work better for goal prediction.

Table 3 shows some examples we selected, which show
interesting mistakes of our system to predict the correct
goals. These directives are different from the common tasks
of ALFRED, and their intention is to check the robustness
of the model. These examples show that the model dis-
plays some commonsense knowledge, such as that a potato
is a vegetable, which comes from the pretrained language
model.

Plan Templates Table 4 contains the models’ scores on
the plan template task. As for the goal prediction task, we
measure accuracy at several levels. For each predicted ac-
tion in the plan template, we check if the operator type ( op)
is correct, as well as if the arguments (arg1 and arg2) are
correct. We also check whether the entire action is correct.
We also check whether the entire plan template is correct,
that is, that all actions are correct, and (unlike for the goal
prediction) in the correct order.

Similarly to the goal prediction task, both models achieve
the highest score on the directive + state (D+S) input, show-
ing that context is important for generating plans as well. In
fact, the accuracy of the T5 model improves by 15% from
including the context, showing that it is arguably even more
important for generating plans than for predicting goals.

On the directive only input, GPT-2 predicts correctly 32%
of full original action sequences. Previous work (Jansen
2020) which also used GPT-2 on the directive only achieved
22% accuracy, but the difference might be due to the training
dataset changes. In any case, in this paper we improve upon
the previous work by (a) incorporating context (state) into
the input, (b) validating the resulting plans, and (c) using T5
instead of GPT-2. These changes improve accuracy to 57%
– a significant improvement over the baseline of 32%.

Table 5 breaks down per-action accuracy scores by oper-
ator type. As the results indicate, some operator types are
harder to predict accurately than others. This is likely due
to a combination of how often each operator type appears in

664



Model Input predicate arg1 arg1p arg2 arg2p fact factp goal goalp
Directive 0.80 0.77 0.81 0.79 0.89 0.76 0.80 0.66 0.72

GPT-2 State 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01
D+S 0.73 0.71 0.74 0.81 0.83 0.70 0.73 0.74 0.77
Directive 0.89 0.86 0.89 0.84 0.85 0.85 0.89 0.78 0.84

T5 State 0.09 0.08 0.09 0.05 0.05 0.08 0.09 0.04 0.04
D+S 0.92 0.89 0.92 0.88 0.89 0.89 0.92 0.85 0.88

Table 2: Goal prediction accuracy scores. A permissive measure is indicated by the subscript p.

Input: Put a baking tool on the counter
Output: on spatula pan, on pan countertop

Input: Place two vegetables in the drawer
Output: on potato drawer, two task

Input: Put any type of cutlery on the counter
Output: sliced spoon, on spoon cup, on cup countertop

Table 3: Goal prediction examples of our T5 model. The in-
puts are task descriptions and the outputs are the predicted
goals

Model Input op arg1 arg2 action plan
Directive 0.93 0.75 0.67 0.63 0.32

GPT-2 State 0.54 0.14 0.16 0.10 0.00
D+S 0.93 0.78 0.74 0.69 0.46
Directive 0.91 0.73 0.63 0.60 0.29

T5 State 0.68 0.22 0.26 0.18 0.04
D+S 0.92 0.82 0.76 0.75 0.57

Table 4: Plan Template Accuracy Scores

the training data, together with the number of possible argu-
ments for each operator type. For example, the pickup action
can have many different object types in its arguments, while
the argument for toggle is almost always a lamp.

Few shot learning In our setting, creating data samples
for training is time-consuming and expensive. Hence, the
ability of a model to perform successful few-shot learning
is crucial. To evaluate this capability, we have created mul-
tiple training sets by downsampling the original data into
smaller fractions and trained different T5 models on each
set. As shown in Figure 3, we see that with only 5% of the
training data, our models are able to predict plan templates
and goals nearly as well as models that were trained on the
full dataset. This means that instead of requiring more than
10K samples for training, several hundred are enough.

These results suggest that our model is able to perform
successful few-shot learning. Of course, this result heavily
relies on the knowledge that is already encoded in the pre-
trained large language models. Thus, the training we per-
form for our system can be seen as fine tuning the large
language models for the specific application (or domain) at
hand.

Model GoTo Pickup Put Cool
GPTD 0.68 0.40 0.68 0.85
T5D 0.66 0.36 0.66 0.79
GPTDS 0.75 0.56 0.67 0.78
T5DS 0.79 0.65 0.72 0.83
Model Heat Clean Slice Toggle
GPTD 0.82 0.78 0.39 0.75
T5D 0.83 0.74 0.47 0.77
GPTDS 0.80 0.75 0.55 0.75
T5DS 0.84 0.78 0.55 0.97

Table 5: Action Accuracy by Operator Type. The subscript
stands for Directive only input (D) or Directive + State input
(DS).

Related Work
Many researchers have realized that home service robots
must have the ability to plan a sequence of actions to achieve
their goals in the real world. This skill requires sophis-
ticated reasoning at each time step, including interpreting
multi-modal input types such as vision, language, and other
sensor-type information. Thanks to environments like AI2-
THOR (Kolve et al. 2017), Matterport 3D (Anderson et al.
2018), AI Habitat (Savva et al. 2019), and TDW (Gan et al.
2020), a dramatic improvement has been made in various
real-world tasks.

One of these tasks is visual semantic planning (Zhu et al.
2017), which is the task of generating a sequence of high-
level actions from visual observations. When addressing this
kind of task, a robot operating in a human household space
may need to overcome some challenges. For example, par-
tially observable space or long-horizon tasks in which the
decision-making at any step can depend on observations re-
ceived far in the past.

Recent papers have chosen to break this problem down
into separate modalities instead of solving this difficult
multi-modal problem. The most closely related work to ours
(Jansen 2020) explored this task on the ALFRED dataset,
by using the GPT-2 language model to generate plans from
high-level task descriptions, without visual cues. In this
work, GPT-2 was shown to outperform a baseline RNN
model on this task, predicting successfully of 22.2% actions
sequences, and 53.4% of the plans when ignoring the first
action prediction in the sequence. As mentioned in the em-
pirical evaluation, our results improve over these even fur-
ther.

Other work has integrated Hierarchical Task Networks
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Figure 3: Few-shot Accuracy Scores

and Probabilistic Inference to generate action sequences us-
ing multiple context types, but without natural language di-
rectives (Wang, Tian, and Shao 2020). Later work integrated
a general domain knowledge graph of indoor environments
with the BERT model (Devlin et al. 2018) to create bet-
ter predictions, generating successfully 31.4% of the plans
(Wang et al. 2021). While these previous works focused on
language directive translation, they do not incorporate prac-
tical planning, and therefore are not sufficient for real-world
intelligent agents.

Summary and Future Work
We have developed a novel approach for natural language
understanding for commanding robots that are situated in the
real world. The two main innovations we make in this paper
are (a) incorporating the context (state of the world) into the
input of our system, together with the natural language di-
rective, and (b) incorporating automated planning into the
system to verify that the plans it produces are valid. Com-
bined with state-of-the-art pretrained large language mod-
els, our system achieves 85% accuracy in translating tasks
expressed in natural language to goals, and 57% accuracy
in following plans expressed in natural language on the AL-
FRED dataset.

In future work, we intend relax the assumption of having a
clairvoyant robot. This would require integrating a computer
vision module into our system, as well as incorporating par-

tially observable planning with sensing capabilities into the
planner. We believe the framework laid out in this paper for
combining large language models with automated planning
tools serves as a good starting point for this.

Additionally, we would like to explore the ability of nat-
ural language to express richer directives. For example, a
natural language directive like “go to the bed room through
the kitchen” combines a goal with a partial specification of
the plan. Such a directive could be translated into a partial
plan template, which could be expressed in PDDL similarly
to the way our system works.

Humans can also use complex natural language expres-
sions to refer to specific objects. For example “pick up the
rightmost tomato on the kitchen countertop”. In this case,
we might use semantic parsing (Zettlemoyer and Collins
2005) to translate the object-reference to a query which can
be run on the knowledge base representing the state of the
world. Once this query is evaluated, its result can be incorpo-
rated into the planning process. Alternatively, the expression
could be translated to PDDL directly, but this might require
introducing new predicates, such as those expressing geo-
metric relations between the objects, to be able to express
“rightmost” in PDDL.

Another challenge is ensuring that the system follows
common sense rules in both interpreting directives and in
planning. For example, if the human asks to put a tomato on
the table, then the robot should probably not slice the tomato
before putting it on the able, even though in the PDDL rep-
resentation the goal would be achieved by having a sliced
tomato on the table. On the planning side, if the human asks
for the robot to take a beer out of the refrigerator, the robot
should probably close the refrigerator door after taking out
the beer, even though the user did not ask for it. At an even
higher level of difficulty, the robot need to understand that
the directive “get me a beer” should not be translated to the
goal of the user holding a beer, but rather to the goal of the
user drinking a beer, which might also require getting a bot-
tle opener and a glass.

We believe the key to addressing all of these challenges is
in combining machine learning with knowledge representa-
tion, reasoning, and automated planning. This paper takes a
small step in this direction.
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