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Abstract

This paper demonstrates the use of differentially private
hyperlink-level engagement data for measuring ideologies
of audiences for web domains, individual links, or aggre-
gations thereof. We examine a simple metric for measur-
ing this ideological position and assess the conditions un-
der which the metric is robust to injected, privacy-preserving
noise. This assessment provides insight into and constraints
on the level of activity one should observe when applying
this metric to privacy-protected data. Grounding this work is
a massive dataset of social media engagement activity, pro-
vided by Facebook and the Social Science One (SS1) consor-
tium, where privacy-preserving noise has been injected into
the data prior to release. We validate our ideology measures in
this dataset by comparing to similar work on sharing-based,
homophily- and content-oriented measures, where we show
consistently high correlation (> 0.87). We then apply this
metric to individual links from six popular news domains and
construct link-level distributions of audience ideology. We
further show this estimator is robust to engagement types be-
sides sharing, where domain-level audience-ideology assess-
ments based on views and likes show no significant difference
compared to sharing-based estimates. Estimates of partisan-
ship, however, suggest the viewing audience is more moder-
ate than the audiences who share and like these domains. Be-
yond providing thresholds on sufficient activity for measuring
audience ideology and comparing three types of engagement,
this analysis provides a blueprint for ensuring robustness of
future work to differential privacy protections.

Introduction
Datasets of large-scale online behavior and digital traces are
growing more sensitive as privacy expectations and regula-
tions mature. To address such concerns, data providers are
turning to differential privacy to balance large-scale data re-
leases with maintaining privacy guarantees for individuals
whose data may be included in these releases. Differential
privacy techniques operate by injecting noise into observa-
tions to prevent identification of individuals in these datasets
(see Wood et al. (2020) for an introduction to these meth-
ods). These protections come at a cost, however, as stan-
dard analyses may produce biased or erroneous results if
they do not account for such protections (Evans et al. 2019).
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This issue is particularly evident in the release of the “Face-
book Privacy Protected Full URLs Dataset,” referred to as
the “Condor” dataset, where Facebook and the SS1 consor-
tium have released a massive collection of 63.5 million links
shared on the Facebook platform along with differential-
privacy-protected engagement data on age, gender, location,
and political preference (Messing et al. 2020). Condor is the
largest dataset of link-level engagement released to date and
holds marked potential for studying large-scale online be-
haviors, but researchers lack guidance in and examples of
methods that account for differential privacy protections.

This paper provides this guidance by 1) examining a sim-
ple weighted-average metric for calculating ideological po-
sitions of audiences for web domains1 based on link-sharing
in Facebook in the presence of differential-privacy protec-
tions, 2) showing how differential privacy impacts this met-
ric, 3) establishing bounds on how this metric should be
used, and 4) validating this metric against similar domain-
level, sharing-based measures. While similar metrics have
been proposed, those efforts rely on highly sensitive data,
such as internal Facebook data (as in Bakshy, Messing, and
Adamic (2015)) or Twitter profiles aligned with sensitive
“voter-file” information (as in Robertson et al. (2018)); in
contrast, this paper’s metric can be calculated solely from
this differentially private, public dataset.

After establishing constraints for our differential-privacy-
resilient metric, we use it to extract novel insights about in-
dividual hyperlinks, where sparsity issues have forced pre-
vious approaches to use domain-level measures. We then
assess how different types of engagement–views and likes–
impact our measures. For individual hyperlinks, we estimate
distributions of link-level ideology measures for several
thousand individual links across six popular domains, in-
cluding YouTube.com, providing insight into long-standing
questions about partisan audiences on that platform. For
different types of engagement, we measure differences in
domains’ audience ideologies using link-sharing, viewing,
and liking behaviors, also answering open questions about
consistency in measurement across engagement types; re-
sults show no significant deviation in domain-level estimates
across these activities–though a domain’s viewing audience
is on average more moderate than its sharing or liking audi-

1As distinct from the ideological position taken by the domain.
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ences. Given the commercial value of viewing data in online
platforms, this result is particularly encouraging for the gen-
eralizability of share-based studies and for future efforts that
leverage protected versions of this sensitive data.

This work’s core contributions are:

• A demonstration of how a simple metric for estimating
ideology of a domain’s audience can be made robust to
differential privacy protections;

• An examination of link-level distributions of ideology
across six major news sources; and

• New insight into how varied forms of engagement
(shares, views, and likes) impact audience ideology es-
timates.

Related Work
This paper engages with two main communities: First, a
large body of research exists on inferring ideology of audi-
ences in studies of media bias and polarization, especially in
online spaces (Gentzkow and Shapiro 2010; Bakshy, Mess-
ing, and Adamic 2015; Budak, Goel, and Rao 2016; Robert-
son et al. 2018), which both motivates this work and pro-
vides sources for validation. Second, much of the data that
could be useful for similar studies is often restricted and
sensitive; recent work has explored methods for providing
data protections of such sensitive data while still enabling
inference on this data (D’Orazio, Honaker, and King 2015),
which directly informs our work. Before describing contri-
butions to these communities, we first provide an overview
of differential privacy to situate this work.

A Brief Primer on Differential Privacy
At its core, differential privacy is an approach to collecting
and disseminating aggregate statistics in a way that guaran-
tees some level of privacy for individuals whose data is used
to generate these statistics. While Wood et al. (2020) pro-
vides an overview of differential privacy for non-technical
audiences, such protections generally provide a form of
plausible deniability for individuals whose data is included
in these statistics. This deniability comes from the prop-
erty that a third-party cannot learn anything about a sin-
gle individual whose data contributes to these statistics that
could not be learned if that individual’s data were excluded.
Hence, an individual could claim their data was never in-
cluded in the released statistics at all, allowing them to deny
potential allegations derived from the data. Digital trace
data can therefore benefit from applications of differential
privacy, as large-scale, aggregate datasets can be released
in privacy-protected forms that reduce potential harm to
the populations from which the data is collected D’Orazio,
Honaker, and King (2015). These protections are also con-
sistent with calls for and regulations on enhanced protec-
tions of digital consumer data, and groups like the US Cen-
sus Bureau are using similar ways to protect sensitive data.

These protections are generally applied by adding noise
into the computations of aggregate statistics. Researchers
can tune characteristics of this noise to quantify poten-
tial privacy loss, and by tracking this loss over subsequent

dataset releases, those creating these datasets can main-
tain privacy guarantees. Characteristics of this noise can be
shared as part of the release process without risking these
privacy guarantees, so researchers can account for this noise
without identifying individuals within the dataset. In the
context of the Condor dataset, Facebook bounds privacy loss
by adding noise to the aggregated engagement statistics prior
to releasing the dataset to external researchers. That is, if a
hyperlink has been shared X times in a given month, Face-
book adds noise ϵ drawn from a Gaussian distribution to this
value, and external researchers only ever see X + ϵ.

Measuring Political Ideology
Methods for estimating ideology, partisan lean, media slant,
or similar aspects of information sources (e.g., newspapers,
websites, or communities) are well-studied and generally
fall into one of two categories: content- or homophily-based
approaches. Content-based approaches generally analyze
language, while homophily-based methods propagate indi-
viduals’ ideological preferences to the information sources
these individuals share or consume. Content-based analy-
ses like the study of media slant in Gentzkow and Shapiro
(2010) or media bias in Budak, Goel, and Rao (2016) are
powerful but require content analysis and either manual as-
sessment (as in Budak, Goel, and Rao 2016) or informa-
tion about political preferences of people sharing that con-
tent to learn mappings of particular language to political
preference (as in Gentzkow and Shapiro 2010). In contrast,
while homophily-based methods need information about po-
litical preferences, they do not require analysis of actual con-
tent and instead rely on interactions among nodes in a net-
work. Through these interactions, one can propagate polit-
ical preferences to neighboring nodes, making these meth-
ods particularly amenable to algorithmic assessment. In on-
line social networks, such interactions are often computa-
tionally cheap to collect through APIs or found data, mak-
ing these approaches popular in research. Homophily-based
methods for inferring political ideology have been used to
measure online/offline ideological segregation (Gentzkow
and Shapiro 2011), diversity in online news (Bakshy, Mess-
ing, and Adamic 2015), ideological biases in search engines
(Robertson et al. 2018), and even political lean of disinfor-
mation agents (Golovchenko et al. 2020).

Despite the clear utility and popularity of such
homophily-based approaches, when these methods use so-
cial media data to measure ideology of a news source’s
or web domain’s audience – as in Robertson et al. (2018),
Golovchenko et al. (2020), Eady et al. (2020) and others –
they commonly rely on easily collectable sharing behavior
(e.g., an individual shares a tweet with a link to a domain).
While sharing behavior is easy to collect from sources like
Twitter and Reddit, prior research on social media spaces
and online communities shows that the vast majority of users
on the platform do not actively share or produce content
(Nonnecke and Preece 2000; Preece, Nonnecke, and An-
drews 2004; Gong, Lim, and Zhu 2015) – Benevenuto et al.
(2009) in particular suggests that 92% of all behavior in
one social network was comprised of content viewing alone,
which does not produce collectable artifacts in many public
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APIs. Data about these viewing behaviors, however, is com-
mercially sensitive, and most social media platforms do not
make this data publicly available. For studies of viewing be-
havior in Facebook, for example, up to the release of SS1’s
Condor dataset, one has had to rely on researchers employed
by Facebook, as in Bakshy, Messing, and Adamic (2015), or
partner with researchers at Facebook.

This reliance on content production and sharing leads to a
problematic implication: A media source’s ideological slant
is significantly affected by the source’s audience, and as
share-based metrics omit activity from a significant portion
of the viewing audience, measures of the media source’s
audience may differ significantly from the true distribution
Gentzkow and Shapiro (2010). A unique aspect of the Con-
dor dataset provided by SS1, however, is that it provides en-
gagement data across both sharing and viewing behaviors,
binned across several political-preference buckets. Hence,
the work in this paper can shed some needed light on the
differences in estimates based on shares versus views. That
is, by first comparing results from our share-based audience
ideology metric to existing work in this area, we can validate
our metric despite the privacy-protecting noise injected into
Condor observations. Then, by comparing results from our
share-based estimator to estimators based on views – and
indeed other behavior, such as Facebook’s “Like” reaction,
which is similar to Twitter’s “Favorite” affordance – we can
evaluate whether differences in share- and view-based esti-
mates differ significantly.

Inference and Protected Data
While the above context on measures of media bias and au-
dience ideology show a clear need for understanding the
impacts of share-versus-view-based metrics, as mentioned,
view data is both commercially sensitive and highly private.
Facebook has endeavored to help researchers in this need by
releasing the Condor dataset and protecting it with differen-
tially private noise, as described in Messing et al. (2020).
While works such as D’Orazio, Honaker, and King (2015)
and Evans and King (2022) outline how differential privacy
can support inference in social sciences, how these protec-
tions impact on researcher utility remains an open question.
Evans and King (2022) even shows ignoring differential pri-
vacy can lead to unpredictable biases in results, including
biasing estimated effects towards zero, or in some particu-
larly problematic cases, inverting the sign of the estimates.
Despite these risks, Evans and King (2022) shows correc-
tions are feasible in certain scenarios, as the noise added to
data for establishing differential privacy guarantees is equiv-
alent to increasing standard measurement error, and for lin-
ear systems (e.g., linear regression models), one can correct
for noise if details of the noise-generating distribution are
known. For non-linear systems like the weighted-average
metric we present, however, analytically based corrections
are not readily available.

We instead build on Evans and King (2021), which out-
lines the context in which bias in a ratio metric can be
bounded. Evans and King (2021) claims that, if the noise
introduced is generally much smaller than true observations,
bias in the noisy metric is minimal. While this result is valu-

able, no guidance is provided regarding how large observa-
tions should be relative to noise nor how to evaluate whether
one is in this regime. Hence, this paper provides this much-
needed guidance for using these noisy observations in the
Condor dataset to study media and ideology in a robust man-
ner. We further validate these methods against extant results
where such privacy protections are not in place.

Condor: The Facebook Privacy Protected Full
URLs Dataset

As a brief overview, the “Privacy Protected Full URLs”
dataset, provided to academic researchers by Facebook and
the SS1 consortium, is a large-scale collection of URLs
and associated engagement data for 63,574,836 hyperlinks
shared on the Facebook platform. This dataset exists to pro-
vide researchers new insight into how individuals engage
with hyperlinks on the Facebook platform while simultane-
ously maintaining strong privacy guarantees for Facebook
users. For a URL to be included in this dataset, it must
have been publicly shared by approximately 100 unique in-
dividuals (see Messing et al. (2020) for more details). As of
this writing, the dataset is on its ninth iteration and contains
monthly engagement metrics for all months between 1 Jan-
uary 2017 and 31 December 2021.

For each of these URLs, the dataset contains counts for
11 actions one can take on the Facebook platform (sharing,
viewing, liking, commenting, clicking, etc.), broken down
by month and audience demographics. These demograph-
ics cover an individual’s country, age, and gender, from one
of 45 countries, seven age groups, and three gender groups
(Messing et al. 2020). In the US, Condor further decom-
poses these counts across six bins representing individual-
level political preference, using a “political page affinity”
(PPA) metric, a homophily-based measure defined by Bar-
berá et al. (2015) and described in Messing et al. (2020).
PPA measures an individual’s political ideology on a scale
b ∈ {−2,−1, 0,+1,+2} (-2 is very liberal, and +2 is very
conservative), with an additional bin for individuals whose
PPA is unknown–we exclude this sixth group from our anal-
yses. In this manner, the Condor dataset contains makes
available highly sensitive but valuable engagement data for
large volumes of online information sharing and consump-
tion behavior.

Given the sensitivity of this data and to protect users of
the Facebook platform from potential de-identification, re-
searchers using the Condor dataset do not have direct ac-
cess to the raw monthly counts of these activities. Instead,
researchers can only observe counts of these activities af-
ter Facebook has added zero-centered Gaussian noise to
them in accordance with zero-Concentrated Differential Pri-
vacy (Bun and Steinke 2016). By controlling the amount of
noise relative to the amount of engagement across these de-
mographic bins, Condor provides privacy guarantees about
the probability of an individual person’s single action (e.g.,
share, view, like, etc.) being attributed to that person. That is,
more noise can be injected into counts of views compared to
counts of shares or clicks, while noise added across a single
action comes from the same normal distribution.
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Parameter Description
ℓ A single hyperlink
D A domain D, with multiple associated hyperlinks ℓ ∈ D
b A political page affinity (PPA) bin, such that b ∈ {−2,−1, 0, 1, 2}

sb(ℓ) Actual shares of the associated hyperlink ℓ in the PPA bin b
ϵs,b(ℓ) Differentially private noise added to shares of ℓ in PPA bin b
ŝb(ℓ) Observed shares of a given hyperlink ℓ in PPA bin b, after noise has been added, equal to sb(ℓ) + ϵs,b(ℓ)
sb(D) Actual shares across all links in domain D and PPA bin b, summed over sb(ℓ) over all links ℓ ∈ D
ŝb(D) Observed shares across all hyperlinks in domain D, after noise has been added, equal to

∑
ℓ∈D sb(ℓ) + ϵs,b(ℓ)

ŝ(D) Observed shares across all PPA bins and hyperlinks in domain D, after noise has been added
ζD Actual audience-level ideology of a domain D

ζ̂D Estimated audience-level ideology of a domain D, using privacy-protected shares

Table 1: Summary of notation in audience-level ideology estimates. x̂ denotes estimates of x using differentially private data.

For this work, we focus on URLs shared primarily in the
US. All access to this data is allowed through the SS1 ap-
proval process and is conducted on the Facebook Open Re-
search and Transparency platform.

A Robust Metric for Audience Ideology
We now turn to a metric for estimating the ideology of a do-
main’s audience from this dataset. Prior work on media slant
has shown audiences’ political preferences have a marked
relationship with the message, topic selection, and framing
of news sources (Budak, Goel, and Rao 2016; Gentzkow and
Shapiro 2010; Bakshy, Messing, and Adamic 2015). In this
context, Bakshy, Messing, and Adamic (2015) propose a
homophily-based metric of the degree to which a news ar-
ticle is aligned with a partisan audience “by averaging the
ideological affiliation of each user who shared the article.”
In the differential-privacy-protected Condor dataset, we can
replicate this metric at the web domain level by measuring
the average political ideology of the individuals who share
content from this domain. Table 1 summarizes the notation
we use in defining our version of this metric. While Condor
includes engagement metrics, we focus on sharing for con-
sistent comparison with other work on ideology estimation.

As Condor provides engagement data for each PPA bin,
we can interpret these counts as the frequencies for which
an individual who is very liberal (PPA= −2), liberal (PPA=
−1), etc. has engaged with this content. To estimate a do-
main’s audience ideology ζD from this PPA metric, we cal-
culate the weighted average across these five PPA bins, omit-
ting the sixth PPA bin that contains audience engagement
with unknown ideological affinity. Eq. 1 shows this metric as
the product of each PPA value with the count of individuals
who have shared that domain and have that PPA value. In Eq.
1, sb(D) represents the number of individuals with the PPA
value b who have shared the domain D. In Condor, however,
engagement frequencies are at the URL/hyperlink ℓ level,
not the domain level, so we must first aggregate sb(D) over
all links ℓ in domain D, as shown in Eq. 2.

ζD =
1∑

b sb(D)

∑
b∈[−2..+2]

b · sb(D) (1)

sb(D) =
∑
ℓ∈D

sb(ℓ) (2)

In the absence of differentially private data protections,
Eq. 1 is fundamentally the same metric as in Bakshy, Mess-
ing, and Adamic (2015) and is similar to Robertson et al.
(2018). With the introduction of zero-centered Gaussian
noise, however, these metrics are ill-behaved and can result
in discontinuities, as we explain below.

How Noise Impacts this Metric Analytically
While the metric ζD in Eq. 1 is a straightforward calculation,
differential privacy protections preclude observing the actual
number of shares for a given PPA value directly. Instead,
we observe a noised version of this value, shown in Eq. 3,
where ϵs,b is drawn from a zero-centered Gaussian distribu-
tion with standard deviation σ. This σ is constant for a single
action (e.g., sharing) and reported in the Condor codebook
(Messing et al. 2020). Hence, when calculating the number
of individuals in PPA bin b who have shared a domain D, we
can only construct a noisy estimate of this quantity ŝb(D)
(Eq. 4). Substituting this value into Eq. 1 yields a noisy esti-
mate of domain-level ideology ζ̂D, as shown in Eq. 7.

ŝb(ℓ) = sb(ℓ) + ϵs,b (3)
ŝb(D) =

∑
ℓ∈D ŝb(ℓ) (4)

=
∑

ℓ∈D (sb(ℓ) + ϵs,b(ℓ)) (5)
= sb(D) + ϵs,b(D) (6)

ζ̂D =
1∑

b ŝb(D)

∑
b∈[−2..+2]

b · ŝb(D) (7)

Critically, the ratio in Eq. 7 is ill-behaved when the mag-
nitudes of actual shares sb(D) and the noise ϵs,b(D) are
similar. In such cases, because the Gaussian noise is zero-
centered and can be negative, the denominator can approach
zero, which inflates the metric (examples of this behavior
are shown in the section below on link-level estimates). This
scenario can also lead to pathological cases in which denom-
inator is exactly zero (i.e., the noise exactly cancels the num-
ber of shares), resulting in discontinuities in the ideology es-
timate. Given the number of URLs in the dataset, these rare
cases occur sufficiently often as to be problematic.
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Analytically, Eq. 7 can be viewed as a ratio of Gaussian
distributions, but these pathological cases results in this ra-
tio having a Cauchy distribution, which has an undefined
expected value. It is consequently difficult to isolate and cor-
rect for bias introduced by differentially private noise analyt-
ically. Fortunately, other work has examined this bias, and
we rely on Hayya, Armstrong, and Gressis (1975), Evans
et al. (2019), and Evans and King (2021) for their discus-
sion of weighted averages in the face of noise.

In particular, if counts are normally distributed, we could
treat this instance as a ratio of correlated, non-central nor-
mal distributions and use the result from Hayya, Armstrong,
and Gressis (1975), to find the expected value of this ratio.
In that case, as long as mean of the denominator’s distribu-
tion is sufficiently large compared to the mean of numer-
ator, bias in this expectation goes to zero. While we can-
not assume normally distributed counts in this dataset (see
Papakyriakopoulos, Serrano, and Hegelich (2020) for a dis-
cussion of log-normal distributions in social media engage-
ment data), accounting for bias when the denominator is suf-
ficiently large is supported by Evans and King (2021). Evans
and King (2021) relies on Taylor approximation to expand
a ratio of noised observations, leading to an upper bound
on potential bias in this estimate, shown in Eq. 8, follow-
ing from Eq. 2 of Evans and King (2021) where we replace
K with the number of PPA bins. Specifically, as long as the
number of shares sb(D) is sufficiently greater than the vari-
ance of the noise added, Eq. 8 goes to zero. Restated, as long
as sb(D) >> σs, or equivalently, sb(D)/σs >> 1, bias in
this metric should be negligible. Borrowing from signal pro-
cessing, we refer to this ratio of engagement to noise as the
signal-to-noise ratio (SNR), defined in 9.

bias < 4 · σ2

(
∑

b sb(D))2
(8)

SNR =
(
∑

b sb(D))2

σ2
(9)

Impacts of Noise via Simulation
As we show above, for a sufficiently high SNR, bias in our
metric is negligible, but that analysis does not tell us what
a sufficient-SNR regime might be. We thus turn to simula-
tion to evaluate potential bias in the environment specific to
the Condor dataset and construct two experiments: First, we
evaluate whether the environment observed for popular do-
mains in the Condor dataset are sufficient for our metric to
be unbiased. Second, we examine the relationship between
SNR and bias to get a sense for what levels of SNR and ob-
served sharing are necessary to produce tight estimates of
political ideology.

Estimating Bias for Popular Domains In the first simula-
tion experiment, we test the hypothesis that ζD− ζ̂D = 0, or
whether the noise in Condor drives a significant difference
in our estimates of ideology. We perform this analysis after
observing engagement data for the top 1% most shared do-
mains in the Condor dataset, which we select under the ex-
pectation that these popular domains achieve the necessary

share-to-noise ratio. In the alternative case, i.e., that these
domains do not have sufficient shares to be in the high-SNR
regime, the noise added to this dataset may overwhelm any
useful signal.

At a high level, each run in the simulation starts by draw-
ing ideology scores ζD for a given number of domain ob-
servations nobs. For each domain, we sample a count of the
links to this domain uD from a log-normal distribution and
sample link-level ideology estimates for each link ζℓ, ac-
cording to a normal distribution centered at ζD for this do-
main. We then sample the number of shares for each link
s(ℓ) in this domain, also from a log-normal distribution, and
distribute these shares across the five PPA bins according to
ζℓ. This process yields a collection of domains with associ-
ated links and shares across PPA bins for each link, mirror-
ing the Facebook collection prior to noise injection.

To simulate the noise-generate process, we add noise to
each link’s simulated shares ŝb(ℓ) using the exact process
outlined in the Condor codebook. We aggregate these link-
level shares up to the domain level, and estimate ideology
ζ̂D from these noisy observations. Comparing this estimate
from noisy sharing counts to the actual ideology yields an
estimate of the bias added by the differentially private noise.
Parameters for this simulation come from qualitative assess-
ment of the Condor dataset and are shown in Table 2.

We then run the simulation with nsim = 100 iterations,
sampling nobs = 100 domains per iteration, and calculate
the mean bias ζD − ζ̂D and Monte-Carlo standard error for
each iteration. Simulation results produce an estimated bias
of −4.006 × 10−5 with a Monte-Carlo standard error of
5.4940× 10−5. Variance across simulation iterations is also
small, at 3.0485 × 10−7. These results shows the proposed
estimator’s bias is neither statistically significant nor is this
difference practically significant on the [−2, 2] scale of PPA.

A Note on Aggregation One may be tempted to first es-
timate ideology by calculating ζℓ at the link level and tak-
ing the mean across all links in domain D to calculate ζD,
which is more consistent with the metric provided in Bak-
shy, Messing, and Adamic (2015). This approach produces a
much higher MC standard error in this case, however, as the
sharing signal in a given link is generally much lower com-
pared to the additive noise than in the aggregate. We provide
guidance on when such link-level estimates are reasonable
in a later section.

Relationships between SNR and Bias In the second sim-
ulation experiment, we examine the relationship between
SNR and variance in our ideology estimator. This experi-
ment fixes the number of links a domain has and varies the
number of shares necessary to achieve a target SNR, defined
in Eq. 9. We run this experiment with two fixed values for
the number of links in a domain, first setting uD = 1024 to
evaluate SNR for domain-level aggregates and then setting
uD = 1 for cases where researchers want to study a single
link. Varying SNR on the interval [1, 1024] shows that an
SNR ≥ 16 results in tight estimates on ideology, regardless
of whether we aggregate over many or few links. These met-
rics derive from nsim = 500 runs of nobs = 100, 000 do-
mains with uniformly distributed ideologies for each SNR.
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Parameter Description
ζD Audience-level ideology of a domain D, drawn from a three-component Gaussian mixture model.
ζℓ The mean political page affinity for a given link ℓ ∈ D, drawn from N(ζD, 0.25), with σ = 0.5 to provide separation

between bins.
uD The number of hyperlinks to domain D for which we have sharing data, drawn from a log-normal distribution LN(9, 1),

as estimated from the Condor dataset.
s(ℓ) The number of shares for link ℓ, drawn from a log-normal distribution LN(7, 1), as observed within the Condor dataset.
sb(ℓ) The number of shares in political page affinity bin b for link ℓ, which we allocate from s(ℓ) by drawing 100 samples from

N(ζℓ, 0.5625) and scaling up. σ = 0.75 is chosen so most mass is ±1.5 from the mean.
ϵb(D) Noise added in to sharing in political page affinity bin b for domain D, drawn from N(0, σ2 · 3 · 7 · 36) (σ is taken from

the Condor codebook, and the multiplicative factors account for the aggregations along demographic and temporal bins;
i.e., gender, age, and month).

Table 2: Simulation parameters, drawn from observation of the Condor dataset. Distributional values in this table are based on
qualitative assessments of distributions within v7 of the Condor dataset, which covered 36 months.

A remaining question concerns the level of observed shar-
ing needed for tight estimates. To this end, we have ex-
plored the maximal number of observed sharing (i.e., noised
share counts), averaged over several link-sharing counts and
privacy-protecting noise levels, necessary for tight bounds.
This exploration suggests the relationship between sufficient
observed sharing and aggregate noise (i.e., noise accumu-
lated from differential privacy protections and aggregations
over multiple links, demographic bins, and temporal time-
frames) is linear in log-log space for a fixed SNR. Using this
framework, we then estimate the relationship between this
noise and a target observed sharing volume needed for tight
estimates at SNR = 16 (sufficiently high to ensure tight
estimates). This model is shown in Eq. 10, where 16 is the
SNR; 5, 3, and 7 are number of PPA bins, gender bins, and
age bins respectively; m is the number of months the ag-
gregation covers; uD is the number of links over which one
is aggregating; and σdp is the noise added for differential
privacy. This equation for ŝ(D), or the amount of observed
sharing, allows us to set a lower bound on the volume of
observed sharing necessary for stable estimates. This model
also allows us to vary injected noise σdp, meaning we can
estimate the minimum quantity of engagement one should
observe for other types of activity in Condor as well.

ŝ(D) ≳ 1.578 ·
√
(16 · 5 · 3 · 7 ·m · uD · σ2

dp) (10)

Audience Ideology for Popular Domains
We now use this metric and bounds on sharing to examine
the distribution of audience ideologies among Facebook’s
top 1% most popular US domains among politically en-
gaged Facebook users. This analysis covers 2,629 domains
out of a possible 2,644 as 15 domains were excluded for
having insufficient activity to achieve the target SNR rel-
ative to the number of links uD.These excluded domains
include SoundCloud.com and ReverbNation.com,
which both have high numbers of unique links in Condor,
leading to high differences between observed and needed
sharing, making their estimates suspect.

Figure 1 presents distributions of our estimated domain-
level ideologies, with a selection of domain annotations,
divided into news (1a) and non-news domains (1b). For

news domains, we select domains that have ratings from
the NewsGuard2 trust rating service and exist in our top-1%
set, resulting in 1,279 news-oriented domains. This collec-
tion shows a tri-modal distribution, with traditionally liberal
news sources (e.g., CNN, the New York Times, and Huffin-
gton Post) on the left, conservative news on the right (e.g.,
Fox News, Breitbart), and more centrist reporting such as C-
SPAN around the center. For non-news sites, we see many
centrally oriented domains are primarily shopping, social
networking, crowd-funding, and sports sites, whereas non-
news domains in the ideological extremes are primarily ac-
tivist organizations (e.g., the Southern Poverty Law Center
splcenter.org or the National Rifle Association’s Institute of
Legislative Action nraila.org).

As our metric captures ideological leans of a domain’s
audience, in the context of news sources, Gentzkow and
Shapiro (2010) suggests this measure should be highly cor-
related with the “slant” of these sources (which we indeed
see in Figure 2d in the following section). For national
news like the New York Times, Breitbart, etc., these sources
are consistent with traditionally accepted partisan placement
(e.g., as in Media Bias Fact Check). At the local level, we
find local-affiliate news stations (e.g., WTOP in Washington,
DC or KATC in Lafayette, Louisiana) are aligned with more
ideologically moderate audiences, with KQED in Berkeley,
CA having the most liberal and partisan audience of the lo-
cal affiliates; the national media outlets, on the other hand,
are more well-separated. This alignment among local af-
filiates is consistent with the literature (Bakshy, Messing,
and Adamic 2015; Gentzkow and Shapiro 2010), as Berke-
ley, CA leaned heavily liberal in the 2016 presidential elec-
tion, and Lafayette, LA leaned heavily conservative (Dottle
2019). The data also suggests, as seen in other work (Ju-
rkowitz et al. 2020), a wider gap between the moderate and
conservative components compared to the moderate and lib-
eral components, suggesting the conservative media sites are
more insulated from mainstream media.

Comparisons to Other Ideology Measures
To validate the audience ideology metric calculated from
differentially private sharing data, we compare our results

2https://www.newsguardtech.com/
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(b) All Domains (N = 2, 629). Many moderate domains are apolitical
sources, e.g., social media, shopping, or sports.

Figure 1: Density plot of domain-level ideologies, for all (a) and news-only (b) domains (-2 is strongly liberal, and +2 is strongly
conservative).

from these top-1% most popular domains to four similar
domain-level measures. This first comparison is with mea-
sures of “partisan audience bias score” from Robertson et al.
(2018), which uses ratios of shares from registered Repub-
licans’ and Democrats’ Twitter accounts; we find a signif-
icant Pearson’s correlation ρ = 0.9295 here for 1,675 do-
mains (see Figure 2a). Our second comparison is with a
homophily-based measure introduced by Eady et al. (2020)
(Figure 2b), where we achieve a strong correlation ρ =
0.9386 across 154 domains. Our third comparison is with
the similarly defined ideology scores introduced in Bakshy,
Messing, and Adamic (2015), where we find the highest cor-
relation (ρ = 0.9522) for 112 domains. Lastly, we compare
against a content-based media slant estimate for 16 newspa-
pers analyzed in Budak, Goel, and Rao (2016), where we
find our lowest but still strong correlation (ρ = 0.8675).
Despite the complexity introduced by differential privacy
protections in Condor, our estimates are strongly correlated
across all four of these comparison.

Beyond the Most Popular Domains
Above, we focus on the top-%1 of domains, as these do-
mains are more likely to exceed the threshold established in
Eq. 10 and because these domains are well-captured in other
works on audience ideology. Our method is not restricted to
only popular domains, however, as domains that are shared
less often may still have sufficient signal to exceed our
threshold: e.g., using Eq. 10, if we observe a domain with a
single link and use only one month of data, that domain need
only have about 906 observed shares (i.e., shares with added
noise) to provide stable estimates. As the most recent iter-
ation of the Condor dataset contains 363,738 domains over
five years, one may then ask how many of these similarly ex-
ceed the thresholds we establish for this stability. This quan-
tity is also important for the creators of the Condor dataset,
as it can shed light on the tradeoff between differential pri-
vacy protections and data utility in downstream analysis.

To answer this question, we randomly sample 1,024 do-
mains from the Condor dataset and measure the proportion

that exceed the threshold of observed shares in Eq. 10. For
all domains, we use the same σ2

dp = 14 value and set m and
uD to the number of months for which the domain has data
in Condor and the number of unique hyperlinks to that do-
main, respectively. Of these 1,024 domains, 43 exceed this
threshold, accounting for the top 4.2% of the domains in this
set. In comparison, over 99.4% of the top-1% of domains
exceed this threshold. While this proportion is low, that still
leaves in excess of 15 thousand domains that will produce
stable ideology estimates using the method described above.

This result also has an important implication for the Con-
dor dataset’s construction more generally. While we note a
couple of ways one might increase this proportion through
relaxing constraints or focusing on link-level estimates (as
we do in the following section), it is also true that the ap-
plication of differentially private noise to the Condor dataset
is done with limited insight into the downstream impact this
noise has on analyses. Hence, this finding motivates a call
to Facebook to revisit its privacy budget and investigate the
balance between adding noise and reducing utility of this
large dataset.

Link-Level Audience Ideology Estimates
In the preceding section, we have focused on demonstrat-
ing the validity of the audience-ideology metric by show-
ing the bounds in SNR for which ideology estimates are
tight and comparing our domain-level metrics to several ex-
tant, non-differential-privacy-protected datasets. This met-
ric is not specific to domain-level metrics, however, and
is equally amenable to estimating audience ideology at the
individual link level, as in Bakshy, Messing, and Adamic
(2015). This link-level analysis is a major advantage of the
Condor dataset as the scale at which it provides these en-
gagement metrics alleviates sparsity issues, which are a ma-
jor barrier to link-level analyses in other sources. That is,
the Condor dataset provides a much larger volume of link-
level data than academic researchers are generally able to
access, allowing for novel insights into ideological distribu-
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(b) Versus Eady et al. (N = 154, ρ = 0.9386).
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(c) Versus Bakshy et al. (N = 112, ρ = 0.9522).
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(d) Versus Budak et al. (N = 16, ρ = 0.8765).

Figure 2: Comparisons of the proposed domain-level ideology metric and extant domain-level measures. Results show strong
correlations between our proposed metric and extant literature. Of these four methods, Budak, Goel, and Rao (2016) provides
a content-based measure of media slant, whereas the remaining three provide homophily-based measures.

tions across individual links rather than domain-level aggre-
gates. That said, noise added to engagement metrics for in-
dividual links may be relatively high compared to domain-
level aggregates, as many individual links likely do not re-
ceive sufficient engagement alone to support ideology esti-
mates using our proposed metric.

To illustrate this point, we estimate audience ideologies
for individual links to six popular domains across the ideo-
logical spectrum. Of these domains, five are news sources,
which we order from left to right–liberal to conservative:
Huff Post, the New York Times, C-SPAN, Fox News, and
Breitbart. Traditionally, Huff Post and the New York Times
are considered left-leaning sources, whereas Fox News and
Breitbart are right- and far-right sources; in contrast, C-
SPAN is a non-profit, non-partisan source that primarily
covers the US House of Representatives. We also include
YouTube as our sixth domain, given its substantial role in
the online news ecosystem. For each of these domains, we
calculate audience estimates using the ninth iteration of the
Condor dataset, covering 2017-2021 and show link-level
distributions for all links in each domain (Figure 3a) and
only for those links with sufficient engagement (Figure 3b)
as estimated by Eq. 10; i.e., s(ℓ) > 7, 014. Tables 3a and
3b show summaries of these figures as well. Distributions of

audience ideology when we use all links from each domain
consistently show extreme variation, with YouTube showing
the widest range, from -5,760.0 to 5,167. In contrast, focus-
ing only on links with with SNR > 16 yield more stable
averages and more informative distributions. Interestingly,
links to YouTube videos appear symmetrically distributed in
their audience ideologies, and C-SPAN shows wider varia-
tion (though still constrained to between [−1.9, 2.2]). The
remaining four domains, traditionally considered partisan-
leaning, exhibit the expected partisan distributions, with the
majority of links falling on one side of the ideological spec-
trum. Some links from these domains do cross the ideologi-
cal divide though; e.g., 1,169 of the links in Figure 3b from
the New York Times have an audience ideology measure
ζℓ > 0. One article in particular, “I Wanted to Be a Good
Mom. So I Got a Gun,” was shared by a solidly right-leaning
audience (ζℓ = 2.2109).3 Likewise, Breitbart has 255 links
shared among left-leaning audiences (ζℓ < 0), with an ar-
ticle concerning Harvey Weinstein seeing the most liberal
audience.4

3https://www.nytimes.com/2018/03/05/opinion/mom-gun-
safety-intruder.html

4http://www.breitbart.com/big-hollywood/2017/10/12/
bombshell-weinstein-board-knew-about-harveys-payoffs-in-

79



10 4 HuffPost

10 4 NYT

10 4

Fr
eq

ue
nc

y 
(L

og
-S

ca
le

)  
   

   

YouTube

10 4 C-SPAN

10 4 Fox News

6000 4000 2000 0 2000 4000
Ideology ( )

10 4 Breitbart

(a) Link-level ideology distributions for all links in each domain.

0

1 HuffPost

0

1 NYT

0

1

Fr
eq

ue
nc

y 
   

   
   

   
   

  

YouTube

0

1 C-SPAN

0

1 Fox News

4 3 2 1 0 1 2 3 4
Ideology ( )

0

1 Breitbart

(b) Ideology distributions for only links with more than 7,014 shares.

Figure 3: Histograms of link-level ideologies for six major web domains, ordered from left to right as most liberal to most
conservative–Huff Post, New York Times, YouTube, C-SPAN, Fox News, and Breitbart–using all links in Condor (a) and only
links with sufficient observed sharing (b). Distributions using all links show extreme variation, whereas links with sufficient
sharing produce reasonable distributions in the range [−4, 4].

Domain Mean ζℓ σ N
HuffPost -0.6434 34.83 31,303
NYTimes -0.3288 42.67 122,972
YouTube 0.0009 44.11 10,584,364
C-SPAN -1.4369 55.43 1,458
FoxNews 0.6920 44.33 119,010
Breitbart 1.1475 45.27 82,536

(a) Using all links in the dataset. Ideology measures exhibit high
variance, with averages towards zero.

Domain Mean ζℓ σ N
HuffPost -1.1511 0.4197 5,380
NYTimes -1.0318 0.5988 18,387
YouTube 0.0462 0.6749 189,436
C-SPAN 0.2183 1.0472 117
FoxNews 1.1632 0.5152 20,576
Breitbart 1.4050 0.5250 13,447

(b) Using only links with more than 7,014 observed shares. Varia-
tion in ideology is more constrained at the cost of smaller N .

Table 3: Summary statistics for link-level audience ideology for six major domains. Consistent with Figure 3, ideology measures
using all links (a) exhibits high variance, potentially masking useful structure, which emerges when we constrain links to those
that are sufficiently popular (b).

Comparing Shares, Likes, and Views
Prior sections use sharing as the primary mode of engage-
ment, so we can compare against similar methods on Face-
book (e.g., Bakshy, Messing, and Adamic 2015) and Twit-
ter (e.g., Robertson et al. 2018; Eady et al. 2020). Concerns
with these measures include 1) sharing as a proxy for view-
ership and 2) counter-attitudinal sharing, wherein an individ-
ual shares a particular article to criticize it. Often, exposure
to information is more important than who is sharing infor-
mation, but sharing activity is more readily available, so it is
used in place of exposure. Similarly, while prior work shows
criticism is one of the primary motivations to share content
in political discourse (Kim, Jones-Jang, and Kenski 2020),
counter-attitudinal sharing is relatively rare (An, Quercia,
and Crowcroft 2014), so it is generally ignored. The Condor
dataset is not limited to sharing though, as it contains mea-

2015-what-about-disney/

sures of likes, views, and other activity, though the added
noise varies for these actions (e.g., σ = 10 and σ = 2, 228
for likes and views, respectively). We can therefore com-
pare whether the population sharing a particular domain
is significantly different from the population who likes or
views this content, potentially mitigating concerns around
share-based measures. We thus compute audience ideology
metrics for 2,227 domains across three engagement types–
sharing, viewing, and liking– and compare them in Figure
4.

This figure demonstrates limited statistically significant
differences in ideological distributions exist among share-,
view-, and like-based measures – supported by a one-way
ANOVA test (F (2, 2225) = 1.899, p = 0.1498). That is, in
comparing the distributions of inferred domain-level ideol-
ogy metrics using the three activity types, we see no signif-
icant differences in these audience-ideology values. Corre-
lation among all three metrics is also very strong (> 0.97),
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(b) Distribution of Absolute Values in Ideology Measures.

Figure 4: Comparison of Ideology Metrics Based on Shares, Views, and Likes. Overall distributions (a) show no significant
deviation; distributions of absolute values (b) suggests domains are viewed by more moderate audiences than those who share
and like them.

suggesting differences based on engagement are less impact-
ful than the cross-method analysis shown in Figure 2. Hence,
despite potential concerns around share-based measures as
proxies for exposure and counter-attitudinal sharing, the ide-
ological alignment of audiences sharing, viewing, and liking
these domains are statistically indistinguishable.

Separate from these concerns, one may expect differ-
ences in the extremes of these ideology distributions, as
political sharing on Facebook is relatively rare (Bakshy,
Messing, and Adamic 2015). We therefore test an alterna-
tive measure by taking the absolute value of the ideology
metric |ζD|, to measure potential partisanship rather than
liberal/conservative ideology. Comparing this partisanship
metric based on shares, views, and likes (Figure 4b) shows a
more significant difference among these three distributions
(F (2, 2225) = 17.95, p << 0.001). A post-hoc Tukey test
shows a moderating effect in viewership in that a domain’s
viewing audience appears significantly more moderate than
its sharing and liking audiences (p < 0.001).

A Note on Views We note that the interpretation of
“views” in Condor does not directly capture the volume of
individuals who have visited and viewed a given URL out-
side of the Facebook platform. Instead, the Condor code-
book defines “views” as the “number of users who viewed a
post containing the URL” (Messing et al. 2020). That is, an
individual may view a link outside the Facebook platform,
and this view would not be captured in Condor’s “view”
count. Conversely, an individual may view a post in Face-
book containing a specific link without visiting the link,
and this interaction would be captured in Condor’s “view”
count–actually visiting the link is captured by the “click”
count. While this interpretation omits off-platform engage-
ment, Condor’s operationalization of “views” still captures
important network-driven exposure aspects that other work
largely is forced to omit, given the commercial sensitiv-
ity of this measure. Hence, the result above should be in-
terpreted as: The audience exposed to a particular domain

within Facebook is significantly more moderate the audience
that shares and likes that domain.

Threats to Validity
Though the Condor dataset is a milestone in the avail-
ability and transparency of social media data, concerns re-
main around how such data is collected and protected. First,
the process by which the Condor dataset is constructed is
opaque to researchers in that parties outside of Facebook
are not allowed to inspect the code used to select URLs or
calculate the metrics like PPA. As a result, researchers are
forced to trust that Facebook’s URL selection process is cor-
rect. Likewise, researchers are given limited insight into how
much data is omitted from the Condor dataset because the
links do not meet the 100-unique-user threshold on public
shares. While internal Facebook developers have made some
data available about this threshold’s relation to the distribu-
tion of on-platform links, external review of the data pre-
and post-application of the privacy-protecting noise remains
unavailable. This latter issue is of particular concern as, in
the fall of 2021, external researchers identified a flaw in the
Condor dataset that significantly undercounted engagement
in the US (Alba 2021). This flaw led to Condor’s omission
of engagement from US users whose political preferences
(i.e., PPA bin) could not be identified; that is, while other
demographic bins could be null to capture shares from, say,
individuals with an unknown gender, no data existed in the
dataset for the many users who did not follow sufficient po-
litical pages to have an identifiable PPA value. Though this
paper was unaffected by this error (as we ignore shares from
null-PPA users), and Facebook has since corrected this is-
sue, the lack of transparency around Condor’s creation and
population remains a problem.

Second, while the privacy protections applied to the Con-
dor dataset serve a crucial purpose, how these protections
impact research methods remains an open question. Our pro-
posed metric requires a sufficient level of activity to over-
come additive noise, which means many important but rare
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phenomena may be masked. Consequently, domains and
links shared among extreme partisan audiences may be in-
cluded in the dataset but have insufficient signal for useful
analyses. More worryingly, this masking could be asymmet-
ric and result in ideological bias in what links are included.
To examine this possibility, we have examined 500 domain-
level ideology scores from Bakshy, Messing, and Adamic
(2015) and assess the overlap between that work and our
set. Using a logistic regression model to assess whether a
domain’s audience ideology scores predict its inclusion in
our dataset, we find no statistically significant relationship
between the two factors. For less popular phenomena, how-
ever, this question of bias remains open, but a fundamental
tension exists between these rare instances and the differen-
tial privacy protections, as these protections add more noise
to these rare instances to prevent identification. How these
two factors interact needs to be a subject of future work.

Third, we stress our ideology metrics measure the au-
dience of a domain/link, not the actual content of the do-
main or link itself. While much of the related work in this
area makes similar assessments (e.g., Bakshy, Messing, and
Adamic (2015), Robertson et al. (2018)), it is important to
note that content in some of these sites may not be overtly
partisan but are more attractive or known to partisan audi-
ences. As noted in Gentzkow and Shapiro (2010), the ideo-
logical slant of a media outlet’s audience does affect choices
of what that outlet covers and how it does so, but this dis-
tinction between content and audience is important for in-
terpreting this work.

Ethics and Competing Interests
This work’s intent is to provide a broader audience with
an example for working with social media and digital trace
data that has been protected with differential privacy tech-
niques. Though this work is focused on audience ideology,
the methods are equally applicable to aggregations across
other demographic bins or activities. Similarly, our focus on
ideology results in a US-oriented analysis, as the Condor
dataset only provides ideology-relevant PPA assessments for
US users. While a clear limitation of this work, it does hint
at the need for broader perspectives on how such left/right
scales can be generalized to other national contexts, as dis-
cussed in Lo, Proksch, and Gschwend (2014). Ultimately
though, teams internal to Facebook would have to extend
the Condor dataset to include page-affinity scores for non-
US audiences.

Regarding ethics in research, this work and the Condor
dataset more generally has some considerations worth not-
ing. Condor’s privacy protections provide value in prevent-
ing identification of individual users’ actions on the platform
but at the cost of obfuscating rare phenomena. Vulnerable
and minority groups who might be over-represented in these
rare instances are potentially disproportionately impacted by
these protections, as researchers balance preserving privacy
with studying how behaviors on the platform may impact
these groups. More work is needed to assess how platforms
like Facebook interact with these populations and how we
might study these interactions while still providing a rea-
sonable level of protection for these users.

While we claim no conflicts of interest, for transparency,
we note that one of the authors of this work has received
funding from Facebook related to the Social Science One
initiative. This funding was not for this work, and while
Facebook has had the opportunity to review this work prior
to publication as part of the Social Science One agreement,
they do not have authority to prevent publication. Finally,
this work was reviewed by university internal review boards
as a prerequisite for gaining access to the Condor dataset.

Conclusions
Through the above assessments of our proposed audience-
ideology measure, based on a simple weighted average of
online behavior across ideologically grouped audiences, this
paper presents three core contributions: First, this measure
and its assessment provide guidance for researchers seek-
ing to use differential privacy-protected digital trace data in
analyses of online political behaviors, which we make more
compelling by demonstrating agreement with other pub-
lished measures that do not have these protections. Second,
we extend this work on domain-level analyses to demon-
strate how our proposed metric can provide insights at the
individual link level, which is often made difficult by con-
cerns of sparsity in other datasets. Third, we contribute to
studies of media slant and online political engagement by
extending this analysis to other online types of online activ-
ity beyond just sharing – i.e., views and likes. As Condor is
the largest dataset of its kind and the primary mode of access
to Facebook data for researchers unaffiliated with Facebook,
the endogenous metric for audience ideology we provide –
along with the related insights for SS1 researchers looking
to leverage this unique dataset – may accelerate research in
this space.

Data Availability
Access to the Social Science One dataset used in this analy-
sis is governed by the Research Data Agreement made avail-
able as a joint effort between Facebook and the Social Sci-
ence One Consortium: https://socialscience.one/research-
data-agreement.
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