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Abstract

The public interest in accurate scientific communication, un-
derscored by recent public health crises, highlights how con-
tent often loses critical pieces of information as it spreads on-
line. However, multi-platform analyses of this phenomenon
remain limited due to challenges in data collection. Col-
lecting mentions of research tracked by Altmetric LLC, we
examine information retention in the over 4 million online
posts referencing 9,765 of the most-mentioned scientific ar-
ticles across blog sites, Facebook, news sites, Twitter, and
Wikipedia. To do so, we present a burst-based framework
for examining online discussions about science over time
and across different platforms. To measure information re-
tention, we develop a keyword-based computational measure
comparing an online post to the scientific article’s abstract.
We evaluate our measure using ground truth data labeled by
within field experts. We highlight three main findings: first,
we find a strong tendency towards low levels of information
retention, following a distinct trajectory of loss except when
bursts of attention begin in social media. Second, platforms
show significant differences in information retention. Third,
sequences involving more platforms tend to be associated
with higher information retention. These findings highlight a
strong tendency towards information loss over time—posing
a critical concern for researchers, policymakers, and citizens
alike—but suggest that multi-platform discussions may im-
prove information retention overall.

Introduction
Online platforms are increasingly the predominant medium
for communicating science to the public (Su et al. 2015).
In 2020, the National Science Board noted that the internet
had become the most widely used source for science news,
with 57% of Americans citing online platforms as their pri-
mary source of science and technology information (Na-
tional Science Board 2020). Given this, the accurate commu-
nication of scientific research online is a fundamental con-
cern for policy-making, public health, and establishing the
legitimacy of scientific work (Jamieson et al. 2019).

Prior work notes that information often diverges from
its original source as it spreads, losing key bits of infor-
mation (Ribeiro, Gligoric, and West 2019; Tan, Friggeri,
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and Adamic 2016). When important information or con-
text about research is lost, it has the potential to mislead
the public about basic scientific facts and in turn, harm the
integrity of research work and policy decisions. Yet empir-
ical analyses examining how information evolves and de-
cays “in the wild” often remain limited to single platforms,
although in reality, information spreads across many (Hill
and Shaw 2019; Anderson and Jiang 2018). Importantly,
platforms have different sets of users (Horvát and Hargittai
2021) and affordances, and hence variable effects on how in-
formation is shared and displayed (Malik and Pfeffer 2016),
shaping consumption and engagement. For example, Face-
book posts have a high text limit (63,206 characters) but are
often much shorter as people are unlikely to read long con-
tent on social media. Meanwhile, a blog post has neither text
limits nor particular norms about content.

To understand how key information is lost or retained, a
multi-platform analysis is thus imperative. Using a dataset
from Altmetric LLC (Altmetric Support 2021), a service
tracking mentions of research online, we can examine men-
tions of research spread across platforms over time. This
massive data collection over the past decade has recorded
mentions of scientific articles by their unique identifiers,
overcoming a major hurdle of consistent and reliable track-
ing of information across platforms at scale.

We use this dataset to study information retention in the
millions of online mentions of 9,765 of the most popular
scientific articles across five categories of platforms: blogs,
Facebook, news, Twitter, and Wikipedia. We develop a novel
framework and measure for examining information reten-
tion. In particular, we propose a framework that looks at
spikes of attention (aka bursts, see Kleinberg 2003; Barabási
2005; Cheng et al. 2016) per platform in temporally-ordered
sequences. This approach helps us filter out random noise
from individual mentions and instead identify meaningful
cross-platform, aggregated moments of online attention to
a scientific finding. To measure information retention, we
quantify computationally the information retention in an on-
line post in comparison to the abstract of the scientific arti-
cle. We evaluate the validity of our measure using data la-
beled by domain experts. Using this approach, we ask:

• RQ1. Information retention over time. Given that any
burst in a sequence may refer to the actual source, is in-
formation consistently retained over time?
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• RQ2. Information retention across platforms. As dif-
ferent types of platforms present constraints about text,
content, and posting access, how does the information
retention differ across platforms?

We find that online discussions of science show a strong
propensity towards information loss in all platforms but so-
cial media. However, early platform differences do not affect
long-term levels of information retention. We present three
main contributions: we (1) characterize how online discus-
sions of scientific work tend toward low levels of informa-
tion retention; (2) highlight the role of multi-platform dis-
cussions of research; (3) and present a burst-based frame-
work for evaluating information across platforms, adaptable
to other contexts with “bursty” behavior.

Related Work
The Online Spread of Scientific Work
In the past two decades, the internet has become an increas-
ingly important source of news about scientific research
(Brossard 2013; Van Eperen and Marincola 2011; Hargittai,
Füchslin, and Schäfer 2018; National Science Board 2020).
Understanding how scientific content spreads online is thus
a fundamental and critical question. Prior research on the on-
line spread of science has examined how scientists discuss
their work (Robinson-Garcia et al. 2017; Reinhardt et al.
2009) and what factors are associated with better scholarly
communication (Milkman and Berger 2014). More recently,
Zakhlebin and Horvát (2020) provided an overview of how
scientific findings diffuse across various platforms through
sharing by users and organizations.

Work looking at the diffusion of online content more
broadly has focused on the flow and virality of content on
new media platforms (Adar and Adamic 2005; Adamic et al.
2016; Lakkaraju, McAuley, and Leskovec 2013; Lerman and
Ghosh 2010; Romero, Meeder, and Kleinberg 2011; Bak-
shy et al. 2012), noting the bursty behavior of online con-
tent (Cheng et al. 2014, 2016). This work has also high-
lighted how information mutates as it spreads, as seen in
clickbait and fake news (Chen, Conroy, and Rubin 2015;
Vosoughi, Roy, and Aral 2018; Lazer et al. 2018; Gupta
et al. 2013). In the case of the online spread of science,
prior work investigates what features of scientific articles are
linked with more news coverage and sharing (Milkman and
Berger 2014; MacLaughlin, Wihbey, and Smith 2018). Im-
portantly, facts often get distorted alongside the loss of key
information and context in favor of attracting attention (see
for example Burnett 2017). Thus, understanding information
retention in online discussions of science is a critical step for
improving science communication on the web.

In an experiment examining information cascades about
medical research outputs, Ribeiro, Gligoric, and West
(2019) showed how information distorts over the hops of
an information cascade, resulting in content that resembles
misinformation even without intent to misinform. Existing
empirical analyses of how information changes as it spreads
are based on single platforms and frequently focus on cas-
cades, where one point of a cascade shapes subsequent ones

(Easley and Kleinberg 2010). Yet, information spreads vari-
ably across many platforms and likewise, through various
streams that may or may not cascade. To address this gap,
we examine information retention across multiple platforms
and rather than focusing on cascades, looking at information
retention in trajectories of bursts of attention as an important
step in understanding how discussions of science evolve.

Examining Multiple Platforms
Two factors complicate how information changes as it
spreads online. First, information does not stay within a plat-
form but is free to flow across a connected ecology of plat-
forms. A growing body of work argues for cross- and multi-
platform analyses which can produce work that goes beyond
particular use contexts to develop higher-level understand-
ings of ecologies of information flow (Hill and Shaw 2019;
Phadke and Mitra 2020; Zakhlebin and Horvát 2020; Horvát
and Hargittai 2021; Dambanemuya, Lin, and Horvát 2021).

Second, the platforms through which information trav-
els have particular designs which may affect the fidelity of
the information. In other words, platforms and their design
constraints matter (Malik and Pfeffer 2016; Gligorić, Ander-
son, and West 2018). For example, Malik and Pfeffer (2016)
use temporal data from Facebook and Netflix to give proof-
of-concept to the notion of platform effects, demonstrating
how use differs on both platforms before and after a sig-
nificant design change that alters user exposure to informa-
tion. Prior work also notes how content evolves as it travels
across different platforms (Leskovec, Backstrom, and Klein-
berg 2009; Tan, Friggeri, and Adamic 2016; Phadke and Mi-
tra 2020). In a study on information propagation, Tan, Frig-
geri, and Adamic (2016) look at the diffusion of information
about press releases on Facebook to describe how informa-
tion tends to diverge from the source material is it spreads
through “layers” of mediums: news articles covering a press
release, social media shares, and comments on those shares
(Tan, Friggeri, and Adamic 2016). Zakhlebin and Horvát
(2020) investigate the dynamics of cross-platform informa-
tion diffusion specifically for scientific articles, highlighting
how platforms matter in structural virality.

Although information diffuses across platforms and its
distortion remains a major point of concern, there is little un-
derstanding of the dynamics of how information changes as
it propagates across such a multi-platform information land-
scape. To address this gap, we propose a novel measure and
framework to examine multi-platform information retention
in the online discussion of scientific articles.

Research Design
Data
We use data from Altmetric LLC, which tracks the multi-
platform spread of scientific articles and is the most com-
prehensive data of this kind for the past decade. “Plat-
forms” tracked by the Altmetric LLC dataset include Face-
book, Twitter, Google+, Reddit, YouTube, the Stack Over-
flow network, and Wikipedia in addition to umbrella cate-
gories of “news” and “blog” sites (Altmetric Support 2021).
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Medium Tracked posts Text collected %
Blogs 135,494 98,151 73%

Facebook 130,502 94,467 72%
News 258,367 142,606 55%

Twitter 4,426,264 3,923,874 89%
Wikipedia 5,976 5,976 100%

Total 4,956,603 4,264,894 72%

Table 1: Text we collected for the public posts that mention
the selected 9,765 scientific articles according to Altmetric
LLC (as of Oct. 2020).

The dataset, starting in 2011, tracks mentions of scientific ar-
ticles by their respective document identifiers (DOIs), over-
coming the challenge of consistent tracking, and has the ad-
vantages of covering scientific articles from a wide range of
domains and being highly granular.

Given our analytical approach, which relies on examin-
ing bursts of attention, studying scientific articles with only
a few mentions does not yield meaningful data for investi-
gating information retention at the level of burst sequences.
Using both the 2018 and 2019 data dumps1 provided by Alt-
metric LLC, we identified scientific articles that were among
the 25,000 most mentioned online in both years. We then
selected articles for which we could retrieve abstracts (from
Web of Science2 and Microsoft Academic Graph3), had a
minimum abstract length of 500 characters, were in English,
and were published in or after 2016 (as Altmetric LLC’s
method of tracking DOIs changed in 2016). This resulted
in 9,765 scientific articles, each of which have at least 200
tracked mentions.

While platforms such as Reddit or YouTube are inter-
esting sites of study, our exploratory investigations showed
that—in addition to being rather sparse for a large-scale
evaluation—content on these platforms primarily contained
links (e.g. to the scientific article) without much additional
context, or text could not be obtained (e.g. site was defunct
or transcript unobtainable). As our analyses are based on
the text of mentions, we focused on platforms for which we
could obtain text beyond links, i.e., Facebook, Twitter, news
sites, blogs, and Wikipedia.

We collected the relevant online mentions via the Altmet-
ric API in October 2020. We consider public mentions by
users of various digital media, both individuals and organi-
zations. Because the data only tracks direct DOI mentions of
scientific articles, this is a conservative account of the spread
of science information online. Additionally, replies and re-
sponses to such mentions are not captured in the dataset;
we discuss this point in the Limitations section. The Alt-
metric API provided the full text of shorter length men-
tions. To obtain the full text of longer mentions for each
platform, we wrote a series of scripts leveraging APIs and

1A dump should subsume previous ones, but counts can de-
crease when mentions are deleted. We combined the dumps to im-
prove the consistency and reliability of data.

2clarivate.com/webofsciencegroup/solutions/web-of-science/
3microsoft.com/en-us/research/project/microsoft-academic-

graph/

Python libraries to collect public mentions from the blog
(posts), news (articles), Facebook (posts), Twitter (tweets),
and Wikipedia (article revisions) categories. In specific, we
used the Twitter and MediaWiki APIs to collect texts for
Twitter and Wikipedia, and wrote custom scripts to collect
text from blogs, news, and Facebook. For blogs and news,
we utilized the news API script4. For Facebook, about 55%
of posts were short enough such that the Altmetric LLC
dump stored that text in full. For the rest, we wrote a cus-
tom script to only collect publicly-available posts.

We removed irrelevant content such as ads in news, meta
information, and URLs. We also de-duplicated data to en-
sure that the same mention instance is not repeated in the
dataset. However, we do not de-duplicate mentions with
the same text from different sources; similarly, we keep
retweets. We do so to reflect in our data the fact that con-
tent, if disseminated by multiple sources/users, has been
seen more widely. Weighing this content more heavily due to
its repetition more accurately reflects how a scientific article
is being discussed overall. For example, a text spreading via
multiple news sources may have a larger impact on public
perception than if only one source had shared it.

Overall, we identified nearly 5 million mentions between
January 1, 2016 and December 31, 2019 for our 9,765 arti-
cles and were able to retrieve text for roughly 72% of them.
Table 1 shows the percentage of mentions for which we col-
lected text in each of the five platforms.

Developing a Computational Measure of
Information Retention
Whether something has retained key information is nebu-
lous, subject to human judgement. Thus, any computational
measure of information retention is imperfect. However,
Ribeiro, Gligoric, and West (2019) found that keyphrase sur-
vival correlated with evaluations of fact survival. Given this,
we devised a simple keyphrase-based computational mea-
sure, intended to provide a reasonable evaluation of infor-
mation retention at scale but remaining scrutable enough to
understand the measure’s limitations.

We used the TextRank algorithm implemented in the py-
textrank library to extract keyphrases from research abstracts
as it is one of the top text summarization and keyword tech-
niques, demonstrated on research abstracts (Mihalcea and
Tarau 2004). The TextRank algorithm creates a lemma graph
of noun chunks and named entities (which constitute the
keyphrases) based on sentences and part-of-speech tags. It
uses this graph to assign each keyphrase a rank value mea-
suring its importance via PageRank (a type of eigenvec-
tor centrality). Using these ranks, our measure takes an ab-
stract’s keyphrases and searches for them in the text of a
mention to give an information retention “score”:

sum(ranks of abstract keyphrases found in post text)
sum(ranks of all abstract keyphrases)

The rank values in this formula for a given research pa-
per come from a single network, which makes comparisons

4newsapi.org/docs/client-libraries/python
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Numbers “September 2012”, “34 randomised controlled trials”, “95%CI = 0.03;0.22)”
Descriptive nouns “cancer type”, “different demographic and clinical characteristics”,

“adult patients”,“exercise”
Named entities “QoL”, “PubMed”

Research design and jargon “control group”, “treatment”, “’post-intervention outcome values”’

Table 2: Examples of keyphrases extracted from a paper on the effects of exercise on cancer patients.

between score values for the same paper meaningful. A per-
fect score of 1 means that all keyphrases in the abstract were
found in the text of the mention (perfect information reten-
tion); a score of 0 means that no phrases were found in the
text (complete information loss).

To better understand the keyphrases in our method, we
qualitatively coded phrases from a random sample of 20 ab-
stracts to develop a heuristic of keyphrase types: (1) num-
bers; (2) descriptive noun phrases; (3) named entities and ab-
breviations; (4) research design and jargon. Table 2 gives ex-
amples of keyphrases from a randomly chosen article from
our data set5. We found that the online mentions of this ex-
ample article typically contained “numbers” or “descriptive
noun phrases”. Further examples can be found in the Sup-
plementary Materials.

Note that while our measure is based on prior work high-
lighting the relationship between keyphrases and informa-
tion retention (Ribeiro, Gligoric, and West 2019), it is not
perfect. For example, content might use synonyms rather
than the exact phrases used in the abstract. While key sci-
entific terms are unlikely to have many synonyms, in some
cases our measure could underestimate information reten-
tion. Content could also suffer from information loss while
using phrases out of context or omitting other details. Thus,
we conducted a survey among domain experts to ensure the
validity of the measure for our particular application.

Measure Validity We conducted an IRB-approved survey
to compare our measure against human assessments of infor-
mation retention. Because this study focuses on information
from scientific research, we asked academics to respond to
our survey in order to improve confidence in the computa-
tional measure.

We recruited academics through listservs and department
contacts. We asked participants for their broad research area
(biomedical, social, and physics & engineering) and pre-
sented to them a relevant set of 5 research abstracts. Per ab-
stract, participants were given 1 to 5 pairs of online mentions
of the research (each pair being specific to a platform) and
asked to select which mention they believed had more infor-
mation loss, defined as “losing important information and/or
key facts from the original reference text” (the abstract). Par-
ticipants also had the option to answer that “I believe the two
texts have the same amount of information loss”.

Abstracts were selected manually by the research team
from the 9,675 articles with the following criteria: the ab-
stract was between 500 and 2000 characters in length, so
that participants could reasonably read it; the set of 5 articles

5This is a meta-analysis article on the effects of exercise on
cancer patients, DOI: 10.1016/j.ctrv.2016.11.010

Match High-agreement cases
Overall 62% 90%
Blogs 58% 85%
Facebook 72% 85%
News 55% 90%
Twitter 63% 100%
Wikipedia 57% 93%

Table 3: Percentage of survey responses matching with the
computational measure’s assessment, by platform.

covered a diverse range of topics within the broad research
area. Per article, we selected 1-5 platforms in our dataset that
the article was mentioned on, with the goal of having mul-
tiple survey items per platform. For each platform chosen
for a scientific article, we selected two online mentions af-
ter running the computational measure over all of them: one
from the highest resulting scores, and one from the lowest.

Our survey yielded 30 responses from 19 PhD students, 7
post-docs, 3 faculty (assistant professors), and 1 researcher
who wrote “molecular biologist” as their position. The sur-
vey contained 72 survey items (mention pairs for assess-
ment), each evaluated by five participants. We focused on
two outcomes: how the measure performed in the survey
overall and how the measure performed in the survey when
expert agreement was high (i.e., when human assessment
was more certain). Overall, 62% of responses matched our
computational measure’s assessment, compared to a ran-
dom baseline of 33%. 60% of survey items were “high-
agreement” cases, where at least 4 of 5 people had the same
response. For these cases, we found that 90% of the re-
sponses matched our computational measure, with a boot-
strapped 95% confidence interval of (86%, 94%). Table 3
shows these numbers disaggregated by platform. In sum, the
survey validates our computational measure as it performs
much better than the baseline overall, and particularly well
when expert agreement is high. It also notes how informa-
tion loss can be difficult for humans to assess more broadly.
We discuss the implications of our measure in the Limita-
tions section.

A stronger validation of our measure might present ran-
dom mentions to respondents, instead of those with high-
est versus lowest information retention scores. However, we
made this simplification given the limited availability of ex-
perts and the fact that our goal was primarily to assess if the
measure carried a strong enough signal compared to human
judgement. To counter the limited scale of expert validation,
we further tested the robustness of our findings using an al-
ternative keyphrase extraction method.
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Figure 1: From burst sequences on individual platforms to a
multi-platform sequence of bursts per article.

Blogs Faceb. News Twitter Wiki.
Min. # 7 8 8 9 7

Table 4: Weighting the daily number condition. Minimum
number of mentions required on different platforms.

Robustness Check with Alternative Method We ran
our analyses with a measure based on another well-known
keyphrase extraction algorithm, Rapid Automatic Keyword
Extraction (RAKE) (Rose et al. 2010). We found that the
most notable patterns obtained with our TextRank-based
measure are replicated with RAKE. Figures 4 and 5 include
results obtained with both TextRank and RAKE; all repli-
cated analyses are available in the Supplementary Materials.

A Burst-Based Framework
Taking inspiration from the “hop”-based analysis of infor-
mation cascades in Ribeiro, Gligoric, and West (2019) and
the bursty nature of online content (Zakhlebin and Horvát
2020; Gilbert 2013; Cheng et al. 2016), we present a burst-
based framework for evaluating information retention across
platforms “in the wild”. Rather than evaluating individual
mentions of a scientific article, we focus on when an arti-
cle receives a concentrated peak in attention, or a “burst”
of online mentions. Bursts present a strategy to bin and ag-
gregate data, providing a principled way to extract meaning-
ful chunks as units of analysis. In particular, they present
essential moments of online discussion in time about a pa-
per, reduce random noise, and facilitate computational anal-
ysis. Creating bursts for each platform also results in com-
parable units across platforms rather than individual posts of
arbitrary form. We construct burst sequences for each plat-
form per research article, following the parameters outlined
in Cheng et al. (2016). This approach identifies a burst on a
given day when the daily number of mentions of the moni-
tored content (here, a research article) meets a set minimum
count and is unusually high relative to the number of men-
tions on surrounding days.

As the distribution of mentions of research outputs across
platforms is highly skewed—with Twitter dominating in the
dataset—we make a light alteration to the conditions spec-
ified in prior work (Cheng et al. 2016) by creating differ-

Figure 2: The distribution of burst-level information reten-
tion scores that are non-zero. Scores that are ‘0’ make up
32.5% of burst-level scores.

ent weights for platforms, such that bursts on platforms with
higher barriers to posting—and thus, fewer posts overall—
require fewer posts at a given time to be considered a burst.
The new thresholds for the daily minimum mention count
condition (Table 4) are calculated by taking the logarithm of
the count of posts per platform and dividing it by the loga-
rithm of the count of posts across all platforms. We multiply
this fraction by the original threshold (10) and round up. The
result is the minimum number of daily posts required for the
platform to meet the daily minimum mention condition.

We generated 37,032 bursts encompassing 1,347,052
English-language posts. The number of bursts per platform
and the number of mentions in those bursts as well as the
percentage of text data we were able to collect for each plat-
form can be seen in Table 5. Of our 9,765 research papers,
9,616 have at least 1 burst. The median number of bursts per
research article is 3 and the mean is 3.85; this number is also
highly skewed across research papers.

After calculating bursts per platform, we created a single
“master” sequence that contains all of a research article’s
bursts in temporal order, visually demonstrated in Figure 1.
These sequences capture attention over time. Note that in the
lack of information transfer between adjacent bursts, burst
sequences could be but are not necessarily information cas-
cades (i.e., such that a burst shapes subsequent bursts). This
allows us to look across platforms that do not have direct
indicators of spread (e.g. Twitter’s Retweets) and is more
appropriate as we are interested in tracking attention to re-
search articles in the form of online mentions.

We ran our measure on each mention text and took the
median of the scores in a burst to produce the burst-level in-
formation retention score. This score represents the median
information retention per mention in a burst. An alternative
burst-level score construction might be taking the text of all
mentions in a burst as one and then computing our measure.
Although the two versions were highly correlated, the latter
could inflate the burst-level score by including keywords that
appear in just one of many mentions of a burst. We found
that the former version of the burst-level score based on me-
dians produces lower scores, but is a more faithful represen-
tation of information retention of mentions and the values
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Blogs Facebook News Twitter Wikipedia
# Bursts 2,281 1,161 4,184 29,380 26

% all mentions being in bursts 20% 12% 51% 35% 11%
# mentions in bursts (% collected) 26,652 (69%) 16,172 (89%) 130,691 (42%) 1,566,438 (77%) 631 (100%)
# English mentions in bursts (%) 22,977 (68%) 12,479 (91%) 110,059 (44%) 1,200,906 (100%) 631 (100%)

Table 5: Basic statistics of burst counts on each platform.

Figure 3: The median of burst-level information retention
scores across main discipline areas.

need only be examined relative to one another. The selected
burst-level information retention scores were skewed to the
right, as seen in Figure 2. 32.5% of the scores were zero and
the highest score was 0.89.

Results
We first contextualize our results by noting basic descrip-
tives of bursts. As shown in the top part of Table 6, burst size
(i.e. the number of mentions in a burst) varies substantially
across platforms and covers a wide range. On each platform,
burst size is highly skewed to the right. Figure 3 shows the
median burst-level information retention score across broad
disciplines categorizing articles, relying on the SCOPUS la-
bels that the Altmetric LLC data includes. In our set of 9,765
articles, 56% of articles were in Biomedical Sciences, 6% in
Social Sciences, 5% in Physical Sciences, 14% in General,
and 28.5% in Uncategorized. Physical Science, Biomedi-
cal Science, and Uncategorized articles had similar median
scores (0.029, 0.027, 0.028 respectively), lower than Gen-
eral and Social Science articles (0.039, 0.036 respectively).

Information Retention over Time
To examine information retention over time, we look at
burst sequences with a minimum length of 2. Note that co-
occurring bursts occupy the same sequential point, e.g., a
sequence with just two co-occurring bursts has a length of
one. Burst sequences range in length from 1 through 82,
with a median length of 3; 8,193 research papers have at
least two bursts. However, the distribution of bursts of a cer-
tain length is right-skewed, and we narrow our analyses to
sequence lengths such that the final burst in the sequence has
at least 200 cases, creating an upper limit of length 7.

In Figure 4, we show the trajectory in information reten-
tion score for sequences of lengths 2 through 7, specifically
calculating the median score of bursts at each position in
the sequence, for all sequences of that length. The figure

shows that for all sequence lengths, retention scores usually
continuously drop or stay the same as the prior burst in the
sequence. While the confidence intervals of adjacent bursts
overlap, there is a clear decline in early versus late bursts,
with a steeper drop in earlier positions of sequences before
leveling off. This trend is unexpected. Remember that bursts
in a sequence are simply temporally ordered: any given burst
may not be a direct offshoot from the burst coming before it,
but can refer to the original source text, the abstract. Inter-
estingly, despite the fact that references to the abstract are
possible at any burst, bursts never see jumps in their infor-
mation retention trajectory that would rival the first burst.
Though the data cannot tell us whether there is information
transfer as in an information cascade, the continued decline
in information retention across sequences suggests that later
bursts do not substantively refer back to the source material.

The first burst may hold a special role in information re-
tention trajectories, as it consistently has the highest scores
in the sequences. First bursts are also of interest because they
indicate the platform in which concentrated attention to an
article first appeared online, and thus, may set the tone for
the public discussion of the paper. The number of first bursts
across platforms can be seen in the middle section of Ta-
ble 6. In terms of the platform on which these first bursts
are distributed, Twitter again has the most bursts (making
up 67% of all of the first bursts) and is followed by news
(18%), blogs (11%), Facebook (4%), and then Wikipedia
(0%). Based on the number of posts per platform, this dis-
tribution is relatively unsurprising. However, looking at the
distribution of bursts across platforms, we might actually ex-
pect Twitter to be higher in what percent of the first bursts it
makes up (79%) and news and blogs to be lower (11% and
6%, respectively). In other words, news and blogs platforms
make up more of the first bursts than expected. Moreover,
we see that 58% of all bursts on blogs and 53% of all bursts
on news are first bursts. This means that for blogs and news,
a majority of the bursts come early on in the online discus-
sions of science.

Information Retention across Platforms
Figure 5 shows the median information retention score per
burst in each platform. This median score is highest in blogs
(0.12) followed by news (0.06) and Facebook (0.04), and
lowest in Twitter (0.02) and Wikipedia (0.02). Given that
news and blog mentions are longer and therefore more likely
to contain more keywords, their higher retention scores
are not surprising. However, these tendencies in informa-
tion retention cannot simply be attributed to differences in
length across platforms. For example, although blogs have
twice the median score as news, the median length of news
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Blogs Faceb. News Twitt. Wiki.

All bursts, size Mean 11.7 13.9 31.2 53.3 24.3
Median 10 11 23 23 11.5

First

# Bursts 1318 463 2214 8239 4
Score 0.13 0.04 0.08 0.03 0.02

% All bursts 58% 40% 53% 28% 15%
% First bursts 11% 4% 18% 67% 0%

Expected % 6% 3% 11% 79% 0%

Co-occur
# Bursts 1,709 653 1,784 1,933 4

% All bursts 75% 56% 43% 7% 15%
Score 0.12 0.04 0.08 0.02 0.05

Table 6: Burst characteristics: (1) sizes of all bursts, (2) the number of bursts first in a sequence across platforms, along with
the median scores and what percentage of all and first bursts this constitutes, and (3) the number of co-occurring bursts.

Figure 4: Trajectories of information retention scores for burst sequences of a certain length, with 95% CI around the median
for that point in the sequence. The dotted red line shows the trajectory using the RAKE-based score as a robustness check.

Figure 5: The median burst-level scores per platform.

mentions is 670 words versus 656 words on blogs. While
Wikipedia and Twitter have equally low information reten-
tion scores, Wikipedia mentions have a median length of 126
words while Twitter posts typically contain 17 words.

Given these platform differences, one might expect that
sequences starting on different platforms will follow dif-
ferent trajectories. Yet we find that this is not necessarily
the case. In Figure 6, we recreate Figure 4 stratified by the
platform on which the first burst in the sequence occurred
(using just the TextRank-based score). For sequences of all

lengths, first bursts from different platforms have different
median information retention scores, with blogs typically
exhibiting the highest scores. However, regardless of where
the sequence starts, scores drop to near-similar low levels
of information retention. The exceptions to this pattern of
“clear drop” are sequences that start on Facebook and Twit-
ter; in these cases, the first bursts already start off relatively
low and remain low throughout the trajectory. This suggests
that early platform differences do not make a difference in
the long-run for information retention. Moreover, the con-
sistently low information retention of sequences starting on
Twitter and Facebook suggests that later bursts more often
consist of social media bursts than news or blog bursts.

How do platforms matter, then, along burst sequences, be-
yond differences in median scores? To this end, we examine
co-occurring bursts, or bursts on the same article occurring
on the same day. Co-occurring bursts suggest that an article
received widespread attention that is apparent across mul-
tiple platforms. 6,083 bursts are co-occurring, representing
roughly 16% of all bursts, with a breakdown per platform
in the bottom part of Table 6. The distribution of the num-
ber of co-occurring bursts across platforms in general fol-
lows the pattern for first bursts and number of bursts more
broadly. Comparing the median scores of bursts that co-

381



Figure 6: Median trajectories of information retention scores for burst sequences starting in a given platform, using the
TextRank-based score. The error bars show the 95% confidence interval around each median value for that point in the se-
quence.

Figure 7: Median scores of bursts that are co-occurring (true)
and bursts that are not co-occurring (false), across platforms.

occur to those that do not (see Figure 7) reveals that co-
occurring bursts tend to have significantly higher informa-
tion retention scores across platforms, except in Facebook
and Twitter, where the scores are nearly the same. In other
words, bursts of attention involving multiple, non-social me-
dia platforms tend to have higher information retention.

We investigate this further in Figure 8, which shows the
median information retention score for sequences of vari-
ous lengths, stratified by how many unique platforms are
in the sequence. Importantly, for every sequence length, se-
quences with more platforms generally have higher infor-
mation retention scores. Earlier we noted that news and blog
mentions are often concentrated in first bursts. In this sense,
since news and blog mentions have a higher median infor-
mation retention, the decline in score is partly attributable to
the fact that bursts later in the sequence are increasingly on
platforms with stronger length constraints such as Twitter or
lower median scores such as Wikipedia. However, Figure 8
suggests that the platforms also matter in a broader sense,
such that online discussions held across multiple platforms
retain higher-fidelity information.

Figure 8: Median scores for sequence lengths 2-7, stratified
by how many platforms are in the sequence. Co-occurring
bursts may result in more platforms than bursts in sequences.

Discussion
With heightened discussions around scientific misinforma-
tion (Scheufele and Krause 2019; West and Bergstrom
2021), fundamental knowledge characterizing how research
is shared online—where some audiences are as likely to en-
gage with science as with lighter topics (Hargittai, Füchslin,
and Schäfer 2018)—is imperative. Research on online sci-
ence dissemination is quickly emerging (Zakhlebin and
Horvát 2020) but so far lacks an understanding of how this
information deteriorates as it is shared. To fill this gap, we
studied information retention about scientific research arti-
cles over time and across platforms via a novel computa-
tional measure applied to large-scale observational data on
online attention to nearly 10,000 research articles. As such,
our work responds directly to a recent call in the social sci-
ences to develop new approaches that enable creating mean-
ing from Web trace data (Lazer et al. 2021). Conducting
this investigation for online mentions on platforms as var-
ied as Twitter, Facebook, blogs, news sites, and Wikipedia
is an important first, and enriches decades of literature on
information diffusion (Adar and Adamic 2005; Lerman and
Ghosh 2010; Keegan, Gergle, and Contractor 2013; Gilbert
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2013; Goel et al. 2015; Cheng et al. 2014, 2016) with the
important albeit less studied aspect of cross- and multi-
platform effects (for exceptions, see Leskovec, Backstrom,
and Kleinberg 2009; Tan, Friggeri, and Adamic 2016; Za-
khlebin and Horvát 2020).

Propensity towards Information Loss Our work shows
a strong propensity towards information loss, regardless of
how many platforms are in the sequence. This is especially
true for sequences starting on news or blogs sites; sequences
starting on Facebook and Twitter generally start and stay low
in information retention. This consistent trajectory towards
low information retention raises concerns given that infor-
mation loss can often lead to miscommunication of science
online. While the identification of the mechanisms explain-
ing these patterns are beyond the scope of this paper, we pro-
pose possible explanations as important future directions.

One mechanism driving decreasing retention might be
that a research finding naturally becomes less relevant over
time; later bursts may only mention it in brief passing, in
connection to a separate topic that is the main focus of the
mention. Future work examining the centrality of a research
finding per mention can shed light on the relationship be-
tween decreasing information retention and relevance.

Another potential explanation is a platform-based one:
while Twitter (which has the lowest median information re-
tention of the platforms) makes up the majority of bursts at
all steps of a sequence, later bursts are typically more heavily
dominated by Twitter than earlier ones, which instead tend
to also include blogs, news, and Facebook bursts. Similarly,
we note that bursts that start on Twitter or Facebook already
start with relatively low information retention. This points to
the importance of platforms such as blogs and news in im-
proving high-fidelity information across bursts. Moreover, it
is possible that press releases describing research findings
increase information retention in earlier bursts, particularly
as part of news or blog content. However, a manual inspec-
tion of 100 random news and blog mentions in first bursts
yielded 1 official press release. Future work might more sys-
tematically characterize content per platform and its rela-
tionship to information retention.

Differences in Platforms Our findings indeed highlighted
differences in information retention across platforms. Blogs
performed significantly better than any other platform, with
a median information retention score twice the size of the
second best-performing platform, news. Some of the pat-
terns we saw were partly explained by the typical length
of content in the platforms: platforms with longer mentions
intuitively have higher information retention. For example,
mentions on news and blogs are longer than posts on Twit-
ter and Facebook and therefore have higher retention scores.
However, differences in platforms do not perfectly correlate
with content length: blogs, for example, had a median score
twice that of news despite the fact that the median length
of news mentions is slightly larger than blogs. Moreover,
we also saw that bursts being on certain platforms had lit-
tle effect on the information retention of adjacent bursts and
long-term information retention.

However, we also note that the tendency towards more

information loss over time was substantially less so for se-
quences starting in Facebook and Twitter, which were rela-
tively flat over time. A closer look at earlier and later bursts
on Twitter did not yield substantive differences in terms of
mention length or score. The flatter trajectory of Facebook
and Twitter bring support to the explanation that lower infor-
mation retention later on in sequences are driven by platform
differences; that is, that the lower-fidelity nature of social
media content may overall drag down information retention
over time as social media comes to dominate conversation.
Future work should test how content between platforms may
shape one another, such as testing how introducing higher fi-
delity content on one platform might affect the qualities of
content on another.

Encouraging Multi-platform Discussions The differ-
ences in platforms, particularly with the flatter trajectories
of Facebook and Twitter, emphasize that platforms matter.
For example, we found that sequences with more platforms
tended to have higher information retention scores, at all se-
quence sizes. While these patterns reveal no causality, they
do highlight that cross-platform online discussions of sci-
ence may be important for richer, more contextualized dis-
cussions of research articles. One possible explanation may
be that when multiple platforms are active at the same time,
there is a greater diversity of actors, content, media cov-
erage, and information sources for people to interact with,
which could improve the collective ability of individuals to
parse important information about scientific findings. En-
couraging multi-platform discussions of science may there-
fore promote more accurate and reliable engagement with
scientific information. For sequences that start on social me-
dia, for example, encouraging multi-platform discussions in
later sequences may instead improve information retention.
On the other hand, being on multiple platforms is a marker
of successful spread; articles mentioned on multiple venues
may have been written more appealingly and clearly, making
it easier to distill a core message and improving information
retention online overall. These point to at least two poten-
tial strategies for improving information retention: first, en-
couraging active and recurrent dissemination by researchers
across outlets beyond social media; and second, promoting
the sharing of research findings on multiple platforms con-
currently to diversify the collective voices engaged in online
discussion of the work.

Limitations and Future Work
An important limitation of our work is that information re-
tention as a construct is difficult to quantify, subject to hu-
man sense-making and judgement. However, as our mea-
sure is simple, it is also much more scrutable than com-
plex approaches—important when interpreting results given
the subjective and potentially biased nature of assessing in-
formation retention. Moreover, our measure is able to cap-
ture a reasonable estimate of how key information is retained
which is essential for large-scale analyses as reflected in our
validation survey. Our measure performs much better than
a random baseline, and does extremely well when human
experts also agree in their assessments. Results were con-
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sistent when changing the keyphrase extraction method. Re-
gardless, future work might develop more refined measures
for information retention, such as also capturing synonyms
of keyphrases.

Further, we focus on research papers that are among
the most mentioned online in two years, which is non-
representative of “typical” papers. Regardless, our sample
covers a broad set of research topics, a wide range of men-
tion counts, and an important test set for developing frame-
works to understand information retention in diffusion, as
they represent, by definition, the papers most likely to cir-
culate widely and have impact. Future work might investi-
gate “typical” trajectories in sharing science online (simi-
lar to patterns of structural virality in Zakhlebin and Horvát
2020) or, alternatively, patterns of information retention in
other types of “bursty” online content (Gilbert 2013; Cheng
et al. 2014, 2016).

We also note limitations of the dataset and framework.
Our data consisted of direct DOI mentions of research arti-
cles, which excludes comments or other related content that
may be part of the discussion of an article. This has impli-
cations in particular with respect to Twitter “threads” used
to get around character limits6. However, in our dataset the
median character length of Twitter mentions was 107, far be-
low the character limit of tweets, suggesting that mentions
are typically not threads. Indeed, examining a random sam-
ple of 100 tweets in our data yielded only 3 that were in
threads of any sort. Moreover, our method is consistent over
time and across platforms (e.g., we do not collect replies or
similar threads of Facebook, news, or blogs content).

Further, we use a simple keyword-based approach over
other techniques such as topic modeling, which might cap-
ture more context around the diffusion process and help
identify the types of discussions associated with high in-
formation retention. However, topic modeling at scale also
poses challenges such as the need for manual inspection to
label topics, especially with so many scientific fields. Such
methods also tend to be noisy when applied to short docu-
ments like social media posts. For this study, we focus—as
an initial step—on overall cross-platform information reten-
tion independent of the details of the surrounding context in
which papers are mentioned. A natural next step for future
work building on our contributions includes examining such
context and its relationship with information retention.

Finally, we do not make empirical claims to causality.
While we identify clear differences across platforms and
trends across them, we cannot say, for example, that an in-
crease in the number of platforms involved in a sequence
leads to higher information retention. In part, this is be-
cause our sequences are not necessarily information cas-
cades transferring information from one to another, but sim-
ply temporally ordered. However, this study does not set out
to disentangle particular effects, such as the “telephone ef-
fect” (Ribeiro, Gligoric, and West 2019), but instead pro-

6In 2020, the Twitter API added a “conversation ID” feature
that enables researchers to pull all tweets that are in response to
a given tweet; future work might extract threads summarizing re-
search findings from these conversations.

vides an overview of patterns over time in a multi-platform
information landscape. Exciting future research directions
include parsing out the mechanisms by which platforms af-
fect information retention. One potential such project in-
cludes a systematic analysis of the kinds of keywords found
in mentions at various points in a sequence, which may not
only articulate particular platform effects but also elucidate
why the presence of multiple platforms is linked with higher
information fidelity overall.

Ethics Statement
A serious consideration for the presentation of any quan-
titative measure is how it may incorporate biases or black-
boxes of complex human concepts. As a difficult construct to
quantify, information retention is a par excellence example
of this, as noted in our discussion of the validation survey.
In order to prevent our proposed quantification from becom-
ing misapplied, we selected the most scrutable version of it,
such that interpretation and limitations of what the measure
suggests are clear. This simplicity also helps undermine un-
reasonable extrapolations in arguments about the quality of
information retention of content when applied beyond this
work. Additionally, research utilizing posts from sites con-
taining content from individuals, such as social media and/or
blog users, who may not be aware that their content is used
for research also encounter important concerns about the
integrity of users’ privacy. In our work, we consider only
public-facing content accessible by any arbitrary individual.
In addition, we only use posts that were still available and
not deleted by the users at the time of our study. Finally,
our results describe user behavior only in aggregate and at a
scale that leaves individual posts unidentifiable.

While minimizing potential risks, the expected benefits of
our contributions to the understanding of information reten-
tion in the diffusion of scientific findings across platforms
are substantial and foundational for a better appreciation of
intentional and unintentional information distortion online.
Our findings not only point to general patterns of informa-
tion retention that might inform media strategies, such as
deliberate dissemination across multiple channels, but also
are generative in raising potential mechanisms for improv-
ing the fidelity of information in online discussions to be
tested and examined for causality in future studies.

Conclusion
As scientific findings spread on the web, they are discussed
across multiple platforms, shaping what information is re-
tained. Accurately communicating science online has criti-
cal implications for policymakers, researchers, and the pub-
lic alike, but the difficulty in multi-platform data collection
has made it extremely challenging to unpack how crucial in-
formation is retained in a multi-platform information land-
scape. In this study, we utilized a large-scale observational
dataset that leverages unique identifiers of scientific work
(DOIs) to track content across different platforms, and ex-
amined information retention in bursts of attention to scien-
tific articles over time. Our study offers three main contri-
butions. First, we provide a view of how online discussions
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of scientific findings lose information “in the wild”, show-
ing a strong propensity for low information retention. This
underscores an important need to devise strategies to miti-
gate such loss. Second, to this end, we show that scientific
articles discussed on more platforms tend to have higher in-
formation retention. This suggests that multi-platform dis-
cussions may help improve information retention and high-
lights future directions to untangle the mechanisms driving
this trend. More broadly, this dynamic also highlights that
multi-platform work is critical to understanding how on-
line activity inherently shapes societally-relevant informa-
tion. Finally, we provide a simple, scrutable measure that
can reasonably evaluate information retention at scale and a
burst-based framework for applying it to study diffusion in
science and beyond. Along with our findings, the measure
and framework lay the foundations for further work evaluat-
ing the quality and fidelity of information for various types
of online content. In a time with ongoing debates about what
is factual, understanding how information communicated on
the web changes as it spreads over time and across platforms
is a pressing societal challenge.
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