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Abstract

As influencers play considerable roles in social media mar-
keting, companies increase the budget for influencer market-
ing. Hiring effective influencers is crucial in social influencer
marketing, but it is challenging to find the right influencers
among hundreds of millions of social media users. In this pa-
per, we propose InfluencerRank that ranks influencers by their
effectiveness based on their posting behaviors and social rela-
tions over time. To represent the posting behaviors and social
relations, the graph convolutional neural networks are applied
to model influencers with heterogeneous networks during dif-
ferent historical periods. By learning the network structure
with the embedded node features, InfluencerRank can derive
informative representations for influencers at each period. An
attentive recurrent neural network finally distinguishes highly
effective influencers from other influencers by capturing the
knowledge of the dynamics of influencer representations over
time. Extensive experiments have been conducted on an In-
stagram dataset that consists of 18,397 influencers with their
2,952,075 posts published within 12 months. The experimen-
tal results demonstrate that InfluencerRank outperforms ex-
isting baseline methods. An in-depth analysis further reveals
that all of our proposed features and model components are
beneficial to discover effective influencers.

Introduction
Influencers are known as individuals who influence a mag-
nificent number of people on social media. This, in turn, has
attracted great attention to marketers since influencers and
their huge fan bases can be considered as marketing chan-
nels and audiences, respectively (De Veirman, Cauberghe,
and Hudders 2017; Evans et al. 2017). More recently, com-
panies have started hiring influencers to advertise products
for targeted audiences and expand brand awareness.

Due to the rapid growth of social media and influ-
encer marketing, discovering effective influencers on so-
cial media has become increasingly important (Riquelme
and González-Cantergiani 2016; Kang et al. 2018; Kim
et al. 2020). For measuring user influence on social me-
dia, well-known metrics, such as the numbers of followers,
retweets, and mentions, have been widely applied (Bakshy
et al. 2011; Segev, Avigdor, and Avigdor 2018). In addition,
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Figure 1: The number of likes on posts published by two
influencers across the time. Although two influencers have
similar numbers of followers, the average numbers of likes
(i.e., dotted lines) are significantly different. Additionally,
the number of likes dynamically changes over time.

information propagation (Romero et al. 2011; Silva et al.
2013; Kempe, Kleinberg, and Tardos 2003), social connec-
tions (Li, Lai, and Chen 2011), network centrality (Chen
and Teng 2017), transparency (Kim, Jiang, and Wang 2021),
and multi-relational network (Ma, Liu, and Chi 2018) have
been used to identify influencers on social media. Among
the various measures, the effectiveness of influence (Liu et al.
2015), often measured by the engagement rate (De Veirman,
Cauberghe, and Hudders 2017; Kim and Han 2020; Kim
et al. 2021; Lou and Yuan 2019; Comcowich 2018), has been
considered as crucial in identifying effective influencers es-
pecially in the marketing domain. The engagement rate can
be calculated as the ratio of the average number of likes to
the number of followers, which essentially shows how much
audiences engage with the corresponding influencer.

To discover the effective influencers (i.e., influencers with
high engagement rates), previous work used posting behav-
iors of influencers or characteristics of their posts. For exam-
ple, Romero et al. (2011), Liu et al. (2015), and Feng et al.
(2018) utilized the social networks among influencers; Li,
Lai, and Chen (2011) analyzed post contents to derive sta-
tistical features in identifying influencers. However, none of
these studies jointly and comprehensively modeled posting
behaviors, post characteristics, and social networking behav-
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iors, which may result in a biased or partial representation
of the effectiveness of influencer. For example, as shown
in Figure 1, two influencers have similar numbers of fol-
lowers hence they may be considered as having similar ef-
fectiveness, but their actual engagement rates are shown to
be significantly different. Although some methods applied
the PageRank algorithm on influencer-content graphs (Silva
et al. 2013) and independently derived the features of in-
fluencers and posts (Liu et al. 2015), the PageRank algo-
rithm can be biased to a certain type of nodes (Brezinski and
Redivo-Zaglia 2006) when the relations between influencers
and posts are ignored by independent features.

To address this issue, we propose to use a heterogeneous
network to model the effectiveness of influencers with their
posting behavior, social networking behavior, and post char-
acteristics together. In addition, considering historical be-
havioral patterns can be further beneficial to discover ef-
fective influencers since posting behavior of an influencer
can change dynamically over time. For instance, as shown in
Figure 1, although an influencer does not receive many likes
in the most recent time period, he/she may receive many
number of likes in the future if he/she was used to get great
attention in the past. Moreover, analyzing time-varying be-
havior patterns can provide more evidence on the robustness
of an influencer. For example, the unstable performance (or
effectiveness) of an influencer over time may not be desir-
able even if he/she satisfies the performance in the most re-
cent time period. Hence, taking such time-varying behavior
patterns into account for discovering effective influencers is
essential. However, most of the prior studies only focused
on the most recent information without considering the his-
torical patterns of influencers.

In this paper, we propose InfluencerRank, a learning
framework, that discovers effective influencers in social me-
dia by learning historical behavioral patterns of influencers.
For comprehensively representing the effectiveness of an
influencer, we build a heterogeneous information network
that consists of influencers, hashtags, user tags, and im-
age objects used by influencers for each historical time
period (Yang et al. 2020; Zhang et al. 2019). To learn
the complex posting behaviors, social networking, and post
characteristics of each influencer, we apply graph convolu-
tional networks (GCNs) (Kipf and Welling 2016) with well-
designed influencer features, thereby deriving the influencer
representation at a certain period. Based on the influencer
representations over different historical time periods, the at-
tentive recurrent neural network is proposed to learn the se-
quential and temporal behaviors to derive an ultimate repre-
sentation. Finally, a learning-to-rank framework ranks a list
of influencers to discover the ones who are more effective
than others.

We summarize our contributions as follows:
• To the best of our knowledge, this is the first attempt to

rank influencers with their effectiveness by learning their
historical behavioral patterns in social media marketing.
We believe our model can be used for influencer recom-
mendations that help companies to recruit a set of effec-
tive influencers to boost the advertising effect in social
media.

• The InfluencerRank uses the graph convolutional net-
works over general social media features to learn the
posting behavior of the influencers as well as the charac-
teristics of their posts, thus it can be applied to any social
media to discover effective influencers. Besides, recur-
rent neural networks are also applied to model sequential
and historical behaviors of influencers over time. We con-
duct experiments on a real-world dataset collected from
Instagram (Kim et al. 2020), one of the most popular so-
cial media for influencer marketing (Nanji 2017). The re-
sults demonstrate that InfluencerRank outperforms other
existing methods for identifying effective influencers.

• Our analysis further reveals that the image object nodes
have more impact on discovering effective influencers
than other types of nodes since they can densely connect
influencers thereby removing noises in the network. We
also find that user reactions and visual perception of im-
ages are important features to find effective influencers.

• We evaluate our proposed model over groups of influ-
encers with different numbers of followers, and highlight
that InfluencerRank shows effective and robust ranking
performances across various groups of influencers.

Related Work
Influence Prediction in Social Networks
To find influencers in social networks, most studies rely on
social media features to measure the influence. For example,
the number of followers, posts, reposts, and mentions are
well-known metrics to measure the influence of a user (Bak-
shy et al. 2011; Subbian and Melville 2011). Based on the
measures, Bakshy et al. (2011) use the regression tree model
and Subbian and Melville (2011) aggregate rank results to
rank influencers, respectively. Romero et al. (2011) propose
the passivity of nodes to measure how likely the informa-
tion is propagated in the social networks, and then apply
the PageRank to rank the users. Liu et al. (2015) consider
the time domain over the user trust network in the proposed
framework to classify influencers into one of three cate-
gories, emerging influencers, holding influencers, and van-
ishing influencers. In addition to social network features,
some studies propose to use machine learning with statis-
tical features. Li, Lai, and Chen (2011) extract network-
based, content-based, and user activeness-based statistical
features, e.g., the number of followers, and length of posts,
to predict the influence of users. Segev, Avigdor, and Avig-
dor (2018) use simple statistics of posts and users, e.g., the
number of likes, comments, followers, and posts, to mea-
sure the user influence using a regression model. Some pre-
vious works, on the other hand, exploit graphical informa-
tion. Zhang et al. (2015) exploit the social influence locality
to predict retweet behaviors. Qiu et al. (2018) utilize mini-
batches of sub-graphs and apply the attention mechanism to
predict the influence of users on social networks. Chen et al.
(2019) propose recurrent convolutional networks to consider
temporal effect on information cascade prediction. However,
most previous works fail to consider temporal dynamics in
the social relationships and characteristics of users.

483



Graph Convolutional Recurrent Networks

Graph convolutional networks (GCNs) (Kipf and Welling
2016) are the neural network architecture for graph-
structured data. GCNs deploy spectral convolutional struc-
tures with localized first-order approximations so that the
knowledge of both node features and graph structures can
be leveraged. However, while real-world data that can be
modeled as graphs dynamically changes over time, tempo-
ral information cannot be easily captured from GCNs. To
learn the temporal dynamics of structural graphs, previous
studies suggest to combine GCN and recurrent neural net-
works (RNNs). Seo et al. (2018) propose the models that (i)
stack up graphs to make RNN inputs and (ii) consider convo-
lutions in RNNs, which can learn a sequence of structural in-
formation. They find that each model outperforms the other
models depending on applications such as video prediction
and natural language modeling. Pareja et al. (2020) propose
another approach to capture graph dynamics. Instead of us-
ing a sequence of graph embedding as inputs of RNN, they
first use RNN to acquire the knowledge of network param-
eter dynamics. This approach can benefit in a case where a
node dynamically appears and disappears. This paper pro-
poses to apply attentive recurrent networks over the tem-
poral node representations by taking a heterogeneous net-
work that consists of influencers, image objects, hashtags,
and user tags over time. Our model can effectively learn tem-
poral graph representations by estimating the importance of
hidden states for certain time periods.

Problem Statement

In this section, we formally define the effectiveness metric of
an influencer and then formulate the problem of discovering
effective influencers.

Definition 1. Engagement rate is a widely-used metric in
influencer marketing that shows how much audiences ac-
tively engage with an influencer (De Veirman, Cauberghe,
and Hudders 2017; Kim et al. 2021; Kim and Han 2020;
Lou and Yuan 2019; Comcowich 2018). Given an influencer
u, the engagement rate of the influencer at time t is calcu-
lated as follows:

Et
u =

ltu
fu

(1)

where fu is the number of followers who follow the influ-
encer u and ltu is the average number of likes on content
posted by the influencer u at timestamp t.

Based on the definition of influencer effectiveness, we in-
troduce the influencer ranking problem. Let U be the set of
influencers. For each timestamp t, we suppose that an in-
fluencer u has published a set of posts P t

u. Given the set
of influencers U and their posts published until time k,
{P t

u | 1 ≤ t ≤ k}, the goal of this work is to discover
influencers with high engagement rates at time k by ranking
all influencers u ∈ U so that Ek

ui
is greater than Ek

uj
if the

influencer ui is ranked higher than the influencer uj .

Notation Description
Et

u the engagement rate of an influencer u at time t.
ltu the average number of engagements on contents

posted by the influencer u at time t.
f t
u the number of followers for an influencer u at

time t.
U the set of influencers.
P t
u the posts published by the influencer u at time t.

Gt the heterogeneous network for time t with the
node features Xt and the adjacency matrix At.

Ât Normalized adjacency matrix transformed from
At.

d the number of dimensions for embedded node
features.

D the diagonal degree matrix of At.
r the number of hidden dimensions in GCNs.

F (i) the outputs of the i-th GCN layer.
W (i) the weight matrix between F (i) and F (i+1).
Rt the GCN-encoded representation for time t.
Ht the hidden states in the RNN for time t.
S the list of hidden states in the RNN over time.
τt the importance weight for Ht.

Fa(·) the fully-connected layer for deriving τt.
αt the normalized importance weight for Ht.
cu the final representation of the influencer u.
ŷu the predicted engagement score for the influ-

encer u.
F(·) the fully-connected layers for inferring ŷu.

Table 1: Summary of notations and their descriptions.

Influencer Ranking Model Framework
In this section, we propose InfluencerRank that learns the
temporal dynamics of the engagement rates of influencers
to automatically discover highly effective influencers. Fig-
ure 2 shows the overall framework of the proposed Influ-
encerRank. The framework takes a series of influencer so-
cial networks as input, where each network is composed of
influencers and different entities, including but not limited
to image objects, hashtags, and other users in social me-
dia. The graph convolutional networks (GCNs) are then ap-
plied to the input social networks to derive appropriate node
representations that capture social relationships and posting
characteristics of influencers at a certain time. The GCN-
encoded representations across different times are then fed
into a recurrent neural network to learn from the sequence of
the node representations. The attention mechanism is then
applied to the whole sequence of representations to finally
derive the effectiveness scores of candidate influencers and
rank them for discovering effective influencers.

Heterogeneous Information Networks
To represent the dynamics of the engagement rates on a se-
quence of time, we build k heterogeneous networks G =
{G1, G2, · · · , Gk} based on the influencers and other rel-
evant entities. Hence, Gt can further characterize the rela-
tionships of influencers and their posting behaviors at time
t.
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Figure 2: The overall framework of the proposed InfluencerRank.

Heterogeneous Nodes and Embedded Features We
build a heterogeneous network Gt for time t with four dif-
ferent types of nodes, including influencers, hashtags, image
objects, and other users in social media. Given an influencer
u, we extract all of the hashtags {hi}ai=1 ∈ H and men-
tioned users (i.e., user tags) {vj}bj=1 ∈ V from posts P t

u,
where a and b indicate the number of extracted hashtags and
mentioned users, respectively. Note that the mentioned users
can be either influencers, brands, or other normal users. In
addition, the categories of objects shown in the posted im-
ages {ok}ck=1 ∈ O are also considered as nodes. Since each
type of node has unique features, we denote the node fea-
tures of influencers, mentioned users, hashtags, and object
categories in images as XU

t , XV
t , XH

t , and XO
t , respec-

tively. We then represent embedded features of each node as
Xt = [XU

t ;XV
t ;XH

t ;XO
t ] ∈ RN×d, where N is the to-

tal number of all four types of nodes and d is the number of
embedded node features.

Edge Construction and Adjacency Matrix The edges in
the heterogeneous network indicate the interactions between
entities behind nodes. For example, if an influencer men-
tioned the hashtag #makeup and posted an image of cos-
metic products, the influencer node will be connected to the
node of the #makeup hashtag and the node of the cosmetic
image object. Given a timestamp t, we make a sparse ad-
jacency matrix At ∈ RN×N , where At

ij = 1 indicates a
connection between the i-th and j-th nodes.

Finally, a set of k heterogeneous networks G with the sets
of node features and adjacency matrices can be constructed
as follows:

G = {G1, G2, · · · , Gk},
where Gt = (Xt,At) indicates both the node embedded
features Xt and the heterogeneous network structure At at
time t.

Graph Convolutional Networks
For the heterogeneous network Gt of each time t, our
proposed InfluencerRank applies Graph Convolutional Net-
works (GCNs) (Kipf and Welling 2016) to generate node

representations over time. GCNs first generate a normal-
ized adjacency matrix Ât by transforming the adjacency
matrix At with the diagonal degree matrix D as Ât =

D− 1
2AtD

− 1
2 . GCNs then stack multiple GCN layers where

each layer takes outputs of the previous layer and performs
nonlinear transformation to propagate information through
different layers. The i-th layer in GCNs then outputs F (i) ∈
RN×r as follows:

F (i) = σ
(
ÂtF

(i−1)W (i−1)
)
,

where r is the number of hidden dimensions in GCNs,
F (i−1) is the outputs of the previous layer, W (i−1) is a
matrix of trainable weights, and σ(·) is a nonlinear activa-
tion function. We use Xt for F (0) as the input of the first
GCN layer. The final output of the GCNs Rt at time t can
be represented as follows:

Rt =
[
F (1),F (2), . . . ,F (e)

]
,

where e is the number of layers in GCNs.
Finally, we can obtain a sequence of GCN-encoded node

representations, [R1, . . . ,Rk], to implicitly represent the
knowledge about influencers over time.

Attentive Recurrent Neural Networks
Learning Graph Dynamics Based on the sequence of
GCN-encoded node representations, [R1, . . . ,Rk], Influ-
encerRank applies Recurrent Neural Networks (RNNs) to
the model framework. More specifically, we employ Gated
Recurrent Units (GRUs) (Cho et al. 2014), which use up-
date gate and reset gate inside the unit to carry information
flow over many time periods, to capture long-term temporal
dependencies from the heterogeneous networks. Each GRU
takes hidden states from the previous unit and the GCN rep-
resentations as input and then outputs hidden states of the
current time. More formally, the hidden states at time t, Ht

is computed as follows:

Ht = (1− zt)Ht−1 + ztH̃t (2)
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where zt is an update gate at time t and H̃t is the candidate
state at time t. The candidate state is updated as follows:

H̃t = tanh(W · [rt ⊙Ht−1, Rt]) (3)

where rt is an reset gate at time t, ⊙ is an element-wise
multiplication, and Rt is the GCN representations at time t.
Finally, InfluencerRank obtains the whole states of GRUs as
follows:

S = [H1,H2, . . . ,Hk] .

Attention over Time To acquire the final influencer rep-
resentations, InfluencerRank applies the attention mecha-
nism (Bahdanau, Cho, and Bengio 2014) to the whole state
embeddings derived from GRUs S. The attention mecha-
nism allows InfluencerRank to learn the dynamics of the
engagement rates by taking into account the importance of
time periods.

For each timestep t, InfluencerRank estimates the impor-
tance weight of the corresponding state embedding by ap-
plying a projection as:

τt = tanh (Fa (Ht)) (4)

where Fa(·) is a fully-connected layer; tanh(·) is the activa-
tion function. We then compute the weights of each timestep
by using a softmax function as:

αt =
exp(τt)∑k
i=1 exp(τi)

(5)

Finally, InfluencerRank derives the ultimate representation
of candidate influencers by using the weighted sum as fol-
lows:

c =

k∑
i=1

αi ·Hi (6)

Engagement Score Estimation
For an influencer u, InfluencerRank takes the corresponding
ultimate representation cu as the input and then predicts an
engagement score ŷu that is proportional to the engagement
rate Ek

u as follows:

ŷu = Fc (ReLU (Fb (cu))) (7)

where a non-linear transformation is carried out in a fully-
connected layer Fb(·) with the ReLU activation function and
the engagement rate is estimated in another fully-connected
layer Fc(·).
List-wise Ranking and Optimization InfluencerRank
treats the task as a ranking problem and optimizes the rank-
ing performance with a list-wise learning-to-rank frame-
work (Xia et al. 2008). Suppose Z is the set of features
for influencers to be ranked; Y is the space of all possible
rankings. During training, we sample m labeled influencers
from the whole training space as an i.i.d. candidate ranked
list S = {(Zi,yi)}mi=1 ∼ PZY , where PZY is the unknown
target joint probability distribution of Z and Y . Therefore,
the corresponding loss LS can be considered as:

LS(ŷ) =
1

m

m∑
i=1

l(ŷ(Zi),yi) (8)

where l(ŷ(Zi),y) is the 0-1 loss between ŷ(Zi) and the
rank in y; yi denotes the ground-truth ranking such that

L(ŷ(Zi),y) =

{
1 , if ŷ(Zi) ̸= y
0 , if ŷ(Zi) = y

(9)

Node Features
In this subsection, we describe node features in the heteroge-
neous network. To understand the relationship between the
engagement rate of an influencer and the characteristics of
the corresponding influencer, we introduce six types of node
features, including node type, profile, image, text, posting,
and reaction features.Note that most of the features are only
applicable for influencer nodes while the remaining nodes
(e.g., hashtags, image objects) hold zeros for the inapplica-
ble features. For the feature engineering, we deploy the av-
erage, median, minimum, and maximum values for the fea-
tures that need to be aggregated with statistics.

Here, we briefly introduce the six categories of features
used in this paper as follows.
• Node type features. The one-hot coded feature that in-

dicates one of the four node types, including influencers,
other users, hashtags, and image objects.

• Profile features. For each influencer node, we exploit
the numbers of followers, followees, and posts which
are the most commonly used metrics to measure user
influence in social networks (Riquelme and González-
Cantergiani 2016). Additionally, we consider a category
of influencers from eight influencer categories defined in
the previous study (Kim et al. 2020).

• Image features. The previous study (Gelli et al. 2015)
showed that the characteristics of images on social media
posts affect its popularity. In addition to the image ob-
jects which are considered as nodes in the heterogeneous
network, we add the attributes of visual perception of
the images to understand how influencers create images.
We compute the brightness, colorfulness (Hasler and
Suesstrunk 2003), and color temperature of the posted
images based on their RGB values.

• Text features. To understand how textual usage of influ-
encers affects the engagement rate, we retrieve various
text features. More specifically, we use the numbers of
hashtags, user tags, and emojis that are widely used func-
tions on social media, and the length of captions which
can represent how much detailed information is in the
caption (Hessel, Lee, and Mimno 2017). Moreover, we
also calculate the sentiment scores of captions to learn
how positive or negative emotions are carried through the
captions by using VADER (Gilbert and Hutto 2014).

• Posting features. The features in this category can pro-
vide information about how influencers use social media
from various aspects. We first exploit the portion of the
number of posts in one of the ten post categories (Kim
et al. 2020) to the total number of posts to understand the
posting behavior of influencers. In addition to the post
category rate feature, we also examine the portion of the
number of advertising posts to the total posts published
by an influencer; posting too many paid advertisements
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can show negative impacts on the popularity (Evans et al.
2017; Yang, Kim, and Sun 2019). We also consider the
feedback rate and posting interval, which are the mea-
sures of the interaction with their followers and active-
ness, respectively. The feedback rate is calculated as the
ratio of the number of posts that contain the influencers’
responses to the user comments to the number of total
posts. The posting interval is the average time gap be-
tween posts that are in chronological order.

• Reaction features. We use the user comments to gener-
ate the user reaction feature. Specifically, we compute the
sentiment scores of comments that are written by audi-
ences of the influencers’ posts. Note that we do not con-
sider the number of likes and comments as node features
since it can directly imply the engagement rates of influ-
encers.

Experiments
In this section, we conduct experiments to evaluate the per-
formance of InfluencerRank compared with other baseline
methods. We also analyze the experimental results to under-
stand the importance of each feature to find influencers with
high engagement rates.

Experimental Dataset
Dataset Construction To evaluate the proposed Influ-
encerRank, we use the Instagram influencer dataset (Kim
et al. 2020). The dataset includes profiles of influencers,
and their posts, including both images and all meta-data.
We only keep the posts that were published in the range of
January 1st, 2017 and December 31st, 2017, to build tem-
poral influencer networks. As a result, the dataset consists
of 18,397 influencers and 2,952,075 posts. For the experi-
ments, we split the dataset into the training dataset, which
contains posts from January to November, and the testing
dataset that contains posts published in December.

Heterogeneous Network Construction To build the tem-
poral heterogeneous networks, we first divide the whole
dataset into 12 subsets by one-month intervals. Note that
we conduct experiments to analyze ranking performances
across different temporal window sizes, thereby having the
proper time intervals. We then extract all hashtags and user
tags from the post captions and detect objects from the im-
ages. As a consequence, 1,151,082 unique hashtag nodes,
532,468 other user nodes, and 1,000 image object nodes are
found across the networks and connected to the correspond-
ing influencer nodes. To further reduce noises in the dataset,
we remove every auxiliary node (i.e., hashtags, other users,
and image objects) with only a single edge while edges with
normalized frequencies less than 0.01 are also discarded.
After the pruning process, 18,397 influencers, 20,744 other
users, 67,695 hashtags, and 996 image objects are in the net-
works (i.e., 107,832 nodes), and a total of 15,090,225 edges
remain across the networks.

Experimental Settings
Evaluation Metrics Based on the definition, we first com-
pute the engagement rates for all influencers in across all

Relevance Engagement rate E(·) Number of Influencers
5 E(·) ≥ 0.10 1,274 (6.92%)
4 0.10 > E(·) ≥ 0.07 1,678 (9.12%)
3 0.07 > E(·) ≥ 0.05 2,321 (12.62%)
2 0.05 > E(·) ≥ 0.03 4,509 (24.51%)
1 0.03 > E(·) ≥ 0.01 6,882 (37.41%)
0 0.01 > E(·) 1,734 (9.42%)

Table 2: Statistics of influencers in the dataset across differ-
ent relevance levels and criteria for the engagement rates.

timesteps as the ground truths. Note that the average engage-
ment rate is 0.038 and the median engagement rate is 0.029.
We utilize two metrics to evaluate the performance of rank-
ing influencers.
• Normalized Discounted Cumulative Gain (NDCG)

(Järvelin and Kekäläinen 2017): First, we divide all of
the influencers into six groups with different thresholds
on the engagement rates and relevance levels from 0 to 5.
Table 2 further shows the statistics of influencers in the
dataset across different relevance levels and criteria for
the engagement rates. We then treat the relevance levels
as ground truths to evaluate the ranking performance with
the metric of NDCG.

• Rank-Biased Precision (RBP) (Moffat and Zobel 2008):
To avoid losing valuable information while converting the
engagement rates to the six relevance levels, we directly
use the engagement rates with the metric of RBP. We set
the probability p as 0.95 to measure rank quality.

Implementation Details For the hyperparameter tuning,
we use a validation set which contains posts published by the
18,397 influencers in January 2018. Since our model is op-
timized with the validation set, we can avoid potential infor-
mation leakage from the testing set. In order to fine-tune the
model, we train the proposed neural network with different
sets of parameters, including the number of GCN layers and
its dimensions, the size of influencer list for ranking, batch
size, learning rate, and dropout probability. After tuning the
model, we set the numbers of dimensions of the graph em-
beddings and GCN features as 128, and the number of GCN
layers as 2. Each batch contains 1,024 lists of influencers,
and each list includes 10 randomly selected influencers for
list-wise learning. The learning rate and the dropout proba-
bility are set as 0.001 and 0.5, respectively.

Baseline Methods We compare the performance of Influ-
encerRank with nine baseline methods in three different cat-
egories, including User, Ranking, and Graph.
• User baselines: The baseline methods in this category

exploit information on social media to measure the pop-
ularity of users with certain features. Since user popu-
larity is often to be considered as an important factor
in influencer hiring (De Veirman, Cauberghe, and Hud-
ders 2017; Lou and Yuan 2019; Casaló, Flavián, and
Ibáñez-Sánchez 2018), we develop three baseline meth-
ods including user popularity (UP) (Bakshy et al. 2011),
post popularity (PP) (Mazloom et al. 2016), user activ-
ity (UA) (Li, Lai, and Chen 2011).
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Method RBP NDCG@K Time
1 10 50 100 200 (sec)

UP 0.025 0.800 0.436 0.413 0.406 0.368 347
PP 0.028 1.000 0.519 0.465 0.442 0.425 295
UA 0.024 0.800 0.518 0.494 0.438 0.436 330
LN 0.026 1.000 0.610 0.511 0.465 0.441 481
LM 0.031 1.000 0.648 0.546 0.493 0.477 563

GCRN 0.028 1.000 0.629 0.557 0.513 0.467 612
DeepInf 0.031 1.000 0.697 0.567 0.549 0.512 525
CasCN 0.033 1.000 0.751 0.645 0.572 0.543 1109
EGCN 0.038 1.000 0.812 0.679 0.616 0.577 1483

InfluencerRank 0.043 1.000 0.864 0.720 0.661 0.614 648

Table 3: RBP, NDCG@K scores, and training time of the proposed InfluencerRank and the nine baseline methods.

• Ranking baselines: We consider two ranking mod-
els, ListNet (LN) (Cao et al. 2007) and Lamb-
daMART (LM) (Burges, Ragno, and Le 2007). The rank-
ing baseline methods use the same features as our pro-
posed model.

• Model baselines: The baseline methods in this category
implement graph neural networks (GNNs) based learn-
ing models. Note that the applied features of Influencer-
Rank and graph baselines are identical so that we can
fairly evaluate the model novelty and capability for the
ranking task. We develop GCRN (Seo et al. 2018), Deep-
Inf (Qiu et al. 2018), CasCN (Chen et al. 2019), and
EGCN (Pareja et al. 2020).

Experimental Results
Table 3 shows RBP, NDCG scores, and training time of In-
fluencerRank and the nine baseline methods for discover-
ing influencers with high engagement rates. All of the three
methods in the user baselines, which exploit the social me-
dia features, obtain low ranking results. This suggests that
only considering social media features is insufficient to dis-
cover effective influencers. The ranking baseline methods,
on the other hand, show better ranking performance com-
pared to the user baseline methods since they use our pro-
posed features. It demonstrates that our proposed features
are very useful to capture the characteristics of influencers,
thereby discovering effective influencers. Next, most of the
graph baseline methods outperform the user baselines and
ranking baselines. More specifically, among the graph base-
line methods, GCRN (Seo et al. 2018) shows limited ranking
performance improvement since it only resorts to temporal-
spatial structures of graphs without taking into account the
node features. DeepInf (Qiu et al. 2018) demonstrates better
ranking performance than GCRN by exploiting the graph
convolutional networks that take advantage of the network
structures of different entities while the features in different
aspects provide sufficient knowledge to describe both influ-
encers and other entities in the graph. Both CasCN (Chen
et al. 2019) and EGCN (Pareja et al. 2020) further improve
performance by applying recurrent neural networks to adja-
cency matrices of temporal graphs. This suggests that the
learning dynamics of graph structures with node features
over time is beneficial in discovering effective influencers.

Finally, our proposed approach, InfluencerRank, outper-

forms all of the baseline methods. This is because our model
derives informative influencer representations over time by
using the graph convolutional networks and the attentive
neural network, and effectively learns the dynamics of in-
fluencer characteristics and engagement rates. The results
also show that InfluencerRank is able to learn the latent in-
fluencer representations in a reasonable amount of training
time compared to the other baseline methods. CasCN and
EGCN, on the other hand, have significantly longer train-
ing time than InfluencerRank. This is probably because the
proposed framework successfully learns the importance of
hidden states in the RNNs by applying attention while other
baseline methods combine RNNs with GCNs without taking
the importance of each temporal graph into account.

Analysis and Discussions
In this section, we conduct six analyses to understand the
importance of (i) the temporal window size, (ii) the tempo-
ral information, (iii) the model components, (iv) the type of
RNNs, (v) the heterogeneous networks, and (vi) the input
features. We then evaluate the performance of Influencer-
Rank on various sets of influencers which are grouped by
the size of audiences.

Analysis on Temporal Window Size
We first investigate the effect of different temporal window
sizes for heterogeneous network construction. To that end,
we split the training dataset which has posts in 11 months
period into sub-datasets by five different temporal window
sizes including 1 week, 2 weeks, 1 month, 2 months, and
3 months. Note that we use the same testing dataset across
the five different window sizes for consistent performance
comparison. The RBP and NDCG@200 scores of the In-
fluencerRank over the different temporal window sizes are
shown in Figure 3. We find that the model trained with the
networks divided by 1-month intervals shows the best rank-
ing performance whereas the model trained with the 1-week
temporal window has the lowest ranking scores. Influencer-
Rank loses 5.7% performance on NDCG when the model is
trained with the 1-week window size compared to the model
trained with the 1-month window size. This suggests that the
heterogeneous networks of the models, which are trained
with temporal window size shorter than 1-month, have in-
sufficient information to learn the dynamics of engagement
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Figure 3: Ranking performance over different temporal win-
dow sizes. InfluencerRank trained with the 1-month window
size shows the best performance.
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Figure 4: Ranking performance on different lengths of
timestamps. InfluencerRank achieves higher ranking scores
with longer history.

rates. We also observe that the ranking performance grad-
ually decreases while we use the longer temporal window
size. This implies that the model trained with a large win-
dow size fails to take into account the variance of engage-
ments by using the average like counts of all posts in each
sub-dataset. The analysis results also demonstrate that learn-
ing the temporal dynamics of the engagement rates is very
important to find effective influencers.

Analysis on Temporal Information
We next evaluate the ranking performance of the proposed
model by using the different number of temporal input net-
works for training the model. Figure 4 shows RBP and
NDCG@200 scores of the InfluencerRank over the num-
ber of temporal graphs. Note that the model uses the most
recent temporal graphs. For example, a model trained with
two temporal graphs learns two networks in October and
November in our dataset. We observe that the performance
significantly drops when InfluencerRank obtains insufficient
historical information. InfluencerRank loses 15% perfor-
mance on NDCG if the model uses only one graph com-
pared to the model that considers all temporal graphs. The
result confirms that only considering the most recent net-
work degrades the performance since the engagement rates
of influencers vary over time. We also find that as the num-
ber of temporal networks increases, the model has gradually
less performance gain.

0 2 4 6 8 10 12 14 16

NDCG@200 Loss (%)

At tent ion

GCN

RNN

Figure 5: Performance losses after removing each of the
model components. The RNNs are the most important com-
ponent to discover effective influencers.

Analysis on Model Components
The proposed model consists of three major components,
including the graph convolutional networks, the recurrent
neural networks, and the attention network. We conduct
an ablation study by excluding each component from the
model framework to understand the importance of model
components. Figure 5 shows the performance losses of
NDCG@200 scores over the three model components. We
find that the model which excludes the RNN component
has significant performance loss compared to the full model.
This suggests that disregarding to learn sequential temporal
information leads to performance degradation since engage-
ment rates of an influencer change over time. The model that
discards the GCN component also shows large performance
loss. This is because the model fails to learn structural infor-
mation with embedded node features. This demonstrates that
learning social relationships of influencers with other users,
tags, and image objects plays an important role in discover-
ing effective influencers. We observe that the attention com-
ponent has relatively less impact on the performance than
other model components whilst it still enhances the model
by considering the importance of temporal graph embed-
dings.

Analysis on Recurrent Neural Networks
In the proposed InfluencerRank framework, we employ
gated recurrent units (GRUs) (Cho et al. 2014) for the re-
current neural networks. However, the GRU can be replaced
with a long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997). To make a design decision which re-
current architecture to employ, we train InfluencerRank with
GRU and LSTM. Figure 6 shows NDCG@200 scores and
training times of InflurncerRank with two RNN architec-
tures on different number of temporal graphs. We observe
that no significant difference in the NDCG scores of models
using GRU and LSTM, but the model with GRU tends to
have slightly higher scores. The results also show that Influ-
encerRank with GRU has shorter training times than LSTM
across the different number of temporal graphs. More specif-
ically, the time difference gradually increases as the number
of temporal graphs for training increases. Note that GRU is
1% faster than LSTM when the model only takes one tempo-
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Figure 6: NDCG scores and training times of Influencer-
Rank trained with GRU and LSTM on different number of
temporal graphs. InfluencerRank with GRU tends to have
better ranking performance and shorter training time than
the model with LSTM.

Node Type RBP NDCG@K
1 10 50 100 200

All nodes 0.043 1.000 0.864 0.720 0.661 0.614
U , V , H 0.039 1.000 0.848 0.704 0.648 0.589
U , H , O 0.040 1.000 0.863 0.716 0.654 0.602
U , V , O 0.037 1.000 0.861 0.708 0.657 0.597

Table 4: Rank evaluation on the different network structures.
Note that U , V , H , and O represent influencer, other men-
tioned user, hashtag, and image object nodes in the network,
respectively.

ral graph and 3.4% faster when the model uses 11 graphs for
training. GRU shows better performance than LSTM in our
task and that is probably because GRU has simpler network
than LSTM and also benefits from the short input sequence
length.

Analysis on Heterogeneous Networks

We study the importance of the proposed heterogeneous net-
work to find effective influencers. To understand the impor-
tance of individual auxiliary node type, we train Influencer-
Rank with the network without the type of auxiliary node.
Table 4 shows the RBP and the NDGC scores of Influencer-
Rank with different types of networks. The results show that
the model trained with all types of nodes achieve higher RBP
and NDCG scores than the other models that exclude a type
of auxiliary nodes. This confirms that the graphical structure
in InfluencerRank helps improve performance in finding ef-
fective influencers. We also observe that NDCG scores of
the model without the image object nodes are lower than
that of the model excluding hashtags and other user nodes.
Note that excluding the image object nodes drops the perfor-
mance of NDCG@200 by 4.1%, whereas excluding hash-
tag and other user nodes only drops the score by 2.8% and
1.9%. This is probably because each image object node can
densely connect a large number of similar influencers to-
gether as it has a greater number of edges than a hashtag
node and a user node.

0 1 2 3 4 5 6

NDCG@200 Loss (%)
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Figure 7: Performance losses of NDCG@200 over node fea-
ture categories. The image features which represent visual
perception and the reaction features which include sentiment
scores of user comments have more impact on the effective
influencer discovery than other types of features.

Analysis on Node Features
The benefit of using GCNs comes from considering network
structure information with node features. To understand the
importance of node features, we first evaluate the perfor-
mance of the model that excludes all node categories. The
model without the whole node features significantly drops
the ranking quality; the loss of NDGC@200 of the model
without node features is 21.99%.

We then investigate the performance of InfluencerRank
with variant sets of node features to study the importance of
each category of the node features.Figure 7 shows the per-
formance loss of NDCG scores of the models trained with
the node features excluding one particular node category
against the full model as the leave-one-out analysis. The re-
sults reveal that the reaction feature category, which con-
tains the sentiment scores of user comments on the posts, is
more important than other categories to identify effective in-
fluencers. This indicates that the audience may show distinct
reactions to influencers with high engagement rates. The im-
age category, which includes the visual perception of images
(e.g., brightness, colorfulness), also has higher loss values
than other node feature categories. This suggests that influ-
encers with high engagement rates may have different visual
characteristics from other influencers. On the other hand, the
text category, including the number of hashtags, user tags,
emojis in a caption, and the sentiment scores of the caption,
have the least impact to discover effective influencers. Al-
though the statistical features to represent textual character-
istics of influencers’ posts have less impact than other fea-
tures, InfluencerRank can improve the ranking performance
by taking hashtags and user tags into account to the network
structure.

Influencer Follower Size
In the influencer marketing industry, influencers are often
divided into subgroups by the number of followers since it
directly refers to the size of potential customers and hiring
cost (De Veirman, Cauberghe, and Hudders 2017). For ex-
ample, companies with a sufficient marketing budget can
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hire influencers who are followed by millions of people
while small retailers may collaborate with influencers with a
small number of followers. Therefore, we evaluate the per-
formance of InfluencerRank over groups of influencers with
different sizes of followers. Although there are no standard
criteria to classify influencers based on the number of fol-
lowers, we utilize the following thresholds which are the
generally accepted numbers to divide the influencers into
three groups1. Influencers who are followed by less than
20,000 followers are classified as the Micro influencers. The
Mid-level influencers have followers between 20,000 and
100,000, and Macro influencers have more than 100,000
followers. In our dataset, around 30% of influencers are
the micro-influencers, 45% of them are the mid-level influ-
encers, and the remaining 25% influencers are the macro-
influencers. To evaluate the performance under the same
conditions, we randomly select multiple sets of 1,000 influ-
encers from each category and run the experiment 10 times.

Figure 8 shows the average NDCG scores of Influencer-
Rank and four baseline methods, including GCRN (Seo et al.
2018), DeepInf (Qiu et al. 2018), CasCN (Chen et al. 2019),
and EGCN (Pareja et al. 2020) over the micro, mid-level,
and macro-influencers. The results show that the proposed
model has robust performance to discover effective influ-
encers in the groups of all ranges of followers compared to
the baseline methods. More specifically, DeepInf (Qiu et al.
2018) fails to discover effective micro-influencers. This is
probably because DeepInf disregards the temporal informa-
tion which is critical to find micro-influencers who have rel-
atively large variance on their features and engagement rates
over time compared to macro-influencers who are matured.
On the other hand, our proposed model can accurately find
highly effective micro-influencers since their unique fea-
tures are captured by sequential learning of temporal infor-
mation.

Conclusion
In this paper, we propose a ranking model to discover in-
fluencers with high engagement rates by learning temporal
dynamics of their posting behaviors. To represent the char-
acteristics of influencers and their posting behaviors at each
time period, we build a heterogeneous network that consists
of influencers and social media elements as nodes, such as
hashtags, user tags, and image objects. Moreover, each node
can be associated with context features in six categories, in-
cluding node type, profile, image, text, posting, and reaction
features. Based on the GCN-encoded representations of in-
fluencers at each timestamp, our proposed model applies at-
tentive RNNs to model historical behaviors of influencers,
thereby accurately ranking influencers by their engagement
rate scores. The results of the extensive experiments show
that InfluencerRank outperforms existing baseline methods.

Broader Impact and Ethical Considerations
The utility of our proposed framework is expected to sig-
nificantly increase given a decision of Instagram, one of the

1http://www.mattr.co/pros-cons-micro-macro-mid-level-
influencers/
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Figure 8: Performance evaluation on influencers with dif-
ferent sizes of followers. InfluencerRank shows consistently
good performance regardless of the audience size.

most popular influencer marketing platform, that considers
to hide the number of likes on each post (Instagram 2021;
Loren 2019) to help mental health issues of social media
users (Royal Society for Public Health 2017). Unlike prior
work, the number of likes is not used in discovering influ-
encers in InfluencerRank, hence our proposed model can
be particularly used by brands with relatively small busi-
ness sizes, who may be suffering from the heavy expense
of discovering effective influencers among millions of can-
didates (Instagram 2017) in a situation where the number of
likes is hidden from other users. Additionally, our model is
also capable of adopting additional node features and node
types in the network for further improvements. As a result,
we believe our model can be widely exploited in finding
highly effective influencers for businesses from small retail-
ers to global brands.
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